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Abstract: The concept of a smart city requires the integration of information and communication
technologies and devices over a network for the better provision of services to citizens. As a result,
the quality of living is improved by continuous analyses of data to improve service delivery by
governments and other organizations. Due to the presence of extensive devices and data flow over
networks, the probability of cyber attacks and intrusion detection has increased. The monitoring
of this huge amount of data traffic is very difficult, though machine learning algorithms have huge
potential to support this task. In this study, we compared different machine learning models used for
cyber threat classification. Our comparison was focused on the analyzed cyber threats, algorithms,
and performance of these models. We have identified that real-time classification, accuracy, and
false-positive rates are still the major issues in the performance of existing models. Accordingly, we
have proposed a hybrid deep learning (DL) model for cyber threat intelligence (CTI) to improve
threat classification performance. Our model was based on a convolutional neural network (CNN)
and quasi-recurrent neural network (QRNN). The use of QRNN not only resulted in improved
accuracy but also enabled real-time classification. The model was tested on BoT-IoT and TON_IoT
datasets, and the results showed that the proposed model outperformed the other models. Due to this
improved performance, we emphasize that the application of this model in the real-time environment
of a smart system network will help in reducing threats in a reasonable time.

Keywords: cyber threat intelligence; privacy; smart city; machine learning; deep learning; CNN; QRNN

1. Introduction

The transformation of cities into smart cities is on the rise, where technologies such
as the Internet of Things (IoT) and cyber–physical systems (CPS) are connected through
networks for the better provision of quality services to citizens [1]. The smart city concept
refers to urban systems that are integrated with information and communication technolo-
gies (ICTs) to improve city services in terms of monitoring, management, and control to
be more efficient and effective [2]. A smart city contains a huge number of sensors that
continuously generate a tremendous amount of sensitive data such as location coordinates,
credit card numbers, and medical records [3]. These data are transmitted through a net-
work to data centers for processing and analysis so that appropriate decisions, such as
managing traffic and energy, can be made in a smart city [4]. The resource limitations of
technological infrastructure expose smart cities to cyber attacks [5]. For instance, sensors
that generate data and devices that handle the data in a smart city have vulnerabilities
that can be exploited by cybercriminals. Consequently, citizens’ privacy and lives can be at
risk when collected data for analysis and decision making are manipulated, which makes
people intimidated by smart cities [1].
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A smart city environment collects a tremendous amount of private and sensitive data
and depends on ICT, which makes smart cities target for different cyber attacks, such as
distributed denial of service (DDoS), using IoT devices by infecting them with bots and
launch an attack against a target [6–9]. Cyber threat intelligence (CTI) can provide secure
environments for smart cities, where it can rely on cloud services to monitor possible threats
in real time and take appropriate prevention measures without human intervention [10–15].
Moreover, CTI can provide a light security mechanism, as it is not implemented on smart
city devices; rather, it monitors attacks through the cloud to obtain information about
recent threat behavior and indicator of compromise (IoC), and it reports this information to
connected smart city systems. Different techniques and machine learning (ML) models have
been proposed to analyze cyber threats for CTI such as deep learning (DL) models [16,17],
random forest (RF) [18], and K-NN [19]. Nevertheless, artificial intelligence (AI)-based
models can have a high false-positive rates (FPRs) and low true-positive rates (TPRs)
if the attack traffic is not profiled and modeled well enough [20]. This limits real-time
classification efficiency and degrades smart city network security. To address this issue,
improve threat analysis, and lower FPRs, we propose a hybrid DL model that is based
on a convolutional neural network (CNN) and quasi-recurrent neural network (QRNN).
The proposed model can automatically learn spatial features using CNN and temporal
features using QRNN without human intervention. The CNN model can automatically
select the relevant features from the dataset and reduce the irrelevant features to improve
classification performance [21]. For cyber threat analysis, several works have shown
the efficiency of CNN for feature selection, such as [20,22]. The QRNN model performs
computation in parallel, which improves computation time while maintaining sequence
modeling [23]. Thus, this hybrid model (CNN–QRNN) can help improve real-time analysis
in CTI while providing a high accuracy and low FPR. Therefore, the proposed model can
improve CTI performance for smart cities. We evaluated our proposed model with two
IoT network traffic datasets. The evaluation results demonstrate the effectiveness of our
proposed model. The main contributions of this study are summarized as follows:

• We propose a hybrid DL model that consists of QRNN and CNN to improve cyber
threat analysis accuracy, lower FPR, and provide real-time analysis.

