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Abstract: Volume loss is an important method to estimate ground movement during tunnelling.
However, volume loss is usually estimated by empirical methods, especially for volume loss at
the tunnel face, which is a three-dimensional problem. Based on the principle of minimum total
potential energy, we proposed a semi-analytical method to predict the volume loss at the tunnel
face and ground surface. The proposed method provides a more direct way of estimating volume
loss at the tunnel face from an energy point of view. Moreover, a new deformation mechanism was
designed to describe the ground movement before the tunnel face. Based on the proposed method,
we investigated the influence of the support pressure, tunnel diameter, and tunnel depth on the
volume loss at the tunnel face, and other parameters related to surface subsidence. The volume loss
at the tunnel face decreased with the increase in the support pressure ratio and the slurry weight.
The volume loss at ground surface was generally smaller than the volume loss at the tunnel face due
to the soil compression during ground movement. The bigger the tunnel diameter, the bigger the
volume loss at the tunnel face. However, the volume loss at ground surface may not increase with
the increase in tunnel depth, because of the soil arching effect. Moreover, the deeper the tunnel, the
more obvious the influence of the support pressure ratio on volume loss. Similarly, the bigger the
tunnel diameter, the more obvious the influence of the slurry weight on the volume loss.

Keywords: semi-analytical method; ground movement; volume loss; minimum total potential energy

1. Introduction

The slurry pressure balance shield tunnel is widely adopted in practice, and ground
movement is inevitably induced during tunnel excavation. The induced ground movement
may cause serious damage to existing buildings and subterranean facilities. Therefore,
the estimation of ground movement is important in the design stage of tunnelling. Many
researchers have contributed to analyzing the ground movement by different methods.
Those methods can be divided into three categories: the analytical method [1–8], the
empirical method [9–11], and numerical simulation [12–14].

Volume loss plays an important role in the analysis of ground movement. The effect
of the tail grout on the volume loss was studied [15]. Different ways for determining the
volume loss are summarized [11]. Furthermore, many researchers have investigated the
volume loss in two-dimensional problems by assuming a zero-volume change in soil (i.e.,
undrained volume loss). The undrained volume loss is equal to ground loss, which is
defined as the ratio of shrinkage deformation to the area of the tunnel (sometimes the
undrained volume loss is called “ground loss”, in some literature). The analytical solution
for the tunnel excavation as the function of the ground loss and the tunnel ovalization
parameter are developed [16]. The deformation was divided into the ground loss, oval-
ization, and vertical movement [17]. A lot of researchers have investigated undrained
volume loss with gap parameters, which was developed by considering the 3D elastoplastic
deformation at the tunnel face [18]. The procedure for estimating the gap parameter was
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supported with 14 case monitoring data [19]. Loganathan and Poulos [3] incorporated the
gap parameter into the closed-form solution derived by Verruijt and Booker [16]. Based on
the work performed by Loganathan and Poulos [3], A solution for predicting the ground
movement in multi-layered clayed soil was proposed [20]. The above research assumed a
plane strain condition, which was limited to a two-dimension solution.

Some researchers have devoted their study to investigating the ground deformation
and volume loss before the tunnel face. Based on the field monitoring data, Different
relationships between the stability number, which is used in the stability analysis for
tunnelling, and the volume loss before the tunnel face are established [21–24].

In recent years, the energy method has been developed rapidly in the analysis of
ground deformation due to tunnelling. The two-dimensional ground movement was pre-
dicted with the balance between energy and work, ignoring soil volume change [25].
Based on the principle of energy conservation, an innovative method to predict the
two-dimensional undrained volume loss were proposed [26]. Plamer and Mair [27] gave
a solution for estimating volume loss in the elastic ground on the basis of the reciprocal
theorem. As for volume loss at the tunnel face, Klar and Klein [28] estimated the face ‘take’
undrained volume loss with the use of a mobilizable strength design (MSD).

