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Abstract: The increasing need for food in recent years means that environmental protection and
sustainable agriculture are necessary. For this, smart agricultural systems and autonomous robots
have become widespread. One of the most significant and persistent problems related to robots is
3D path planning, which is an NP-hard problem, for mobile robots. In this paper, efficient methods
are proposed by two metaheuristic algorithms (Incremental Gray Wolf Optimization (I-GWO) and
Expanded Gray Wolf Optimization (Ex-GWO)). The proposed methods try to find collision-free
optimal paths between two points for robots without human intervention in an acceptable time
with the lowest process costs and efficient use of resources in large-scale and crowded farmlands.
Thanks to the methods proposed in this study, various tasks such as tracking crops can be performed
efficiently by autonomous robots. The simulations are carried out using three methods, and the
obtained results are compared with each other and analyzed. The relevant results show that in the
proposed methods, the mobile robots avoid the obstacles successfully and obtain the optimal path
cost from source to destination. According to the simulation results, the proposed method based on
the Ex-GWO algorithm has a better success rate of 55.56% in optimal path cost.

Keywords: autonomous robots; remote sensing; smart agriculture; climate change; environmental
protection; drone; photogrammetry; path planning; internet of things; environmental monitoring

1. Introduction

In recent years, environmental protection and sustainability have become fundamental
needs. Environmental sustainability is the conservation of natural resources and meeting
the needs of future generations to avoid potential hazards, and for this purpose, it is vital
to interact with the planet responsibly. In this situation, it is necessary to provide future
generations with a lifestyle at least an equal in quality to the current generations, and in this
direction, it is necessary to use existing natural resources efficiently [1]. In recent times, one
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of the most popular areas of sustainability is agriculture. In the last few years, researchers
have made traditional agriculture more efficient and functional with new technologies,
concepts, and methods within the scope of smart agriculture. In this context, sustainable
agriculture can be achieved, and resources such as human and natural resources will be
used more efficiently. On the other hand, with the prediction that the world population
will reach 9 billion people by 2050, agricultural products should be increased by 70% [2].
Currently, the food industry is responsible for 30% of the world’s energy consumed and
22% of greenhouse gas emissions. In addition, if a product variety is not suitable for
certain regional conditions and the planning in planting and harvesting is wrong, it causes
the overconsumption of resources, crop culling, and consequent food shortages. These
problems may even cause forced migration in some regions [3]. Therefore, the agricultural
sector has to address serious issues such as climate change issues, limited arable land,
and increasing demand for freshwater. In this regard, it is essential that the development
policies of states for agriculture are in a sustainable framework [4].

The role of smart systems in sustainable agriculture is increasing day by day. In
this direction, many technological methods are used and recommended. One of them is
to use autonomous robots’ technology, but in an environment with many autonomous
robots and obstacles, one of the most critical tasks is to transfer these robots safely between
two points without them colliding with each other or with obstacles. For an autonomous
robot, the problem of searching for a safe path from a source to a destination is called
path planning [5,6]. This issue can be addressed using various new technologies (e.g.,
Wireless Sensor Networks (WSNs) and Internet of Things (IoT)) that have a wide range of
applications [7–9] since they can be designed with heterogeneous or homogeneous devices
in distributed, central, or Peer-to-Peer (P2P) architectures. One of the application areas of
these technologies which has become popular in recent years is agriculture [10–13]. This
field has a wide range of smart applications and systems from the cultivation of agricultural
products to their logistics [14–17]. Although there are many agricultural studies in the
literature, the design of smart and autonomous devices and applications that use effective
and efficient resources have not been developed. One of them is the proposal of efficient
3D path planning algorithms for mobile devices used in large-scale farmlands, which has
many obstacles.