• We evaluated our proposed model on two datasets that were simulated to represent a
realistic IoT environment.

The rest of this paper is structured as follows. In Section 2, we discuss related work by
comparing and analyzing different threat classification schemes that have been proposed
in the literature. The proposed model is presented in Section 3. The implementation of the
proposed model is discussed in Section 4, the experiment results and analysis are presented
in Section 5, and conclusions are presented in Section 6.

2. Related Work

In recent years, different studies have proposed mechanisms to predict and analyze
cyber attacks in smart city environments. The authors of [24] proposed an ML-based
detection mechanism that focused on classifying DDoS patterns to protect a smart city from
them. In [25], the authors studied how IoT devices can affect smart city cyber security;
the authors proposed a detection mechanism that depends on the selected features to
improve the threat detection for IoT. The results of the proposed system showed high
accuracy, but the dataset, KDD CUP 99, did not represent the behavior of IoT network
attacks. Soe et al. [21] proposed an algorithm to improve prediction accuracy by selecting
the optimal features for each type of attack in an IoT environment. The authors used ML
models to evaluate the proposed feature selection algorithm, which was able to accurately
predict the threats. However, the proposed algorithm selected a static set of features for
each type of attack, which could be easily bypassed if exposed to the threat environment.
In [26], the authors used a DL model to select the best features for threat prediction to
improve the detection time in an IoT environment. The proposed model selects a set of
features that are fed into feed-forward neural networks (FFNNs) to detect cyber threats and
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classify threat types. However, the proposed model showed limited accuracy in predicting
information theft data.

In [19], the authors discussed how to use the ML model to rapidly and efficiently
detect and classify IoT network attacks. The authors performed an experimental study by
implementing various ML models and evaluating their performance. In [27], the authors
proposed a hybrid ML model to detect IoT network attacks including that of the zero-day.
The proposed model mainly consists of two stages: the first stage classifies the traffic into
two categories (normal or attack), and the second stage classifies the type of attacks using
SVM. Similarly, in [28], the authors proposed a hybrid ML model to detect and classify
IoT network attacks in real time. The first layer of the proposed model uses a decision
tree classifier to detect malicious behavior and the second layer classifies the type of attack
using random forest (RF). In [29], the authors investigated the remote-control threat of
connected cars and used an ML model to predict threats. The authors proposed a proactive
anomaly detection mechanism that profiled the behavior of the autonomous connected
cars using a recursive Bayesian estimator. To evaluate the effectiveness of the proposed
method, the authors designed a dataset for connected cars using hypothetical events routes
and global positioning system coordinates, and they then modeled the data to predict
the anomalies’ behavior. Lee et al. [30] proposed a technique, based on DL models, that
transforms the multitude of security events into individual event profiles. The authors
discussed how anomaly-based detection can be costly since it can trigger many false alerts.
Therefore, they focused on improving security information and event management system
by using DL to reduce the cost to differentiate between true and false alerts. In [31], the
authors proposed a hybrid ML method to detect cyber threats. The authors focused on how
to improve detection accuracy to handle an attacker’s methods to evade detection tools.
To evaluate the proposed method, the authors used different datasets including KDD Cup
and UNSW-NB15. In [32], the authors discussed how to improve the threat analysis and
classification, including novel attacks. The authors proposed a model based on a stacked
autoencoder to enhance and automate feature selection to classify the threats.