In this paper, we develop a method to predict volume loss at the tunnel face based on
the principle of minimum total potential energy. Moreover, a new deformation mechanism
is created based on a proposed deformation mechanism [29] to consider the soil volume
change. Finally, we analyze the influence of support pressure supplied by slurry, tunnel
diameter, and tunnel depth on volume loss. The proposed method provides a more direct
way of estimating volume loss at the tunnel face from the energy point of view. The soil
volume changes during ground movement are considered in the proposed method.

2. Problem Description

According to the causes of volume loss in slurry pressure balance shield tunnelling [10,24,30],
volume loss can be categorized into three components, as shown in Figure 1:

Figure 1. Sketch of proposed problem.

Vlf: Volume loss at the tunnel face. The stability of the working face is achieved by
the support pressure provided by a pressurized mixture of bentonite or clay and water
(i.e., slurry). However, the support pressure is different from the lateral earth pressure. In
general, the soil tends to move towards the excavation chamber and the ground movement
will cause the subsidence of the ground surface before the face.

Vls: Volume loss along the shield. To facilitate the advancement of the shield machine,
the radius at the head of the shield is bigger than that at the tail. This will cause the
overcutting of the soil and the subsidence of the ground surface above the shield.
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Vlt: Volume loss at the tail. The voids between the excavation surface and precast
segment cause volume loss at the tail. Volume loss at the tail can be compensated by the
appropriate grout at the tail.

In this paper, we focus on investigating the volume loss at the tunnel face (VLf) under
different support pressure supplied by the slurry. The other components of volume loss
are assumed to be zero, and the displacement of the tunnel opening is fixed. The same
assumption has been adopted by previous researchers [31–33]. VL refers to the volume loss
at the ground surface which is defined as the ratio of the integral of the vertical displacement
over the three-dimensional settlement trough to the cross-sectional area of the tunnel per
unit length. Vlf is defined as the ratio of the integral of the horizontal displacement over
the tunnel face to the cross-sectional area of the tunnel per unit length. Due to difficulties
in considering the volume changes of soil, most researchers assume that the moved soil
has a constant volume and VL is equal to Vlf. In our method, we simply consider the
volume change.

As shown in Figure 1, we assumed a circular tunnel of diameter D at finite depth H.
The depth of the cover soil is denoted by C. The stress of the soil increases with the depth,
and the Buoyant unit weight of the soil is ρ′. The lateral pressure coefficient of the soil
is k. The initial horizontal earth pressure at the crown of the tunnel is noted by σu, as
shown in Figure 1.

When tunnelling, the soil ahead of the face tends to move into the excavation chamber.
The support pressure supplied by the slurry is important in controlling the ground move-
ment. As shown in Figure 1, the support pressure at the tunnel crown is denoted by Pu,
and it can be given by Equation (1):

Pu = α·σw = α·
(
kσ′u + σw

)
(1)

where α is the support pressure ratio; σu is the sum of the lateral earth pressure (σ′u) and
the static pore pressure (σw) at the tunnel crown.

Due to the weight of the slurry, the support pressure (P) linearly increases along h
and increases to Pb at the tunnel invert (Equation (2)). The support pressure can be given
as follows:

P = Pu + γh (2)

where γ is the unit weight of the slurry, and h is the distance from the tunnel crown.

3. Principle of Minimum Total Potential Energy

The principle of minimum total potential energy is widely utilized in different indus-
tries, including chemistry, physics, and engineering. Moreover, many numerical simulation
methods are based on it. The principle of minimum total potential energy indicates that
an unbalanced system will finally translate to a balanced system with the minimum total
potential energy. In order to utilize the minimum total potential energy principle in the
proposed problem, the start and end of the deformation process first have to be determined.
As shown in Figure 2, the soil is stable in the initial unbalanced state. When tunnelling, the
support pressure supplied by slurry cannot substitute the original earth pressure, and face
stress relief happens. As a result, the soil begins to move into the excavation chamber. In
our model, the support pressure was assumed to be constant during the deformation pro-
cess. At last, the system was stable when the total potential energy reached the minimum
potential energy in the final equilibrium state. So, we determined the final equilibrium by
finding the state with the minimum total potential energy. In other words, the parameters
in the deformation mechanism can be determined by minimizing the total potential energy
of the studied system.