It is important to consider the environment in three dimensions in order for it to be
applicable to real-world applications and projects in complex environments. Furthermore,
when it comes to mobile robots, three-dimensional movements and areas seem more
acceptable. In real application areas, considering the resources of mobile robots, such
as energy, finding the optimal path is important. Optimal path planning means that the
shortest path length, where the selected path is as far as possible from obstacles, must be
smooth without sharp turns and must consider motion constraints. Finding an optimal
3D path planning is a Non-deterministic Polynomial-time (NP-hard) problem [5,6]. This
makes metaheuristic algorithms a good choice for designing a solution to such a problem.
Considering that large-scale environments in 3D environments increase the applicability of
this study in real applications, as such, one of the fundamental problems related to robots
from past to present is 3D path planning for aerial robots. This problem can become even
more complex in large-scale agricultural areas with many obstacles.

In this study, we focused on Gray Wolf Optimizer (GWO)-based algorithms to solve
the mentioned problem. In general, GWO-based algorithms have a balanced behavior
transition between discovery and use phases because they use the hierarchical group work-
ing mechanism of wolves, and they also use a minimum number of control mathematical
parameters. In this way, the chance of finding the optimal solution in a short time is
high; in addition, the use of resources is also efficient. On the other hand, a GWO-based
method was proposed in [18] for solving the mentioned problem, and they proved it was
better than other metaheuristic-based algorithms. In this study, two methods, inspired by
Incremental Gray Wolf Optimization (I-GWO) [19] and Expanded Gray Wolf Optimization
(Ex-GWO) [19], are proposed to address the above issue. The classical GWO algorithm can
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behave more stably in normal situations (for a somewhat standard environment without
many obstacles). The Ex-GWO-based path planning method may be performed more suc-
cessfully in larger and more crowded environments with larger populations and iterations,
and the I-GWO-based path planning method may give good results in medium and smaller,
less populated environments. However, the I-GWO is faster than other algorithms.

These methods can be applied in different and diverse agricultural application areas
and thus can be useful work for farming and smart agriculture. This paper presents opti-
mized, reliable, and shortest pathfinding mechanisms for smart agricultural robots (e.g.,
autonomous tractors and agricultural drones) that track crops on large-scale farmlands
without the need for the intervention of any human using distributed IoT [20] and WSN
technologies. Thanks to the algorithms proposed in this study, efficient resource consump-
tion and product growth rate can be achieved with low risk and cost. On the other hand,
avoiding obstacles in the path planning of agricultural areas is more complex than in other
path planning areas because of a dense population of objects that can serve as obstacles
such as trees, plants, and buildings. As mentioned above, the most critical problem these
mobile robots face is the efficient use of resources such as energy, so this issue is given
importance in this paper. In other words, the management of resources with minimal
loss is the aim of the paper. In addition, a smooth and efficient pathfinding mechanism
is very important for robots; because of this, the system must showcase a sustainable
performance. Therefore, the method used with the mobile robots must deliver them to
the destination point using the best path. To achieve all these purposes, two different
algorithms based on metaheuristic algorithms are presented for each autonomous mobile
robot. Indeed, the proposed methods find collision-free optimal paths in an acceptable
time with the lowest process costs in different environments containing various obstacles.
In this study, it is assumed that there are many obstacles in agricultural land in order to
ensure that environmental conditions are realistic. Therefore, the proposed algorithms are
simulated and evaluated in a similar environment. The mobile robots in this farmland
try to find the optimal paths while bypassing possible obstacles in the farmland with our
proposed methods. In addition, in a developed application by the authors for farmers,
these employed robots can be monitored and controlled.

In Section 2 of this paper, the literature studies are presented. The proposed algorithms
and their related applications are explained in Section 3. In Section 4, the simulation results
and performances of each method are evaluated. The last section of the paper includes the
conclusions and possible further studies.