Various scientific studies have proposed a hybrid DL model to improve threat analysis
and classification. In [33], the authors proposed an improved version of grey wolf opti-
mization (GWO) and a CNN. In the proposed hybrid model, the first GWO model is used
to select the features and the second CNN model is used for threat classification. Other
studies have used a hybrid DL model that is based on CNNs and RNNs for spatial and
temporal feature extraction to improve attack classification. In [34], the authors used a
CNN for feature selection since it could provide fast feature selection to support real-time
analysis. For threat classification, the authors used one of the variants of the LSTM model:
weight-dropped LSTM (WDLSTM). The proposed hybrid model showed good performance
in terms of execution time. Vinayakumar et al. [35] studied the effect of CNN in threat
classification and intrusion detection system (IDS). The authors investigated different hy-
brid DL models with CNNs including CNN-LSTM, CNN-GRU, and CNN-RNN, and the
model implementing CNN-LSTM outperformed the other models. Moreover, the authors
highlighted that selecting a minimum set of features for threat classification degraded
the performance of the classification. Therefore, DL models can perform well in terms of
feature selection. In [36], the authors proposed a hierarchical model based on CNN-LSTM.
The authors used stacked CNN layers for spatial features learning using image classifica-
tion and then stacked LSTM for temporal features learning. Similarly, in [20], the authors
proposed an LuNet model based on CNN-LSTM. The authors discussed how stacking
LSTM layers after CNN layers could drop some of the temporal features. Thus, the authors
proposed the LuNet block, which consists of LSTM layer stacked after the CNN layer, and
they then stacked the LuNet block in multiple layers to improve classification performance
and lower the FPR.

As shown in Table 1, different network traffic benchmark datasets have been used
to analyze the low-level IoC such as UNSW-NB15, NSL-KDD, and KDD CUP 99. For IoT
attack classification, the BoT-IoT dataset has been used in multiple studies to evaluate
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the performance of proposed models. Different ML and DL models, such as the SVM,
CNN, and LSTM, have been used to analyze threats and provide accurate results, and the
CNN-LSTM hybrid model has been used in multiple studies to improve threat classification
performance.

Table 1. Comparison between proposed attack classification methods.

Ref Cyber Threats Algorithm Data Sources Accuracy FPR

[24] DDoS
Restricted
Boltzmann

machine and FFNN

Simulated smart
water system

dataset
97.5% -

[21] Information theft,
reconnaissance, and DDoS J48 BoT-IoT UNSW - 0.41

[26] Information theft,
reconnaissance, and DDoS FFNN BoT-IoT UNSW - -

[19]
DDoS, DoS, data exfiltration,

keylogging, OS fingerprinting,
and service scan

K-nearest neighbors (K-NN) BoT-IoT UNSW 99.00% -

[27] DDoS, DoS, keylogging, and
reconnaissance C5-SVM BoT-IoT UNSW 99.97% 0.001

[28]
DDoS, DoS, data exfiltration,

keylogging, OS fingerprinting,
and service scan

Decision tree-RF BoT-IoT UNSW 99.80% -

[29] Remote car control Recursive
Bayesian estimation

Route data for
connected cars - -

[30] DoS, probe, R2L, and U2R FCNN, CNN, and LSTM Network events 94.7% 0.049

[31]

Tor traffic (anonymous IP)
C4.5, Multilayer perceptron

(MLP), SVM, and linear
discriminant analysis (LDA)

UNB-CIC TOR
Network Traffic

dataset
100 0

Worms, DoS, backdoors,
reconnaissance, exploits,

analysis, generic, fuzzers, and
shellcode

UNSW-NB15 97.84% 0.23

[32] Injection, Flooding,
Impersonation Stacked auto-encoder (SAE) AWID-CLS-R 98.66% -

[33] DoS, probe, R2L, and U2R GWO-CNN
DARPA1998 97.92% 3.60

KDD CUP 99 98.42% 2.22

[34]

Worms, DoS, backdoors,
reconnaissance, exploits,

analysis, generic, fuzzers, and
shellcode

CNN-LSTM UNSW-NB15 98.43% -

[35] DoS, probe, R2L, and U2R CNN-LSTM KDD CUP 99 98.7% 0.005

[36]
DoS, probe, R2L, U2R,

BruteForce SSH, DDoS, and
infiltrating

CNN-LSTM ISCX2012 99.69% 0.22

DARPA1998 99.68% 0.07

[20]

