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Abstract: LiDAR-based pedestrian detection and tracking (PDT) with high-resolution sensing capa-
bility plays an important role in real-world applications such as security monitoring, human behavior
analysis, and intelligent transportation. The problem of LiDAR-based PDT suffers from the complex
gathering movements and the phenomenon of self- and inter-object occlusions. In this paper, the
detection and tracking of dense pedestrians using three-dimensional (3D) real-measured LiDAR
point clouds in surveillance applications is studied. To deal with the problem of undersegmentation
of dense pedestrian point clouds, the kernel density estimation (KDE) is used for pedestrians center
estimation which further leads to a pedestrian segmentation method. Three novel features are defined
and used for further PDT performance improvements, which takes advantage of the pedestrians’
posture and body proportion. Finally, a new track management strategy for dense pedestrians is pre-
sented to deal with the tracking instability caused by dense pedestrians occlusion. The performance
of the proposed method is validated with experiments on the KITTI dataset. The experiment shows
that the proposed method can significantly increase F1 score from 0.5122 to 0.7829 compared with the
STM-KDE. In addition, compared with AB3DMOT and EagerMOT, the tracking trajectories from the
proposed method have the longest average survival time of 36.17 frames.

Keywords: LiDAR; pedestrian detection; tracking; segmentation

1. Introduction

LiDAR is widely used in various fields due to its high resolution and robustness
against time-varying illumination conditions. In engineering, surveying, and mapping, it
can be used for point cloud reconstruction to achieve 3D modeling, disaster assessment, and
target recognition. In intelligent transportation systems, it can be used for environmental
awareness to realize automatic driving and safety monitoring.

People are the most important part of our society. Pedestrians appear in all scenes
of our social life. Pedestrian detection and tracking (PDT) is an important part of envi-
ronmental perception, and is still a challenging and popular issue in academic research,
including the areas of security monitoring, automatic driving, etc., due to the diversity of
dense pedestrian postures and mutual occlusion. Pedestrian detection and tracking based
on visual images has been widely studied during the last decades [1–3]. Note that the
performance of vision-based PDT methods seriously relies on the illumination conditions,
which, however, can be easily affected by environmental factors (e.g., rain or snow). In ad-
dition, distance information of pedestrians of interest (PoIs) is missing in two-dimensional
(2D) visual detection, which can potentially degrade the PDT accuracy. Compared with
vision-based detection, 3D point clouds obtained from LiDAR can provide precise position,
motion status, and movement features of pedestrians, which is an alternative choice in the
problem of PDT.

At present, many scholars are carrying out research about pedestrian detection and
tracking. In [4], the occupancy grid method and Kalman filter are adopted to detect and
track pedestrians on urban roads. The occupancy gird method is simple and intuitive to
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apply; however, this method faces the problem of large false alarms caused by obstacles.
Reference [5] presents an approach of pedestrian detection and tracking using in-vehicle
LiDAR. In this approach, pedestrians are detected according to the features of reflected
signals and geometrical distribution; for tracking, the states are estimated by the interactive
multi-model (IMM) and the auction algorithm. Reference [6] proposed a simultaneous
detection and tracking (SDAT) method for pedestrian trajectory recovery. In this method,
only moving objects are of interest. Instead of detecting the individual object, the SDAT
detects its trajectory directly by assigning the point data to a trajectory hypothesis. This
idea can be regarded as a kind of track-before-detect method. However, it has the drawback
of time inefficiency and is not suited to online tracking. Reference [7] proposed a distance-
aware projection method, mapping a 3D point cloud to a 2D plane to detect pedestrians.
Again based on 3D projection, reference [8] selected four features to train an SVM classifier
to detect pedestrians and then obtain their trajectories via a Kalman filter. The 3D projection
method is effective for close pedestrian detection with dense point cloud. Each object
has its own unique geometry. The model-based box fitting method is used to distinguish
pedestrians and vehicles in [9], meanwhile, the box fitting can provide pose estimation,
which will be used for moving targets tracking. Based on a 3D bounding box, PointRCNN
is proposed for 3D object detection in [10], which can generate 3D proposals from raw
point cloud in a bottom-up manner. In regards to the 3D multi-object tracking (MOT), a
baseline and new evaluation metrics were proposed in [11] based on a 3D Kalman filter. In
addition, camera technology and LiDAR can be used together to improve the surveillance
performance. Reference [12] fuses the detection results of the two sensors and then performs
two-stage data association to achieve pedestrian tracking. Reference [13] uses a deep neural
network to detect pedestrians in RGB images and depth images converted by point clouds.
Its novelty lies in the use of the Kalman filter for both sensor fusion and tracking. Although
the above multi-sensor fusion methods have high precision, they are complicated.