2. Literature Review
2.1. Unmanned Aerial Robots’ Applications in Agriculture

IoT and similar technologies such as WSN, which have become popular in recent years,
are used to meet the needs in the agriculture fields. Along with the IoT, the widespread use
of autonomous robots such as Unmanned Aerial Robots (UAVs) increases productivity in
agriculture. In recent years, studies related to this subject have gained acceleration [21–24].
In [25], the authors used UAVs to detect possible drainage pipes. Often, farmers need
to repair or construct drain lines to efficiently remove water from soil. Therefore, in this
study, they wanted to increase resource consumption and productivity in agriculture by
focusing on this issue. In [26], the combined application of UAV and Unmanned Ground
Robot (UGV) was proposed to monitor and manage crops. The authors proposed a system
that can periodically monitor the condition of crops, capture multiple images of them, and
determine the state of the crops. In addition to many UAV-based studies and products,
recently, the concepts of IoT and autonomous robots have begun to be presented together.
In this way, the data detected by the UAVs or each autonomous robot reach the place
where they need to be sent instantly, the necessary actions can be taken on this data,
and it can quickly provide a decision mechanism to the farmer or other technological
devices. For example, in [27], the authors presented a farm monitoring system via UAV,
IoT, and Long-Range Wide Area Network (LoRAWAN) technologies for efficient resource
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management and data delivery. In this regard, they monitored water quality. In [28], the
authors proposed a new model to minimize the post-disaster inspection cost to serve a
disaster-affected area. In this study, battery charging costs, service costs, drone hovering,
turning, acceleration, cruise, and deceleration costs were considered. In this regard, the
authors used two heuristics (not meta-heuristics) algorithms, but it was not possible to avoid
the fundamental problems of heuristics [19]. In [29], the study aimed to deliver to a number
of customers by UAVs, namely drones. Here, it focused on three issues. One was the
launch points of the drones, the second was the launch points of the customers, and the
third was the distance between the customer and the drone. The proposed method goal
was to minimize the total operational cost, including an explicit calculation of the energy
consumption of the drone as a function of the drone speed.

The most common role of drones in agriculture is to assess and monitor crops. For this,
remote sensing is carried out, but this task is not enough when agricultural applications
become more widespread. For this, autonomous mobile robots such as drones and other
UAVs with technologically different features are designed for various agricultural purposes.
In [30], the authors used satellite images to crop mapping. They used the remote sensing
feature and utilized advantages of combined radar data and optical images to identify the
type of crops. The authors claim that this combination provides an increased chance of
examining details and provides more reliable information compared to a single-sensor
classification method. We can generally categorize UAV/drone-based agricultural appli-
cations into three categories: Monitoring Applications, (b) Spraying Applications, and (c)
Multi-robots Applications. In the first category, crops are tracked, and certain appropriate
information and vegetation indices are extracted. For this, it is necessary to provide the
imaging data that are processed later. Thus, we can identify problem areas in the crop
that suffer from various diseases and pests. The data received by UAVs sensors can be
characterized based on their spectral, spatial, and temporal properties. The selection of
suitable sensors and data depends on the nature of their applications. There are many
studies in the literature related to this [31–33]. Most studies in the second category have
focused on applications that can spray pesticides and fertilizers in appropriate and correct
amounts. Most of the papers reviewed install a spray device and take into account various
conditions that can affect this process, such as weather [34–36]. We should not forget that
these agricultural chemical products can cause various problems such as environmental
disasters and human diseases such as cancer. Currently, most of the existing studies in the
literature generally focus on a single autonomous, mobile robot performing a monitoring
operation. For example, in some cases such as large crops, a single mobile device (e.g.,
UAV) cannot complete the monitoring process as it is characterized by limited power
sources (limited battery). On the contrary, a multi-robot application can overcome this
difficulty by dividing the area into multiple sub-areas corresponding to the number of
UAVs/drones [37–39]. In addition, different purposes and applications are carried out on a
single drone. However, the need for more than one mobile robot to work is increasing day
by day. In particular, parallel processing is very important in terms of performance and
process speed. In this regard, one of the most important issues is that these autonomous
mobile robots can work together as soon as possible and use fewer resources without col-
liding with each other. The situation becomes even more difficult, especially in large-scale
agricultural land, which consists of various barriers. Thus, the problem of path planning
seems to be quite important, and an efficient mechanism can be used in many various
agricultural applications; it can also be coded and embedded with different hardware
devices. Therefore, in the next subsection, the topic of three-dimensional path planning in
the literature is discussed.