Worms, DoS, backdoors,
reconnaissance, exploits,

analysis, generic, fuzzes, and
shellcode

CNN-LSTM UNSW-NB15 84.98% 1.89

DoS, probe, R2L, and U2R NSL-KDD 99.05% 0.65

In terms of the CTI for smart cities, multiple papers, including [24,25], have analyzed
the threats pattern based on network traffic. Additionally, in [37], the authors proposed a
trustworthy privacy-preserving secured framework (TP2SF) for smart cities; the authors
used the optimized gradient tree boosting system (XGBoost) and blockchain, and they
evaluated the proposed framework on two datasets: BoT-IoT and TON_IoT. DDoS is one of
the challenging threats in a smart city that has been studied by different researchers, who
have proposed methods to analyze IP addresses and track the sources to prevent this attack
or to identify the behavior of the network when there is overload traffic. Data theft, which
can be described as privacy and identity theft, is another threat that has been studied by
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various researchers. Data theft threats include reconnaissance, information theft, probe,
R2L, and U2R, which may lead to the exposure of various vulnerabilities that can help in
launching data theft attacks such as sniffing passwords and unauthorized access. Some
of the proposed models for smart cites set a fixed threshold to detect attacks, which is
not effective and can raise a lot of false alarms that affect the power consumption of the
connected systems. In smart cities, the normal behavior of a system can change due to the
increasing number of connected devices, so some researchers have achieved high accuracy
but bad performance in terms of FPR.

Even though different researchers have proposed models to enhance threat classifica-
tion for IoT environments, many aspects still require improvement. One of the limitations
that is common between different methods is performance time. Low-level IoCs that are
collected from network traffic have been used to analyze the threats in various papers
to provide timely information to the CTI knowledge base and update the detection and
prevention information for all systems connected to the CTI. However, to enhance classifi-
cation performance, various models have multiple stacked ML model layers. Therefore, it
may take time to train a model and classify threats while not taking advantage of these IoCs.
Secondly, when some models are not provided with enough data for each type of threat,
threat traffic cannot be profiled and modeled well enough. Consequently, ML models can
have high FPRs. Furthermore, some models only provide accurate results when their sys-
tem has precise details of threats. Consequently, the system is not able to recognize threats
that do not have enough data for model training, which affects classification accuracy.

Moreover, we observed that few papers have addressed diverse patterns for threat
analysis while considering time, accuracy, and FPR. Several works have proposed hybrid
models based on the CNN and LSTM to learn spatial and temporal data. However, LSTM
is computationally complex and requires a long time for analysis [38]. The QRNN model is
a type of RNN that allows for sequence modeling by implementing computation in parallel
while maintaining the data’s long- and short-term sequence dependencies [23]. We could
not find a work that used the QRNN model to improve cyber threat classification time
while demonstrating high accuracy. Thus, in this work, we propose a hybrid DL model
for CTI for smart cities that addresses the abovementioned challenges and uses the QRNN
model. The proposed hybrid model can improve threat classification accuracy and lower
the FPR in a reasonable time. Therefore, it can predict different attacks to protect citizens’
data and enhance the security of smart cities.

3. Proposed Model

In this section, we discuss the proposed hybrid DL model in terms of its structure, the
selected DL algorithms, and relevant theoretical concepts. The selected DL models (CNN
and QRNN) can be used to classify a threat type in real time while providing a low FPR.
The architecture of the proposed model is presented in Figure 1.

Figure 1. The architecture of the proposed hybrid model.
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A CNN is an extension of a neural network [39] and it is effective at extracting features
at a low level from the source data, especially spatial features [40].