Unlike color discrimination, point clouds usually reflect target differences through
feature extraction. For example, to distinguish obstacles such as low trees and traffic signs
from pedestrians in the road scene. It is well known that the more effective the extracted
features are, the more accurate the pedestrian detection effect will be. Ten 3D point cloud
features, including normalized moment of inertia tensor, 2D histogram, and reflection
intensity distribution, are summarized in reference [7]. In [14], a density enhancement
method is proposed to improve the quality of sparse point clouds by radial basis function
(RBF)-based interpolation. In [15], kernel density estimation (KDE) is used for pedestrian
clustering, and point clouds are projected onto the main plane to extract local adaptive
regression kernel (LARK) features. Then, single template matching (STM) is used for
pedestrian detection. Note that the geometric information is widely used in the above
mentioned literature to distinguish pedestrians from clutters. As a widely used pedestrian
surveillance method, the KDE is also used for pedestrian segmentation, pedestrian mobility
configuration, and pedestrian densities analysis in references [16–18].

With the development of artificial intelligence technology, 3D point cloud target
detection based on deep learning has emerged in recent years. Unlike VoxNet [19], which
requires a voxel processing first, PointNet [20] and PointNet++ [21] could learn features
directly from the original point cloud. On this basis, PointRCNN [10] and PointPillars [22]
were proposed for targets detection. In addition, the YOLO structure, which can be used for
real-time detection, has been widely investigated. YOLO3D [23] and Complexer-YOLO [24]
are proposed for pedestrian detection on point clouds. WYs-WM [25] uses a weighted
mean scheme to unite the detection results based on YOLO framework on images and
point clouds. The experimental results on the KITTI dataset show that they can detect both
pedestrians and vehicles. Furthermore, the CenterPoint framework is proposed in [26]
and applied on NUSCENES dataset to detect pedestrians. The detection performance of
deep learning method is heavily dependent on training data. Although currently available
datasets for pedestrian detection include Pandaset, Apollo, etc., the 3D point cloud dataset
is still incomplete due to the complexity of the real scene.
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Another challenge of the PDT problem is occlusion among dense pedestrians, which
may cause a model to unexpectedly miss pedestrians and further degrades the robustness of
the whole framework. A decentralized multi-target tracking algorithm is proposed in [27],
which reduces occlusions using a LiDAR sensor network. However, using a distributed
network with multiple sensors always leads to a complex and expensive system. In [28], a
part-based model is used to handle the missed detections and partial occlusion, where a
camera is used to capture the individual information in high quantity and quality. However,
it is hard to accurately detect occluded pedestrians with only partial LiDAR points, and false
detections emerging randomly make the problem more challenging. The track management
method is an important part of object tracking for better state estimates in the presence of
missed detections and false alarms [29]. A simple track management method initializes
tracks from a few consecutive associated detections or deletes tracks from a few consecutive
missed detections [30]. A complex trajectory management strategy was proposed in [31].
It contains six trajectory states: Init-Active, Init-Inactive, Identified-Active, Identified-
Inactive, Deleted, and Archived. State switches are accomplished through the Long-Term
Assignment (LTA) and the Short-Term Assignment (STA). From this perspective, track
management considering occlusion is another way to improve the performance of PDT.

To high-resolution LiDAR, clustering is the basis of pedestrian detection and tracking,
and when the pedestrians are close, clustering undersegmentation becomes a challenging
problem. For dense pedestrians, their point clouds are adjacent to each other or even directly
connected, while the point cloud density at the torso is higher than that at the junction
between pedestrians. Therefore, it is possible to improve the clustering performance of
dense pedestrians by properly modeling the difference of point cloud density between
torso and junction. Note that standing pedestrians are almost perpendicular to the ground,
and there are certain geometric constraints between the width and height of human body.
These characteristics can provide discrimination for pedestrian detection. For the occlusion
problem, occluded targets can be found by dividing the area into free, occupied, and
occluded subareas. Then, adjusting the track management strategy for occluded targets can
provide more accurate and reliable tracking results. The main contributions of this paper
are as follows:

• A new KDE-based method for dense pedestrian segmentation is proposed, where the
KDE method is used to estimate the density distribution of pedestrian point clouds
on the horizontal plane. In the presented method, each of the pedestrians can be
represented by a local maximum, which can improve the segmentation performance
of pedestrian clustering.

• Three novel features are defined in this paper according to pedestrians’ posture and
body proportion using eigenvalues and eigenvectors extracted from the covariance
matrix of the point cloud. The first feature shows whether the main direction of candi-
date point cloud is upright or not, which is useful to distinguish upright pedestrians
from targets that are not upright. The other two features can describe the human out-
line, which is used to distinguish pedestrians from targets that do not satisfy human
body proportions.

• A new track management strategy for dense pedestrians is presented aiming at the
problem of tracking instability caused by occlusion among dense pedestrians. Four
trajectory states, candidate trajectory, matched trajectory, occluded trajectory, and
terminated trajectory, are defined, and the states transition processes are given in the
proposed track management framework.

Among the above three contributions, the first is just applying the existing KDE to
dense pedestrian segmentation, and the other two belong to method design innovation.
The rest of the paper is arranged as follows: Section 2 gives solutions and improved meth-
ods for LiDAR pedestrian detection and tracking. Firstly, the framework of the proposed
pedestrian detection and tracking method is introduced. Then, the implementation pro-
cess is introduced in detail, including fine segmentation of dense pedestrians, pedestrian
detection based on features, and pedestrian tracking considering occlusion. Section 3



Appl. Sci. 2022, 12, 1799 4 of 18

shows the verification of proposed methods, mainly based on the KITTI dataset, and some
experimental results are given and analyzed. Finally, the concluding remarks are given in
Section 4.