2.2. Path Planning in Agricultural Applications

It is very important that autonomous robots used in smart agriculture perform their
duties efficiently and that resources are used efficiently. In this regard, a vital issue is that
these robots do their tasks with the most optimum mechanism. Therefore, it is necessary
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to focus on the NP-hard type of 3D path planning problem. A general classification of
3D path planning consists of four types, as shown in Figure 1. These types are sampling-
based algorithms [40], node-based algorithms [41], mathematical-based algorithms [42],
and nature-based algorithms [43]. The methods in the first three categories suffer from
high time complexity and local minima trap, especially when mobile robots face multiple
constraints when planning a path. Metaheuristic algorithms, a set of nature-inspired algo-
rithms, are the fourth category in this taxonomy that imitate natural, biological, interactive
behaviors or physical events [44,45]. These methods try to find an almost optimal path by
eliminating the process of creating complex environment models based on stochastic ap-
proaches. The stochastic approaches can be efficient and fast in solving large and complex
optimization problems, especially in non-differentiable, multi-objective, and multimodal
problems [20,46].
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Finding the best shortest path entails some problems such as the existence of many
possible obstacles in its route. In addition, this path should be smooth without sharp turns
and must consider movement restrictions. These problems may be even more cumbersome
when considering large land areas and similar agricultural environments. Solution tech-
niques in path planning algorithms for mobile autonomous mobile robots may include
a visibility graph [48], probable road maps [49], and random exploring algorithms [50].
However, judging from the results of numerous studies in the literature, metaheuristic
methods may be better overall [51–53]. Metaheuristic methods try to find an almost op-
timal path by eliminating the process of creating complex environment models based on
stochastic approaches. These methods are among the most appropriate approaches to
solve unifying and nonlinear global optimization problems [54]. Worth mentioning here
is the No-Free-Lunch (NFL) [55] theorem. It asserts that there is no specific metaheuristic
algorithm that provides the best solution for every optimization problem. This means that
if one algorithm can solve a kind of problem effectively, then it may not be effective to
solve another kind of problem. As such, there is a considerable demand to develop new
metaheuristic algorithms that can be used in various problems.

As previously stated, the path planning problem has become popular in recent years
and the metaheuristic algorithms can be the most appropriate solution for it, but in the liter-
ature, there are not many works that study agricultural lands for various purposes. Many
agricultural studies in the literature have focused on issues such as the farmer’s income
from harvest, the variety of land use, the type and amount of employment, labor productiv-
ity, biodiversity indices based on landscape ecological measures, and soil erosion [56–58].
In the literature, although there are some studies on path planning in agricultures [59,60],
they have generally not focused either on 3D path planning or on the problem of having
many obstacles in the real environment farmlands and how to detect them.

In [61], the authors addressed the coverage path problem in a particular region with
many known obstacles for mobile robots in agriculture. The study proposed a practical
method, considering the geometry properties and obstacles of the area. It used an obstacle
avoidance mechanism to find a coverage path for agricultural drones. However, optimal
pathfinding and its usability in a 3D space were not taken into account. Additionally,
the complexity time and space of their proposed method are not efficient in comparison
with metaheuristic-based algorithms. In [59], the authors showed the simulation results of
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an algorithm designed to autonomously perform the path planning process for UAVs in
agricultural lands. The purpose of this study was to provide the appropriate conditions
to automate the process and carry out further audit activities. The algorithm considers
photogrammetric parameters such as ground sample distance (GSD) and overlap between
photos. For this, image processing techniques were used. In [62], the authors used au-
tonomously acting ground robots for various agricultural applications. They researched
different applications for path planning techniques to various agricultural contexts and
applied land coverage and point-to-point navigation techniques. They used the D* to
find the optimal path in a partial environment. However, this method is not very effi-
cient since it uses a node-based algorithm (D* algorithm), and it is also designed for 2D
areas [63]. As mentioned before, among the 3D path planning methods, metaheuristics
may be the most efficient method. In [64], the authors proposed a custom model to navi-
gate semi-autonomous agricultural robots with trailer. However, the geometry features
were considered in 2D. In addition, the authors did not focus on finding the optimal path.
Therefore, mobile devices moving on the non-optimal path map may not be successful in
using their resources efficiently.