CNNs are used widely in image processing due to their ability to automate feature
extraction [41]. Additionally, CNNs have demonstrated their effectiveness in many fields
such as biomedical text analysis and malware classification [30]. Based on the shape of
the input data, a CNN can be classified into different types including a two-dimensional
(2D) CNN, which uses data such as images, and a one-dimensional (1D) CNN, which uses
data such as text. A CNN consists of a convolution layer, pooling layer, fully connected
(FC) layer, and activation function [42]. The convolution layer is fundamental building
block in CNNs that takes two sets of information as inputs and performs a mathematical
operation with these inputs. The two sets of information are the data and a filter, which
can be referred to as kernel. The filter is applied to an entire dataset to produce a feature
map [41]. Each CNN filter extracts a set of features that are aggregated to a new feature
map as output [30]. The pooling layer is implemented to reduce feature map dimensions
and to remove irrelevant data to improve learning [20]. The output of the pooling layer is
fed into the FC layer to classify the data [43].

The LSTM-RNN is one of the most powerful neural network models that is used in
cyber security due to its ability to accurately model temporal sequences and their long-term
dependencies [44]. However, LSTM usually takes a longer time for model training and
high computation cost [45]. The QRNN model [23] was designed to overcome the RNN
limitations in terms of each timestep’s computation dependency on the previous timestep,
which limits the power of parallelism. The QRNN combines the benefits of the CNN and
RNN by using convolutional filters on the input data and allowing the long-term sequence
dependency to store the data of previous timestamps [23]. The computation structure of the
QRNN is presented in Figure 2. The QRNN consists of convolutional layers and recurrent
pooling function, which allow the QRNN to work faster than LSTM due to its a 16-times-
increase in speed while achieving the same accuracy as LSTM [46]. The convolutional and
pooling layers allow for the parallel computation of the batch and feature dimensions [23].
The QRNN has been used in different applications such as video classification [45], speech
synthesis [46], and natural language processing [47].

Figure 2. The computation structure of the QRNN.

Our hybrid DL model consists of a 1D convolutional layer, 1D max-pooling layer, a
QRNN, and FC layers. The first 1D convolutional layer selects the spatial features and
produces a feature map that will be processed by the activation function. The Rectified
Linear Unit (ReLU) activation function is used in the convolutional layers because of its
rapid convergence of gradient descent, which made it a good choice for our proposed
model [41]. Then, the feature map is processed by the second layer that uses the max-
pooling operation. The max-pooling operation selects the maximum value in the pooling
operation [41]. The pooling layer reduces dimensionality and removes irrelevant features.
The output of the CNN model retains the temporal feature that is extracted by the QRNN
model. Figure 3 provides details of our proposed model and shows that we used two
QRNN layers to extract the temporal features. In the two layers of the QRNN, the hidden
size represents the number of the hidden units and the output dimension. The hidden units
can be selected based on the value of the number of features [45]. One of the problems
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of a neural network is overfitting, which means that a model learns the data too well.
Consequently, the model is not able to identify variants in new data [22]. We added a
dropout layer to prevent overfitting.

Figure 3. Illustration of the details of the proposed model.

Then, a 1D convolutional layer and max-pooling layer are used to extract more spatial-
temporal features. The output of the CNN model is passed to the Flatten layer, which is a
fully connected input layer that transforms the output of the pooling layer into one vector
to be an input for the next layer [48]. Finally, the dense layer, which is also a fully connected
layer, with the SoftMax activation function is used to classify the threats by calculating the
probabilities for each class [34].

4. Implementation

In this section, we describe the datasets that we selected to evaluate the proposed
model. Additionally, we discuss the data preprocessing steps, model parameter selection
process, and selected evaluation metrics.

4.1. Datasets

In this work, we selected the BoT-IoT and TON-IoT datasets because they have been
simulated to represent realistic IoT environments such as smart homes and cities. The
datasets had a heterogeneity of simulated IoT devices including weather-monitoring sys-
tems, smart lights, smart thermostats, and a variety of cyber threats.