In our model, the moved soil is regarded as the studied system in our method. The
potential energy of the studied system contains three components: elastic strain energy
stored in the deformed system (Us), the potential energy of gravity (Vg), and the potential
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energy of the support pressure (Vp). Vg and Vp belong to the potential energy of external
force associated with the external force (V).

Figure 2. Schematic diagram of the proposed model.

The elastic strain energy can be calculated by the strain of the soil. In elastic mechanics,
the strain energy density (strain energy of unit volume) can be calculated as follows:

Us0 =
E

2(1 + µ)

[
µ

1− 2µ
(εx + εy + εz)

2 + (ε2
x + ε2

y + ε2
z) +

1
2

(
γ2

xy + γ2
xz + γ2

yz

)]
(3)

where εx, εy, εz, εxy, εxz, and εyx, are the strain in the Cartesian coordinate system as shown in
Figure 2, E is the elastic modulus of the soil, and µ is Poisson’s ratio of the soil. Furthermore,
the soil is assumed to behave elastically. The strain energy can be calculated by integrating
Us0 over the moved soil:

VP =
∫

N
Us0dn (4)

where N is the volume of the moved soil in the deformation mechanism.
The external force consists of the support pressure and gravity. The potential energy of

the external force is generally measured by the work performed by the external force. The
increase in the potential energy of the external force is equal to the minus work performed
by the external force. So, the potential energy of the support pressure and gravity can be
given as follows: {

VP = −
∫

S (P− γw)u f ds
Vg = −

∫
N g′wdn

(5)

where uf is the axial displacement on the face, w is the vertical displacement of the soil, and
S is the area of the face.

Some parameters for the calculation of potential energy (w, uf, and the strain of soil)
are tightly related to the deformation mechanism. Thus, these parameters are introduced
in Section 4.2 after the deformation mechanism introduction.

4. Deformation Mechanism
4.1. Deformaiton Mechanism

Two different continuous velocity fields for the collapse of a pressurized tunnel face
were constructed [29]. The first velocity field, M1, assumed that the point with maximum
velocity was located at the center of the tunnel face. The second velocity field was more
suitable for engineer projects, because it assumed that the point with maximum velocity was
located below the center of the tunnel face. However, the M2 velocity field was designed for
collapse, and ignored the volume change of soil. A new deformation mechanism (Figure 3)
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was designed based on the modification of the M2 velocity field. The new deformation
mechanism contains several parameters which decide the geometry of the new deformation
mechanism. The parameters depend on the mechanical properties of the soil.

Figure 3. Three-dimensional schematic diagram of modified deformation mechanism.

As shown in Figure 4, the maximum displacement on the tunnel face is Smf and is
located at point E. The maximum velocity flow line is a quarter of an ellipse, with respect
to the origin O. The semi-major axis of the ellipse is Rf = C + D/2 + L1. L1 is the distance
between the center of the face and point E. The semi-minor axis of the ellipse is 0.75 Rf. For
a better description of the deformation mechanism, the curvilinear coordinate system (r, θ,
β) is adopted.

Figure 4. Side view of the modified deformation mechanism.

The new deformation mechanism assumes that the soil within the boundary flows
towards the face in a toric manner, and the soil outside the boundary is rigid. The bound-
ary is constructed by the periphery of the different circular cross-section, Πβ, as shown
in Figure 5

Rmax is the radius of the circular cross-section, and it can be given by Equation (6):

Rmax(θ, β) =
D·Ω1Ω2

2Ω3
(6)



Appl. Sci. 2022, 12, 1794 6 of 15

Ω1(β) = (1 + 2L1)(π − 2β) + 3βR f (7)

Ω2(θ, β) = 2L cos θ +

√
1− 2L2

+ 2L2 cos 2θ (8)

Ω3 = (1 + 2L1)π (9)

L = L1 − lβ (10)

where [·] means normalized with respect to tunnel diameter (such as C = C/D). L indicates
the distance between the point with maximum displacement and the center of the circular
cross-section.