2. Methodology
2.1. Overall Framework

The framework of the proposed dense pedestrian detection and tracking method is
shown in Figure 1, which mainly contains the following modules: ground elimination,
clustering, fine segmentation, pedestrian detection, and pedestrian tracking. The ground
elimination is the process of removing point clouds from ground. Random Sample Con-
sensus (RANSAC) algorithm [32] can be used to fit the ground plane for ground point
clouds elimination. After filtering out the ground points, the remaining point clouds can be
clustered to separate pedestrians from each other. It is common to obtain undersegmented
clustering results using existing clustering methods such as the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm [33] and the Radially Bounded
Nearest Neighbor (RBNN) algorithm [34] when pedestrians gather together and their point
clouds are close to each other.

In this section, kernel density estimation is used for the fine segmentation of dense
pedestrians based on RBNN. Subsequently, preprocessing is performed to remove high
walls and large buildings, and then the extracted features related to the posture and figure
of the human body are used for pedestrian detection. According to the detection results
and the geometric relationship between pedestrians, the tracking strategy of the occlusion
area is designed to improve the tracking performance. The specific implementation of fine
segmentation, dense pedestrian detection, and dense pedestrian tracking are introduced in
Sections 2.2–2.4.

Figure 1. Dense pedestrian detection and tracking flow.

2.2. Fine Segmentation of Dense Pedestrians

After RBNN clustering, the objects in the scene are segmented into different groups.
However, adjacent pedestrians might be assigned the same group if their point clouds are
really close or even connected. As a result, the dense pedestrians are often undersegmented.
As the foundation, the RBNN clustering is used as a preliminary result, which allows dense
pedestrian point clouds to be divided into the same cluster. The preliminary clustering
needs to be further refined to separate the adjacent pedestrians.

To obtain the fine segmentation of dense pedestrians, the result of RBNN clustering is
projected onto the horizontal plane. Point cloud density is highly correlated with the height
of pedestrians within the LiDAR illumination range. To a person, whose point cloud may
spread in large area, the points from the body will focus on the center. Thus the point cloud
from the torso will be denser than that of the adjacent area. Kernel density estimation can
be used to estimate the density distribution of pedestrian point clouds on the horizontal
projection surface, and the local maximum of the density distribution can be used as the
clustering center of a single pedestrian. Then, the undersegmented pedestrian point clouds
can be finely segmented according to the center of the pedestrian.

The coordinate of the point cloud set P in the XOY plane is Pxoy = p1, . . . , pn, and the
point cloud density at position p can be obtained using kernel density estimation, as shown
in Equation (1).
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f (p) =
1
n

n

∑
i=1

K(p− pi, τ) (1)

where n is the point number of the point cloud set, τ is the window width, which is related
to the width of the pedestrian, pi is the position of the ith point of the set, and K(•) is the
Gaussian core function, as shown in the Equation (2).

K(p− pi, τ)=
1

2πτΣ1/2 exp{− (p− pi)
TΣ−1(p− pi)

2τ2 } (2)

where Σ is the covariance matrix of Gaussian distribution and T means matrix transpose.
As the 3D coordinates are uncorrelated, this paper uses an identity matrix as the covariance
matrix. Combining Equations (1) and (2), and then ignoring the constant coefficient, we find

f (p) =
1
n

n

∑
i=1

exp{− (p− pi)
T(p− pi)

2τ2 } (3)

Equation (3) can be used to describe the density distribution of the point cloud on the
horizontal plane. Local extreme values will be generated somewhere in the pedestrian’s
torso, and the local maximum point of the density distribution can be used as the cluster
center of a single pedestrian.

After obtaining the cluster centers, the distances from each point to cluster centers on
the horizontal projection plane can be used to assign it to the nearest cluster center. The
fine segmentation is to divide confused points into isolated clusters.

2.3. Dense Pedestrian Detection

After the processing of clustering and segmentation, some geometric features, such
as the width and height of a target, can be used to remove high walls and large buildings.
As we all know, pedestrians are non-rigid, and their postures are time-varying. However,
pedestrians are generally upright, and the geometric features, such as height and width, will
maintain a certain proportion. By extracting these features, pedestrians can be distinguished
from obstacles such as trees, traffic lights, and fire hydrants. During the fine segmentation,
a large target, such as a vehicle, may be divided into several false pedestrians, in which
case the geometric features will play a role in improving the detection performance.

Suppose P = {d1, d2, . . . , dn} is a point cloud after fine segmentation, where di is the
3D position of a single point. The covariance matrix of the point cloud coordinates contains
the positional relationship among the points. After eigendecomposition, the eigenvalues
and eigenvectors of the covariance matrix can be used to characterize pedestrians. The
process of eigendecomposition is given below:

(1) Centralizing all point clouds, d′i ← di − 1
n ∑n

i=1 di;
(2) Calculate the covariance matrix X = 1

n−1 DDT , where D = [d′1, d′2, . . . , d′n];
(3) Based on eigen-decomposition of the covariance matrix, we can find three eigenvalues

λ1,≥ λ2, and ≥ λ3 and the corresponding eigenvectors w1, w2, and w3.