4.1.1. BoT-IoT Dataset

In previous studies, different datasets, such as KDD99, ISCX, and CICIDS2017, have
been used to evaluate ML models; however, few datasets have been produced to reflect
realistic IoT network traffic. These datasets were either not diverse enough in terms of
attacks or not realistic in terms of the testbed [19]. Therefore, Koroniotis et al. [49] designed
the BoT-IoT dataset to address these limitations. The BoT-IoT dataset is used in forensic
analysis and to evaluate IDS. The dataset contains normal IoT traffic and different types of
attack traffic with subcategories for each type, which are listed in Table 2. Reconnaissance
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is one of the privacy threats, and it allows a threat actor to collect data about a victim via
port scanning and OS fingerprinting, among other ways. Information theft includes data
theft by unauthorized access and keylogging. On the other hand, a DoS threat affects the
availability of services and can damage systems, which make it one of the biggest threats to
smart cities. In this dataset, UDP, TCP, and HTTP protocols were used to perform both DoS
and DDoS attacks.

Table 2. Attack categories in BoT-IoT dataset.

Attack Attack Subcategory Number of Instances

Reconnaissance
Service scan 73,168

OS fingerprinting 17,914

DoS

TCP 615,800

UDP 1,032,975

HTTP 1485

DDoS

TCP 977,380

UDP 948,255

HTTP 989

Information theft
Keylogging 73

Data theft 6

4.1.2. TON_IoT Dataset

The ToN_IoT dataset [50] is one of the newest cyber security datasets; it as collected
from a testbed network for industry 4.0 IoT and Industrial IoT (IIoT), which makes it
suitable to evaluate CTI for a smart city. We used the TON_IoT train–test dataset, which is
in the CSV format. The dataset contains a total of 461,043 instances and 9 types of attacks,
which are presented in Table 3 along with the number of instances for each type.

Table 3. Attack categories in TON_IoT dataset.

Attack Number of Instances

DoS 20,000

DDoS 20,000

Scanning 20,000

Ransomware 20,000

Backdoor 20,000

Injection 20,000

Cross-Site Scripting (XSS) 20,000

Password 20,000

Man-In-The-Middle (MITM) 1043

4.2. Data Preprocessing

Since we were interested in evaluating CTI for threat classification, we deleted the nor-
mal traffic from the datasets. Additionally, in the BoT-IoT dataset, we omitted the pkSeqID
feature since it represented an identifier for the traffic records. The datasets contains some
categorical features that could not be processed by the neural network. Thus, we converted
the nominal values into numeric using sklearn LabelEncoder. LabelEncoder converts cate-
gorical values into numerical values [22]. We implemented sklearn StandardScaler to scale
the data. For training and evaluation, several papers have split the dataset into training and
testing, with a ratio of 20% for testing s in [19] and 30% for testing in [21]. However, due to
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the size of the BoT-IoT dataset and the resource constraints of our device, we divided the
data into training and testing sets, with a ratio of 35% for testing, while having the same
ratio of classes in both parts by using the stratify parameter.

4.3. Model Implementation

The parameters of the hybrid model were obtained during the training phase by trial
and error including the number of CNN filters, the number of QRNN hidden units, and
the dropout rate. As mentioned in different studies [35], kernel size values of 3 and 5 are
the most common, so we used kernel size 3 with both datasets in our experiment. A filter
can help in extracting more details from a dataset by increasing the number of filters [51].
Thus, for the first CNN layer, we used 64 filters, and for the other CNN, we used 128 filters.
Additionally, we set the value of the batch size for the training at 128 and the value of the
number of epochs at 10. The details and the selected parameters of the hybrid DL model
are presented in Figure 3.

4.4. Evaluation Tools and Metrics

Different evaluation metrics were used in this work to evaluate the performance of
the proposed model including accuracy, FPR, TPR, precision, recall, and F-Score. Accuracy
represents the ratio of correctly classified threats to the total number of classified threats, so
it demonstrates how accurate an model in classifying threats [52]. The FPR represents the
ratio of misclassified data as a different type of threat, and the TPR represents a model’s
ability to correctly classify threats. A low FPR and a high TPR demonstrate the ability of
a model to correctly classify cyber threats [53]. Precision, recall, and F-Score were used
to evaluate the overall performance of the proposed model; a high value of precision
indicates a low FPR, and recall represents a model’s ability to correctly classify threats.
Equations (1)–(6) represent the evaluation metrics, where FP is false positive, TP is true
positive, TN is true negative, and FN is false negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