Figure 5. Circular cross-section Πβ.

On the Πβ plane, the orthoradial displacement component (vr) is assumed to be zero.
The axial displacement component (vβ) is assumed to decrease in a parabolic way to vanish
at the boundary, as shown in Figure 4. Equation (11) gives the orthoradial displacement of
points (r, θ, β) on the plane Πβ:

vβ(r, θ, β) = vm(β)1− r2

R2
max(θ, β)

 (11)

where vm(β) is the orthoradial displacement on the maximum velocity flow line. On the
face, the displacement can be expressed as follow:

vβ(r, θ, 0) = Sm f 1− r2

R2
max(θ, 0)

 (12)

where Smf is the maximum displacement on the face. Furthermore, the flux across the
tunnel face (qsf) can be acquired by integral Equation (13) over the tunnel face.

qs f = Sm f ·
πD2

8
(13)

In previous deformation mechanism [29], the assumption of zero volume change was
made and the flux through any Πβ plane was the same. However, as drainage or volume
loss always happens in the sand, we assume that the flux across plane Πβ linearly increases
(or decreases) with β:

qs = qs f (kβ + 1) = Sm f ·
πD2

8
(kβ + 1) (14)
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where k is used to describe the extent of the volume change of the soil, and qs denotes
the flux through plane Πβ. At the tunnel face, qs is equal to qsf. qs equal to Qs at the
ground surface.

qs =
∫ 2π

0

∫ Rmax(θ,β)
0 vβ(r, θ, β)rdrdθ

=
∫ 2π

0

∫ Rmax(θ,β)
0 vm(β)

(
1− r2

R2
max(θ, β)

)
rdrdθ

= vm(β)
∫ 2π

0

∫ Rmax(θ,β)
0

(
1− r2

R2
max(θ, β)

)
rdrdθ

= vm(β)
πD2Ω2

1
8Ω2

3

(15)

So, combining Equations (14) and (15), the maximum orthoradial displacement on any
plane can be given by Equation (16).

vm(β) =
Smf(kβ + 1)Ω2

3

Ω2
1

(16)

So, vβ can be derived as follows.

vβ(r, θ, β) =
Smf(kβ + 1)Ω2

3

Ω2
1

(
1− r2

R2
max(θ, β)

)
(17)

In solid mechanics, there are two expressions for the volumetric strain (Θ): the ratio
of the volume change (∆V) to the original volume (V), and the summation of the normal
strains in three mutually perpendicular directions, as shown in Equation (18).

Θ =
∆V
V

= εr + εθ + εβ (18)

Moreover, the volume change (∆V) of the Πβ plane with dβ can be calculated by
taking the derivative of qs as shown in Equation (19).

∆V =
∂qs

∂β
·dβ = qs f k·dβ (19)

The original volume of the Πβ plane with dβ can be given as follows:

V = dβ·R f ·Ds(β)2π/4 (20)

where DS(β) is the diameter of the Πβ plane, and can be expressed as follows.

Ds(β) = Rmax(θ = 0, β) + Rmax(θ =
π

2
, β) =

Ω1D
Ω3

(21)

So, we have:

Θ =
Smf·kΩ2

3

2RfΩ
2
1

(22)

The second expression of the volumetric volume shown in Equation (18) can be
calculated by the strain introduced in Section 4.2. The volumetric volume can be also given
as follows.