The eigenvector w1 corresponds to the maximum eigenvalue, the point cloud has
the greatest variance along the vector w1 than other directions, and the variance is λ1.
The eigenvector w2 corresponds to the second eigenvalue, which is orthogonal to w1 and
the variance along the vector w2 is λ2. Similarly, w3 is orthogonal to w1 and w2, and the
corresponding variance is λ3. Based on the eigenvalues and eigenvectors, we can define
three features to describe pedestrians.

When the pedestrian is upright, then the maximum variance direction of the point
cloud should be perpendicular to the ground, which means the eigenvector w1 should be
perpendicular to the ground. The ground normal vector e can be obtained in the ground
elimination process using RANSAC. We can take the angle between eigenvector w1 and the
vector e as the first feature. The calculation of the angle θ is shown in (4). The distribution
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of angle θ can be modeled by Rayleigh distribution, as shown in (5). The distribution
described in (5) can be fitted using real data so as to obtain the parameter σθ .

θ= acos(
w1 · e
‖w1‖‖e‖

) 0 <θ <
π

2
(4)

p(θ, σθ) =
θ

σ2
θ

exp(− θ2

2σ2
θ

) (5)

Based on the report [35], which presents the results of a comprehensive anthropometric
survey of U.S. Marines, λ1 is the variance of the point cloud projected in the direction
w1, which is positively correlated with the height of pedestrians. Similarly, λ2 and λ3 can
reflect the width of the human body. However, λ1, λ2, and λ3 vary as the number of points
changes. The two ratios shown in (6) and (7) are useful to describe human outline.

r1 = λ1/λ2 (6)

r2 = λ2/λ3 (7)

When LiDAR rays are uniformly distributed in space, assuming that the pedestrian’s
height is H, shoulder width is W, and chest depth is D, we use (8)–(10) to estimate λ1, λ2,
and λ3, respectively.

λ̂1 =
1
H

H∫
0

(x− H/2)2dx =
H2

12
(8)

λ̂2 =
1

W

W∫
0

(x−W/2)2dx =
W2

12
(9)

λ̂3 =
1
D

D∫
0

(x− D/2)2dx =
D2

12
(10)

Thus, we can obtain the estimated r̂1 and r̂2 with (11) and (12).

r̂1 = λ̂1/λ̂2 =
H2

W2 (11)

r̂2 = λ̂2/λ̂3 =
W2

D2 (12)

The estimated r̂1 and r̂2 provide the reference for r1 and r2. On the basis of fine
clustering, pedestrian detection can be realized based on (13) by extracting the three
features, where θthr, rtl1, rtr1, rtl2, and rtr2 are threshold parameters. A cluster satisfying
Equation (13) can be detected as a pedestrian.

θ < θthr
rtl1 < r1 < rtr1
rtl2 < r2 < rtr2

(13)

2.4. Dense Pedestrian Tracking

Pedestrian tracking can provide not only trajectories, but also valuable information for
behavior analysis. In addition, in occlusion areas, the motion prediction also provides useful
information for pedestrian detection. The state estimation of pedestrians is introduced in
Section 2.4.1, data association process is given in Section 2.4.2, and trajectory management
considering occlusion is given in Section 2.4.3.
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2.4.1. State Estimation

The walking of pedestrians on the ground can be modeled as a two-dimensional
movement. The LiDAR scanning frequency is usually high. For Velodyne HDL-64E, its
typical scanning frequency is 10 Hz, and pedestrian movement is relatively slow, thus
pedestrian velocity can be seen as constant. During the LiDAR scan, the state of pedestrians
can be modeled as Xk(x, y, vx, vy), where (x, y) is the centroid and (vx, vy) is the velocity.
The pedestrian state transition is modeled as follows:

Xk|k−1 = FXk−1 + wk−1, wk−1 ∼ N(0, Qk−1) (14)

F =

[
1 T
0 1

]
⊗ I2 (15)

Qk−1 = σ2
v

[
T4

4
T3

2
T3

2 T2

]
⊗ I2 (16)

where F is the transition matrix and wk−1 is the process noise which obeys Gaussian
distribution with a covariance matrix Qk−1. T is the time interval and σv is the standard
deviation of the process noise. I2 denotes the 2× 2 identity matrix. ⊗ means Kronecker
tensor product. Note that many other appropriate models (e.g., discrete walking model [36],
terrain-constrained model [37], and social force-based model [38]) also can be used here to
represent the pedestrian behaviors in realistic applications.

Each person within the LiDAR detection range will produce a set of measurements
rather than a single point. Suppose yk = {y1

k , y2
k , . . . , yn

k } is a set of LiDAR points originating
from a person detected by using the method proposed in Section 2.3. As shown in (17), it is
simple and effective to use the centroid of the set to represent the person.