FPR =
FP

FP + TN
(2)

TPR =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F − Score =
2(Precision × Recall)

Precision + Recall
(6)

5. Results and Discussion
5.1. Results and Analysis

This section presents the results and analysis for model implementation. We used
Jupyter Notebook software with the Python programming language. We used the Keras and
scikitlearn packages for data pre-processing and implementing the proposed model. We
trained the proposed model on a MacBook Air with an Intel Core i5 CPU 1.6 GHz processor
and 8 GB RAM. Additionally, we implemented different state-of-the-art ML models on the
datasets to compare their performance with that of our proposed model. Figure 4 presents
the confusion matrix of our proposed model on the BoT-IoT dataset. The results show that
the model correctly classified most of the cyber threat categories. Furthermore, to illustrate
the quality of the proposed model, the receiver operating characteristic (ROC) curve is
plotted in Figure 5 for the BoT-IoT dataset.
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Figure 4. Confusion matrix based on the BoT-IoT dataset.

Figure 5. ROC curve of using our proposed model on the BoT-IoT dataset.

Figure 6 presents the confusion matrix of our proposed model on the TON_IoT dataset,
and the ROC curve is presented in Figure 7. Both ROC curves show that our proposed
model achieved the highest value of 1. Thus, our proposed model performed very well
with all the classes.

The results of our proposed model on the testing datasets are presented in Table 4.

Table 4. Results of cyber threat classification on both datasets.

Dataset Accuracy% TPR% FPR

BoT-IoT 99.99 99.92 0.0003

TON_IoT 99.99 99.99 0.001
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Figure 6. Confusion matrix based on the TON_IoT dataset.

Figure 7. ROC curve of using our proposed model on the TON_IoT dataset.

As shown in Table 4, the proposed model achieved high accuracy, with an average of
99.99% on both datasets. The TPR reached averages of 99.92% with the BoT-IoT dataset and
99.99% with the TON_IoT dataset. The proposed model achieved a low FPR of 0.0003 with
the BoT-IoT dataset and 0.001 with the TON_IoT dataset. Thus, the proposed model showed
good performance in classifying the threats with both datasets. Moreover, to demonstrate
the effectiveness of the QRNN, we implemented our proposed model with LSTM instead
of the QRNN to compare performance. Cybersecurity threats are very critical [54–56], and
the results shown in Tables 5 and 6 highlight that our proposed approach could be very
effective in dealing with them.

Table 5. Comparison of our proposed model while using LSTM and QRNN based on BoT-IoT dataset.

Model Accuracy Precision Recall F-Score Avg. Training
Time per Epoch

Classification
Time

With LSTM 99.99% 100% 100% 100% 1717.4 s 326 s

With
QRNN 99.99% 100% 100% 100% 1299.1 s 251 s
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Table 6. Comparison of our proposed model while using LSTM and the QRNN based on TON_IoT
dataset.

Model Accuracy Precision Recall F-Score Avg. Training
Time per Epoch

Classification
Time

With LSTM 99.99% 100% 100% 100% 86.3 s 16 s

With
QRNN 99.99% 100% 100% 100% 66.5 s 13 s

According to the results in Tables 5 and 6, our proposed model with the QRNN
showed the same performance as our proposed model with LSTM in terms of accuracy,
precision, recall, and F-Score. In terms of time, the proposed model with the QRNN showed
better performance for training the model and testing. The average training time per epoch
demonstrated that the QRNN performed faster than LSTM in terms of training the model
on both datasets, with a 418.3 s difference on the BoT-IoT dataset and a 19.8 s difference on
the TON_IoT dataset. Additionally, for the classification time on the test dataset, the QRNN
model performed faster than LSTM, with a 75 s difference on the BoT-IoT dataset and a 3 s
difference on the TON_IoT dataset. The QRNN showed its effectiveness in increasing the
speed of the model while providing a high accuracy and low FPR. Therefore, the model can
be used for real-time CTI. We further compared the performance of our proposed model on
the BoT-IoT and TON_IoT datasets against the state-of-the-art models for the multi-class
classification of threats. The results of these comparisons are shown in Tables 7 and 8.