∂vr

∂r
+

1
r

vr +
1

Rβ − r cos θ
(−υr cos θ +

∂υβ

∂β
) = Θ (23)

After simplification of Equation (23), we have:

∂vr

∂r
+

(Rβ − 2r cos θ)

r(Rβ − r cos θ)
vr = −

1
(Rβ − r cos θ)

∂vβ

∂β
+

Smf·kΩ2
3

2RβΩ2
1

(24)
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The derivative of orthoradial displacement vβ with respect to β can be given as follows:

∂vβ

∂β = Smf
Ω2

3
Ω2

1

[
k
(

1− 4Ω2
3r2

Ω4
1Ω2

2

)
+ (kβ + 1)

(
−2Ω4 −

4Ω2
3Ω5r2

Ω5
1Ω3

2

)]
= Smf

Ω2
3

Ω2
1

[
−4 Ω2

3
Ω4

1Ω2
2

(
k + (kβ+1)Ω5

Ω1Ω2

)
r2 + k− 2(kβ + 1)Ω4

] (25)

Ω5(θ, β) = −4Ω2Ω4 + 3Ω1

cos θ +
2L sin2 θ√

1− 2L2
+ 2L2 cos 2θ

 (26)

Equation (24) is an ordinary first-order linear differential equation. In order to simplify
the calculation, Equation (24) can be expressed as follows:

∂vr

∂r
+

(Rβ − 2r cos θ)

r(Rβ − r cos θ)
vr = −

1
(Rβ − r cos θ)

(
Ar2 + B

)
+ Θ (27)

where A and B can be given as follows:
A = −4Smf

Ω4
3

Ω6
1Ω2

2

(
k + (kβ+1)Ω5

Ω1Ω2

)
B = Smf

Ω2
3

Ω2
1
(k− 2(kβ + 1)Ω4)

(28)

Solving it with boundary condition vr(Rmax(θ, β), θ, β) = 0, we have:

vr(r, θ, β) =
6(B−ΘRβ)(r− Rmax)

2 + 4 cos θ·(r− Rmax)
3 + 3A(r− Rmax)

4

12(Rβ − r cos θ)
(29)

4.2. Calculation of Potential Energy

(a) Strain energy

Because the strain of the soil is derived from the deformation mechanism, and the
deformation mechanism in this paper is expressed in a curvilinear coordinate system, we
have to convert the strain in the curvilinear coordinate system to the strain in the Cartesian
coordinate system. Equation (30) gives the relationship between the curvilinear coordinate
system and the Cartesian coordinate system.

x = −r sin θ
y = (Rβ − r cos θ) cos β

z = (Rβ − r cos θ) sin β
(30)

Rβ =
(

cos2 β/R2
f + cos2 β/(0.75R f )

2
)−0.5

(31)

The conversion can be easily given by tensor calculation, as shown in Equations (32) and (33). εx εxy εxz
εyx εy εyz
εzx εzy εz

 = P

 εr εry εrz
εθr εθ εθβ

εβr εβθ εβ

PT (32)

P =

 − sin θ cos β cos θ cos θ sin β
cos θ cos β sin θ − sin β sin θ

0 sin β cos β

 (33)
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Klar and Klein [28] derived the geometrical equations in the curvilinear coordinate
system. Based on the work performed by Klar and Klein [28], we give the geometrical
equations modified for the coordinate in our method as follows.

εrr =
∂υr
∂r

εrr =
1
2r

(
∂υr
∂θ + r ∂υθ

∂r − υθ

)
εrβ = 1

2(Rβ−r cos θ)

[
υβ cos θ + ∂υr

∂β + (Rβ − r cos θ)
∂υβ

∂r

]
εθθ = 1

r

(
υr +

∂υθ
∂θ

)
εθβ = 1

2r(Rβ−r cos θ)

[
r ∂υθ

∂β − υβr sin θ + ∂υr
∂β + (Rβ − r cos θ)

∂υβ

∂θ

]
εββ = 1

Rβ−r cos θ

(
υθ sin θ − υr cos θ +

∂υβ

∂β

)
(34)

Equation (34) gives the train energy of the soil. Equation (4), the strain energy of the
soil, can be calculated by combining Equation (4) with Equation (34).

(b) Potential energy of external force

According to the deformation mechanism, the vertical displacement can be given
as follows:

w = −υr cos θ cos β + υθ cos β sin θ − υβ sin β (35)

Substituting Equation (35) into Equation (6), the potential energy of gravity can
be calculated.