Yk =
1
n

n

∑
i=1

yi (17)

When a person is represented by its centroid, the observation model can be written
as follows:

Ŷk = HXk|k−1 + ek, ek ∼ N(0, Rk) (18)

H =
[

I2 02
]

(19)

Rk = σ2
e I2 (20)

where H is the observation matrix, 02 denotes the 2× 2 zero matrix, ek is the observation
noise which obeys Gaussian distribution with a covariance matrix R and σe is the standard
deviation of the observation noise.

The Kalman filter [39] is used to predict and update the pedestrian state in this paper.
The prediction of the state and the state covariance can be obtained by

Xk|k−1 = FXk−1|k−1 (21)

Pk|k−1 = FPk−1|k−1FT + Q (22)

where Xk−1|k−1 and Pk−1|k−1 are the target state and state covariance matrix at time k− 1,
respectively. F is the state transition matrix and Q is the process noise covariance ma-
trix. According to (21) and (22), we can gain the predicted state and the predicted state
covariance matrix at time k.

After the data association, the centroid of each target can be regarded as observation
Yk(x, y). The pedestrian status will be updated by (23)–(25):

K =
Pk|k−1HT

(HPk|k−1HT + R)−1 (23)
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Xk|k = Xk|k−1+K(Yk − HXk|k−1) (24)

Pk|k = (I − KH)Pk|k−1 (25)

where K is the Kalman filter gain and Xk|k and Pk|k are the updated state and its covariance
matrix, respectively. Equations (21)–(25): constitute the complete Kalman filtering process.

2.4.2. Data Association

Data association is the key part of the traditional multi-target tracking problem [40–42].
Assuming that the targets’ trajectories at time k− 1 are Tk−1 = {tk−1

1 , tk−1
2 , . . . , tk−1

N }, the
predicted target trajectories at time k are T̂k = {t̂k

1, t̂k
2, . . . , t̂k

N} according to Kalman filtering.
If M pedestrians Zk = {zk

1, zk
2, . . . , zk

M} are detected at time k, the purpose of the association
is to match the measurements Zk with the predicted trajectories T̂k.

Assignment matrix A = [aij]N×M, aij ∈ {0, 1} can be used to describe the relationship
between the trajectories and the measurements. aij = 1 indicates that trajectory i is matched
to the measurement j and aij = 0 indicates that they are not matched. In tracking, location
is the basis of target association. At the same time, the LiDAR echo intensity is related
to the color and material of clothes, so the echo intensity and position can be combined
to construct the cost matrix C = [cij]N×M. The association cost between trajectory i and
measurement j is as follows:

cij =

{
ωij(vj − ui)

T(vj − ui), (vj − ui)
T(vj − ui) < τc

∞, Otherwise
(26)

ωij = 1− R
2σm

(27)

where ui and vj are the positions of trajectory i and the measurement j respectively. The
ωij represents the different degree of echo intensity. To the trajectory i, we can obtain the
range (Im − σm , Im + σm) of its echo intensity, where Im and σm are the mean and standard
deviation of the echo intensity of all the measurements that comprise the trajectory i,
respectively. To the measurement j, we can obtain the range (Ij − σj , Ij + σj) of its echo
intensity, where Ij and σj are the mean and standard deviation of the measurement j
respectively. The R represents the length of overlap between (Ij − σj , Ij + σj) and (Im − σm ,
Im + σm).

The total association cost can be represented as Ψ:

Ψ=
N

∑
i=1

M

∑
j=1

cijaij (28)

The data association is to find the optimal assignment matrix A∗ that minimizes the Ψ.

A∗ = arg
A

min Ψ (29)

Equation (29) can be solved using the Hungarian algorithm [43].

2.4.3. Track Management Considering Occlusion

Usually, the purpose of the association is to match detections with predicted trajec-
tories. In traditional trajectory management strategy, a new trajectory will be initialized
if a target is detected in successive frames. An existing trajectory survives when there is
detection matched with it. Alternatively, an existing trajectory will be terminated if there
is not any detection matched with it for a long time. However, when a target is occluded
and not detected for a long time, its corresponding trajectory will be terminated, and when
the target reappears, a new trajectory will be initialized, which will cause the trajectory of
the occluded target to be unstable. In order to solve this problem, we make some improve-
ments via trajectory management considering occlusion. There are four trajectory states
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for the occluded trajectory: candidate trajectory, matched trajectory, occluded trajectory,
and terminated trajectory. As shown in Figure 2, these states can transfer to each other. The
corresponding conditions in Figure 2 are as follows:

Figure 2. Trajectory state transition.

¬ If a pedestrian is continuously detected in T1 successive frames, initiate a new trajec-
tory and add it to the matched trajectories.

 If a matched trajectory has matched detection in the current frame, it keeps the state
of matched trajectory.

® If a matched trajectory can not match with any detection in the current frame, and its
predicted position is in occlusion, it turns to be an occluded trajectory.

¯ An occluded trajectory keeps its state if there is no detection matching with it in a
short time, such as no more than T2 frames.