Table 7. Comparison of our proposed model with state-of-the-art models based on the BoT-IoT
dataset.

Model Accuracy% Precision% Recall% F-Score%

K-NN [19] 99.00 99.00 99.00 99.00

Hybrid IDS [27] 99.97 - - 95.7

RF [28] 99.80 99.00 99.00 98.80

RF [37] 99.99 79.76 62.98 65.08

TP2SF [37] 99.99 99.97 94.92 97.08

Our model 99.99 100 100 100

Table 8. Comparison of our proposed model with state-of-the-art models based on the TON_IoT
dataset.

Model Accuracy% Precision% Recall% F-Score%

RF [37] 97.81 87.55 85.43 86.41

TP2SF [37] 98.84 97.23 94.03 95.28

Our model 99.99 100 100 100

As shown in Tables 7 and 8, though K-NN [19] and RF [28] showed good performance
for recall and F-score on the BoT-IoT dataset, our proposed model outperformed the state-
of-the-art models on both datasets. Additionally, we implemented different ML models to
compare their performance with that of our model. The accuracy, TPR, and FPR values of
each model are given are Tables 9 and 10. Our model performed better than the other four
models, with accuracy measured as 99.99% on both datasets and low FPR values of 0.0003
on the BoT-IoT dataset and 0.001 on the TON_IoT dataset. The LSTM model showed good
performance in terms of accuracy and FPR, while the GRU showed a high TPR compared
to the LSTM on the BoT-IoT dataset. On the TON_IoT dataset, the GRU performed poorly
compared to the other models.
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Table 9. Comparison of our proposed model with other ML models based on BoT-IoT dataset.

Model Accuracy% TPR% FPR

MLP 99.98 86.42 0.002

CNN 99.98 88.13 0.001

GRU 99.98 96.06 0.001

LSTM 99.99 94.69 0.0004

Our model 99.99 99.92 0.0003

Table 10. Comparison of our proposed model with other ML models based on TON_IoT dataset.

Model Accuracy% TPR% FPR

MLP 99.67 99.51 0.03

CNN 99.88 99.75 0.01

GRU 97.85 96.95 0.27

LSTM 99.83 99.79 0.02

Our model 99.99 99.99 0.001

5.2. Theoretical and Practical Implications

This work describes a model that can correctly classify cyber threats with a low FPR
while considering time performance. Thus, the proposed model can improve decision
making for risk mitigation so that appropriate protection measures against cyber attacks in
smart cities can be taken [57,58]. Additionally, this model will benefit organizations and
services providers in smart cities because of the high costs of implementing and maintaining
cyber security solutions [59]. The organizations and service providers in smart cities can
take accurate proactive measures against detected cyber attacks such as data breaches,
which will help in saving costs [60]. Furthermore, our proposed model can be implemented
in the cloud to monitor cyber security and collect and update cyber threat data from the
connected systems in smart cities.

6. Conclusions

A smart city facilitates the life of its citizens by providing better services than non-
smart cities. Due to the extensive presence of digital data, smart cities are also vulnerable
to various types of attacks. Machine-learning-based cyber threat intelligence can secure
smart city environments by monitoring attacks and analyzing data threats in order to
take prevention measures. In this paper, we have proposed a hybrid deep learning model
to classify threats. The proposed model uses a CNN and a QRNN to improve feature
extraction, increases classification accuracy, and lower the FPR. We evaluated our model on
the BoT-IoT and TON_IoT datasets, and our results showed the effectiveness of our model
in improving classification accuracy and lowering the FPR. In addition, the results showed
that the QRNN model could improve classification time performance while providing high
accuracy and lower FPR than LSTM. Thus, the proposed model for CTI for smart cities can
accurately analyze and classify data in real time.

One of the limitations of this work is the authors’ use of datasets. Due to the security
and privacy of smart city citizens, it was difficult to evaluate the proposed model on
real-time data. Additionally, for implementation, we evaluated the model as a centralized
system. In future work, we can implement the proposed model in a distributed environment
with parallel training to improve classification performance.
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