When β = 0, the orthoradial displacement vβ(r, θ, β) is equal to the horizontal dis-
placement on the tunnel face uf. Equation (36) gives the horizontal displacement on the
tunnel face.

u f = υβ(r, θ, 0) (36)

Combining Equation (36) with Equation (5), the potential energy of support pressure
can be calculated.

4.3. Volume Loss Calculation

Vlf is the volume loss at the tunnel face and equals the ratio of the flux on the tunnel
face (qsf) to the area of the tunnel cross-section.

VL = qs f /
πD2

4
=

1
2

Sm f (37)

VL is the volume loss at ground surface and equals the ratio of the flux on the ground
surface (Qs) to the area of the tunnel cross-section, as defined in Klar and Klein [28]. Qs
equals qs (π/2). So, the volume loss can be given as follows:

VL = qs f (
π

2
k + 1)/

πD2

4
=

1
2

Sm f (
π

2
k + 1) (38)

5. Verification with Numerical Simulation

In this section, we perform numerical simulations by a finite difference computer
program FLAC3D to validate the accuracy of the proposed method.

As shown in Figure 6, only a half model is built due to the symmetry along the tunnel
central line. The tunnel diameter and cover depth are 12 m. To guarantee the accuracy of
the numerical model, the dimension size should be large enough to wake the influence of
the boundary, and the specific dimension is shown in Figure 6. The mechanical parameters
of the soil and support pressure are shown in Table 1.
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Figure 6. Numerical model.

Table 1. Mechanical parameters of soil and support pressure.

Parameters Value

Buoyant unit weight of soil (kN/m3) 18
Unit weight of water (kN/m3) 10
Elastic modulus (MPa) 1
Poisson’s ratio 0.3
Support pressure ratio 0.85, 0.9, 0.95, 1.00
Slurry weight (kN/m3) 12, 13, 14

In this numerical model, the top surface of the model was free, normal velocity on
the four vertical surfaces was restricted, and the boundary surface was fixed. Because we
focused on the displacement of soil before the tunnel face, a simplified one-step excavation
was applied after reaching initial equilibrium, due to gravity. Based on the assumption that
the VLs and VLt were zero, the normal displacement of points on the opening was fixed
after excavation. Immediately, the gradient support pressure was applied on the face. We
monitored the displacement of the points on the face and surface. The calculation was
stopped when the displacements of several points were stable.

We extracted the maximum displacement on the tunnel face and ground surface in the
numerical simulations, and calculated the volume loss at the tunnel face and the ground
surface. The comparison is shown in Figure 7.

Figure 7. Comparison between numerical simulation and proposed method. (a) Volume loss at
tunnel face Vlf, (b) volume loss at ground surface Vlg.
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The comparison shows that the proposed method has a good agreement with the
numerical simulation.

6. Parameter Analysis
6.1. Influence of Support Pressure Ratio

The influence of the support pressure ratio α on the volume loss with the tunnel
diameter ranging from 10 m to 14 m is shown in Figure 8. The tunnel depth was 15 m and
the slurry weight was 12 kN/m3. The volume loss decreased linearly with the increase in
the support pressure ratio, which implied that the increase in the support pressure ratio
was favorable to the control of volume loss, including the volume loss at the tunnel face
and the volume loss at ground surface. Moreover, the deeper the tunnel, the bigger the
volume loss. The volume loss at the tunnel face is generally bigger than the volume loss at
ground surface, due to the soil compression during ground movement. The influence of
the tunnel diameter on the volume loss at the ground surface is much smaller than that at
the tunnel face.

Figure 8. Volume loss versus support pressure ratio α with different tunnel diameter D. (a) volume
loss at tunnel face Vlf, (b) volume loss at ground surface Vlg.