° An occluded trajectory turns to a matched trajectory once it is matched with a detection.
± A matched trajectory will be terminated if it has not matched with any detection in T3

consecutive frames and it was not occluded.
² An occluded trajectory will be terminated if it has not matched with any detection for

T2 successive frames.

The virtual scan can be used to detect occlusion [44]. After ground elimination and
gridding, the scanning area is divided into free, occupied, and occluded sub-regions. When
a target falls into the occluded area, it means that it will be blocked or partially blocked. If
a pedestrian is missed in the occluded area, the parameter T2 will be enabled to judge the
transition of tracking state, otherwise T3 is enabled.

3. Experimental Analysis

The experiment includes the following three aspects: segmentation performance eval-
uation (Section 3.1), detection performance evaluation (Section 3.2), and tracking per-
formance validation (Section 3.3). In Section 3.1, the fine segmentation method is com-
pared with RBNN. The STM-KDE [15] is compared with the proposed detection method
in Section 3.2. In Section 3.3, the proposed tracking method is mainly compared with
AB3DMOT [11] and EagerMOT [12]; both of them are excellent methods proposed recently
for point cloud processing.

The KITTI datasets are used to verify and analyze the performance of the proposed
method. The 2011_09_28_drive_0016 is collected at an intersection on campus with
186 frames. These data are used for Sections 3.1 and 3.2. The 0016 and 0017 data of
the KITTI MOT benchmark training set are collected in the campus with 209 frames and
the urban area with 145 frames, respectively. These data are used for Section 3.3. The
above three experimental datasets contain dense pedestrians with self- and inter-target
occlusion. In addition, we have acquired data in Beihang University using Livox Horizon
LiDAR. We can call these Beihang data in this paper. Beihang data include seven nonlinear
moving persons. Their wandering in smaller areas produces serious occlusion, which will
be applied to verify the tracking performance for dense nonlinear moving pedestrians
in Section 3.3. Taking 2011_09_28_drive_0016 as an example, to represent the density of
pedestrians, the statistical results of the nearest distance among pedestrians are shown in
Figure 3. It can be seen that the maximum proportion of pedestrian distance is less than
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1 m. Figure 3b shows the distribution of pedestrians distance within 1 m. Therefore, the
experimental scenery belongs to the typical area.

(a) (b)

Figure 3. Histogram of the nearest separating distance among pedestrians in experimental data.
(a) Distance distribution among pedestrians. (b) The zoom in of the distance within 1 m.

3.1. Segmentation Performance Evaluation

To verify the performance of fine segmentation of dense pedestrians, an area close to
the LiDAR, with dense point clouds and many pedestrians gathering, is chosen from the
2011_09_28_drive_0016 dataset.

Frame 1 and frame 38 of the experimental dataset are shown in Figure 4. Before
clustering, we use RANSAC to remove ground points. The clustering results are shown in
Figure 5. Figure 5a,d are the clustering results of RBNN. Figure 5b,e are the kernel density
estimation of RBNN clustering results, which are the basis of fine segmentation. Figure 5c,f
are the clustering results after fine segmentation.

(a) (b)

Figure 4. Two frames of original point clouds. (a) Frame 1. (b) Frame 38.

As shown in Figure 5a,d, for the dense pedestrian point clouds in the red box, the
RBNN clustering appears undersegmentation. However, in Figure 5c,f, the proposed fine
segmentation method can segment them well. The reason for the clustering difference is
that the RBNN method only uses the distance among points to cluster different pedestrians.
However, fine segmentation method uses the distance and the density of point cloud to
distinguish multiple adjacent pedestrians. As shown in Figure 5b,e, the local extreme value
appears at the position of upright pedestrians, and the pedestrians centers can be extracted
effectively, resulting in a better separation performance of the dense pedestrians.

However, neither the RBNN nor the proposed fine segmentation method can segment
the two pedestrians in the black box of frame 38 accurately as they are close to each other
and occluded seriously. Their optical image is shown in the red box in Figure 6a. Figure 6b,c
show their LiDAR point cloud and the kernel density estimation, respectively. It can be
seen that the kernel density estimation of the point cloud, just from one single peak caused
by the very close distance, exhibits the wrong result of clustering.
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(a) (b) (c)

(d) (e) (f)

Figure 5. Clustering results of frame 1 and frame 38. (a) RBNN clustering result of frame 1. (b) Kernel
density estimation of frame 1. (c) Fine segmentation result of frame 1. (d) RBNN clustering result of
frame 38. (e) Kernel density estimation of frame 38. (f) Fine segmentation result of frame 38.

(a) (b) (c)

Figure 6. Different descriptions of two very close pedestrians. (a) Optical image. (b) LiDAR point
cloud. (c) Kernel density estimation result.

3.2. Detection Performance Evaluation

To validate the detection performance of the proposed method, the 2011_09_28_drive_0016
data in the KITTI dataset are used.