The influence of the support pressure ratio α on the volume loss with the tunnel depth
ranging from 15 m to 21 m is shown in Figure 9. The tunnel diameter was 12 m, and the
slurry weight was 12 kN/m3. With the increase in support pressure ratio, volume loss
decreased linearly. Moreover, the deeper the tunnel, the faster the volume loss decreased.
When α = 1, the tunnel depth did not influence the volume loss at the tunnel face. However,
the tunnel depth will influence the soil compression, and the volume loss at the ground
surface will be affected by the tunnel depth.

6.2. Influence of Slurry Weight

The influence of the slurry weight γ on the volume loss with the tunnel diameter
ranging from 10 m to 14 m and tunnel depth ranging from 15 m to 21 m are shown in
Figures 10 and 11, respectively. The support pressure ratio was 0.9. The tunnel depth was
15 m in Figure 10, and tunnel diameter was 12 m in Figure 11. The volume loss decreased
linearly with the increase in slurry weight, which implies that the increase in the slurry
weight was favorable to the control of volume loss, including the volume loss at the tunnel
face and the volume loss at the ground surface. The bigger the tunnel diameter, the quicker
the volume loss decreased. However, the tunnel diameter did not influence the decrease
rapidly. Moreover, the volume loss increased with the increase in the tunnel diameter and
tunnel depth.
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Figure 9. Volume loss versus support pressure ratio α with different tunnel depth H. (a) Volume loss
at tunnel face Vlf, (b) volume loss at ground surface Vlg.

Figure 10. Volume loss versus slurry weight γ with different tunnel diameter D. (a) Volume loss at
tunnel face Vlf, (b) volume loss at ground surface Vlg.

Figure 11. Volume loss versus slurry weight γ with different tunnel depth H. (a) Volume loss at
tunnel face Vlf, (b) volume loss at ground surface Vlg.
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7. Conclusions

In this paper, a semi-analytical method based on the principle of minimum total
potential energy was proposed to solve the volume loss at the tunnel face and the ground
face for shield-driven tunnels. Moreover, a new deformation mechanism considering the
soil volume change was designed to describe the ground movement before the tunnel face.
Based on the proposed method, the influence of different factors on the volume loss was
investigated. The main conclusions are given as follow:

The volume loss decreases with the increase in the support pressure ratio and the
slurry weight. The increase in the slurry weight is favorable to the control of volume loss
during tunnelling

The volume loss at ground surface is smaller than that at the tunnel face due to the
soil compression during ground movement.

The bigger the tunnel diameter, the bigger the volume loss. However, the volume loss
at ground surface may not increase with the increase in the tunnel depth because of the soil
arching effect.

The deeper the tunnel, the quicker the volume loss decreases with the increase in
the support pressure ratio. The bigger the tunnel diameter, the quicker the volume loss
decreases with the increase in the slurry weight.

The proposed method provides a more direct way for estimating volume loss at the
tunnel face from an energy point of view. Most current researchers have assumed zero
volume behind the tunnel face (VLt and VLs), and the considered volume loss is limited to
the tunnel face (‘tunnel heading’). A more effective way for estimating all volume loss along
the shield advancement may be developed by designing multiple deformation mechanisms
according to the field data and numerical simulations.
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Notations

P support pressure supplied by slurry
Pu support pressure at the tunnel crown
σ earth lateral pressure
σu earth lateral pressure at the tunnel crown
H depth of centreline of tunnel
D tunnel diameter
C cover of tunnel
VLf volume loss at the tunnel face
α volume loss at the tunnel face
γ slurry weight
E elastic modulus of soil
µ Poisson’s ratio
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Parameter of deformation mechanism

L1
distance between the centre of the tunnel face and the point with maximum
displacement on tunnel face

k parameter describing extent of volume change of soil
Smf maximum displacement on the tunnel face
Rf semi-major axis of maximum displacement line
Rβ radius of maximum displacement line
Rmax radius of circular cross-section
vr radial displacement on circular cross-section
vβ orthoradial displacement on circular cross-section
vm maximum displacement on circular cross-section
qs flux through circular cross-section
Smg maximum settlement on the ground surface
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