After the preprocessing, such as the clustering and segmentation, we can use the three
novel features to detect pedestrians. Figure 7a,b are, respectively, the pedestrian detection
results after features-based discrimination of frame 1 and frame 38 under the parameters
θthr = 0.35, rtl1 = 1, rtr1 = 20, rtl2 = 1, and rtr2 = 50. By comparing the fine segmentation
clustering results in Figure 5c,f with the detection results in Figure 7a,b, it can be seen that
the vehicle and traffic poles in the clustering results have been successfully removed. That
means the three novel features defined in this paper can effectively distinguish pedestrians
from other objects, such as vehicles, traffic poles, and trees.
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(a) (b)

Figure 7. Pedestrian detection results of frame 1 and frame 38 after features-based discrimination.
(a) Frame 1. (b) Frame 38.

The STM-KDE is used as the benchmark for the performance evaluation. In [15],
kernel density estimation is used for pedestrian clustering and LARK features are extracted
for pedestrian detection. The dataset is also used in [15] and pedestrian labels are available.
In the dataset, there are 2174 pedestrians marked in 186 frames, but some of the partially
occluded pedestrians are not marked. Based on the labels in [15], we additionally mark the
partially occluded pedestrians and obtain 2545 pedestrians in 186 frames. Given by (30) the
accuracy rate, recall rate, and F1 score are used to measure the detection effect.

P =
TP

TP + FP
R =

TP
TP + FN

F1 =
2PR

P + R
(30)

where TP is the number of true positives, FP is the number of false positives, FN is the
number of false negatives, P and R are the accuracy rate and recall rate, respectively, and the
F1 score is the harmonic average of P and R. The F1 score is widely used as the performance
evaluation index, which means that the higher the F1 score is, the better the detection
performance of the method is.

Table 1 shows the detection results of the STM-KDE and the proposed method on
the 2011_09_28_drive_0016 dataset. It can be found that the proposed method not only
improves the detection accuracy, but also significantly improves the recall rate of pedestrian
detection. The F1 score is also improved from 0.5122 to 0.7838. Figure 8 shows the ROC
curves of different detection methods. The blue line shows the performance of the proposed
method. The red line shows the performance of the STM-KDE. It can be seen that, under
the same false-alarm number, the detection rate of the proposed method is higher than
STM-KDE. The point cloud from long-distance pedestrian is sparse. STM-KDE uses the
unique template based on LARK feature to match targets, which is difficult to use effectively
for pedestrians at different distances. Perhaps using multiple templates from different
distances could improve the detection performance of STM-KDE. In the proposed method,
the three novel features are related to the proportion of pedestrian body, so they are robust
to different distances and can obtain better detection performance.

Figure 8. ROC curves of different methods for pedestrians detection.
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Table 1. Pedestrian detection results on the 2011_09_28_drive_0016 dataset.

Method Total Num True Detection False Detection Precision Recall F1

STM-KDE 2545 979 299 0.7660 0.3847 0.5122
Proposed method 2545 1659 34 0.9799 0.6519 0.7838

To show the detection performance of the proposed method more clearly, the detection
results of frame 50 are taken as an example, which is shown in Figure 9. The pedestrians in
the scene are marked by a red box in Figure 9a, which is used as ground truth. Figure 9b is
the detection result of STM-KDE, and Figure 9c is the result of the proposed method.

(a) (b) (c)

Figure 9. Comparison of pedestrian detection result between STM-KDE and proposed method at
frame 50. (a) Ground truth. (b) Result of STM-KDE. (c) Result of proposed method.

Note that the detection performance is analyzed in four different areas A, B, C, and D
for a complete performance comparison. As shown in Table 2, there are five pedestrians in
area A; one pedestrian is detected by STM-KDE, while all five pedestrians are successfully
detected by the proposed method. There are four pedestrians in area B; three pedestrians
are detected by STM-KDE, while all of them are successfully detected by the proposed
method. One false detection appears in area C from STM-KDE. There are two pedestrians
in Area D, both are successfully detected by STM-KDE, and one of them is detected by the
proposed method.

Table 2. Pedestrian detection results at frame 50.

Method

TP/FP Area
A B C D

Ground Truth 5 4 0 2
STM-KDE 1/0 3/0 0/1 2/0

Proposed method 5/0 4/0 0/0 1/0

In the areas A and B where pedestrians are dense, five targets are missed by the
STM-KDE. The origin point clouds of area A is given in Figure 10a, and Figure 10b shows
the detection results of proposed method.

Note that the proposed method can provide a better segmentation and detection
performance compared with STM-KDE, which is based on single template matching. In
area C, there is a false target from STM-KDE. As shown in Table 1, there are many more
false detections than the proposed method. The reason is the STM-KDE uses a single
template to match targets, which have to set a lower threshold to adapt to the non-rigid
shape of pedestrians. The proposed method has a missing alarm in area D, which is caused
by the difference in point cloud proportion between pedestrians carrying backpacks and
ordinary pedestrians. Thus, the extracted features exceeded the threshold, which caused
the detection of this pedestrian to be invalid, while the STM-KDE detects the pedestrian.
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(a) (b)

Figure 10. Detection result of the proposed method in area A. (a) Origin point clouds. (b) Detected
pedestrians using proposed method.

3.3. Tracking Performance Validation

Aa KITTI only provides 2D ground truth, we project the LiDAR point clouds to the
camera imaging plane through a transformation matrix, and evaluate the performance
based on the bounding box. The evaluation metrics include MOTA (Multiple Object
Tracking Accuracy), MOTP (Multiple Object Tracking Precision), R (Recall), P (Precision),
F1, MT (number of mostly tracked trajectories), ML (number of mostly lost trajectories), and
IDS (number of identity switches). The definitions of MOTA and MOTP are as follows [45]:

MOTA = 1− ∑t (FNt + FPt + MMEt)

∑t GTt
(31)

MOTP =
∑t,i dt,i

∑t ct
(32)

where FNt, FPt, MMEt, and GTt are the number of false negatives, false positives, mis-
matches, and true targets, respectively, for time t. dt,i is the error between estimated position
and the true position of target i for time t. ct is the total matches for time t.

Table 3 shows the values of each of the metrics. In the table, ↑ indicates that the larger
the metric, the better the tracking performance, and ↓ means quite the opposite. In the
tracking experiment, we set T1 = 3, T2 = 20, and T3 = 3. Both the AB3DMOT method
and the new proposed method use LiDAR as the unique sensor. It can be seen from the
MOTA and F1 scores that the proposed method can obtain better overall performance
than AB3DMOT. The EagerMOT is a kind of 2D+3D method, which uses camera and
LiDAR together. It may result in richer information to obtain better performance due to the
multi-sensor fusion. However, the proposed method can still obtain similar or even better
results than EagerMOT on the terms of MOTP, Precision, ML, and IDS.

Table 3. Tracking performance comparison.

Methods MOTA ↑ MOTP ↑ Recall ↑ Precision ↑ F1 ↑ MT ↑ ML ↓ IDS ↓
Proposed method 0.6042 0.6763 0.7510 0.8603 0.8019 0.4643 0 55

AB3DMOT 0.5671 0.6604 0.6661 0.8914 0.7624 0.2143 0.1071 37
EagerMOT 0.7449 0.6745 0.8873 0.8838 0.8856 0.8571 0 65

In order to verify the effect of our new trajectory management, this paper uses the
average survival time of trajectory to evaluate the stability of the trajectory. The average
survival time is defined as follows:

L =
∑t Tart

NumID
(33)

where Tart is the number of tracked targets at frame t and NumID is the total number of
trajectories.
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Table 4 shows the number of detections associated successfully, the number of trajecto-
ries, and the average survival time of the proposed method to the 0016 dataset. It can be seen
from the table that the average survival time of the proposed method is longer than other
methods. As the occluded trajectory can turn to matched trajectory as shown in Figure 2, it
effectively reduces the rebirth and death caused by occlusion. This shows that the stability
of the trajectory has been improved after adopting the new management strategy.

To show the tracking performance of the new trajectory management strategy clearly,
the tracking trajectories of the dataset 0016 and the Beihang data are shown in Figure 11
and Figure 12, respectively. Figures 11a and 12a show the trajectories with traditional
strategy. Figures 11b and 12b show the trajectories with new strategy. These bold curves
show the difference between the tracking trajectories obtained by two different tracking
strategies. The nine trajectories bolded in Figure 11a actually correspond to only four
pedestrians, and the five trajectories bolded in Figure 12a actually correspond to only
two pedestrians. Due to occlusion, many tracks are frequently terminated and started.
Through the special processing of the occluded track, the dense pedestrians’ trajectories are
more stable and continuous.

(a) (b)

Figure 11. Trajectories with different strategies from the dataset 0016. (a) Using traditional strategy.
(b) Using new strategy.

(a) (b)

Figure 12. Trajectories with different strategies from the Beihang data. (a) Using traditional strategy.
(b) Using new strategy.
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Table 4. Average tracking length of different method.

Methods Number of Detections
Associationed Successfully Num of Track Average Tracking

Length

Proposed method 1736 48 36.17
AB3DMOT 1464 46 31.83
EagerMOT 2056 57 36.07

Tracking using traditional strategy 1692 55 30.76

4. Conclusions

LiDAR 3D point clouds-based detection and tracking of dense pedestrians is studied
in this paper. First, for the problem of undersegmentation of dense pedestrians, a fine
segmentation method based on kernel density estimation was proposed. The proposed
method fits the distribution of pedestrian point clouds on the horizontal projection plane,
and finds the local maxima as the clustering center of pedestrians, so as to segment the
point cloud more finely. Subsequently, three features that can characterize the posture
and figure of the pedestrians are defined and applied to pedestrian detection. For the
problem of trajectory interruption caused by occlusion in dense pedestrian tracking, a new
trajectory management strategy including the occlusion state is given. In addition, the echo
intensity and distance are combined to obtain the association cost to improve the stability
of the trajectory.

The dense pedestrian detection and tracking method proposed in this paper can be
widely used in intelligent monitoring systems and intelligent transportation systems. For
example, in an intelligent monitoring system, pedestrian behavior can be analyzed after
PDT, and then abnormal behavior can be detected to ensure public safety. In addition, PDT
can be used to estimate the flow of people in the transportation system, so as to rationally
allocate traffic resources and alleviate traffic congestion.
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