In [65], the authors proposed a path planning method inspired by the Ant Colony
Optimization (ACO) algorithm to multipoint measurements in potato ridge cultivation.
However, the related method did not perform successfully in finding optimal paths and
is also useful for 2D areas. It may be unlikely to be implemented on real robots due
to the fact that they did not focus on the recognition of obstacles and the avoidance of
mechanisms of them. In [57], three local search metaheuristic algorithms, which were
simulated by annealing and tabu search references, were used to calculate annual crop
planning with a new irrigation mechanism. The objective function of this study was to
maximize the gross benefits associated with the allocation of crops. The authors claimed
that the tabu search method gave the best results in comparisons. In [66], an evolutionary
algorithm was used for a complex strategic land use problem based on the management
of a farming system. This study aimed to pursue a multi-purpose strategy that fulfilled
spatial constraints in the 50-year planning management of the farm. Although the study is
comprehensive, the metaheuristic method used and proposed may not be a very performant
and efficient solution.

3. Materials and Methods

With the increase in the world population, the need for agricultural and food products
has also increased. At the same time, the importance and need for smart agricultural sys-
tems and methods have also increased. Therefore, it is very important to plan optimal paths
without harming objects (barriers) such as plants and trees in agricultural areas. Thanks to
the methods proposed in this study, various tasks such as tracking crops in large farmlands
can be performed efficiently by autonomous robots. Accordingly, it is necessary to find
the optimal path between two points for robots without human intervention. Therefore,
in this paper, two adaptive 3D path planning methods were presented for autonomous
agricultural UAVs to find collision-free optimal paths in an acceptable time with the lowest
process costs in different environments, containing various obstacles. These methods were
developed, inspired by two metaheuristic algorithms (I-GWO and Ex-GWO). In addition,
many obstacles were assumed to be present in the field in order to prove that the proposed
methods are functional, and robots had to find their paths in relation to these obstacles.
In addition, this study also used a mechanism for obstacle management. The studies in
the literature either do not mention how to detect and prevent obstacles or they used the
features of an existing device and did not suggest an algorithm or technique [20,64]. This
mechanism can be embedded in various sensors and IoT devices.

3.1. Definitions

Before describing the proposed algorithms, the problem must be defined. The main
purpose of 3D path planning is to find an optimum (or nearly optimal) path between the
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source (start) and the destination (target) stations. The path planning function is defined as
outlined in Equation (1).

f (source, destination)→ Trajectory (1)

Source and destination denote the relative coordinates of the source and destination
positions on the map. Each path has a cost during movement from source to destination.
There are different parameters used to define a cost between two points. In most studies,
the cost is considered as the consumption of energy, Euclidean distance, and velocity [20,21].
For example, the position matrix determines how many stations robots travel from the
source to destination. This matrix is defined using Equation (2).

Positions = [p1 , p2, p3, p4 . . . pD] (2)

where pi represents the position coordinates of each station that our robot takes on the
map. In order to find an optimized trajectory, the proposed algorithms try to minimize
cost (length of trajectory in our experiment). The cost of the trajectories is calculated using
Equation (3), where i and j denote the current and next stations.

Cost(i,j) =
j=D

∑
i=s

distancei,j + CurrentPoweri (3)

Based on Equation (3), the cost of each founded path is obtained by the sum of distances
between tuples from source to destination. Drones can be blended with metaheuristics so
they can carry out their mission efficiently. In this regard, not only the distance parameters
of the drones but also the remaining power amounts of drones are taken into account in
the fitness function, which is defined to be more realistic. Therefore, the result from the
metaheuristic algorithm can be used in real environments when applied to mobile robots.
Random and optimized trajectories are used for UAV movement from source to destination,
as shown in Figure 2. Here, the UAV moved through different stations. In path planning
methods, usually, either the robots randomly move or costly processes are undertaken in
finding an optimized path, but in this study, we tried to find the most efficient optimized
path. This process is performed gradually between both stations. In this way, the UAV tries
to find a path between two points. To optimize randomly created paths and to find the best
possible trajectory, a method is proposed in this section with a minimum computational
cost. Thanks to this method, robots can also actively avoid obstacles. In the final phase, the
sum of all tuples’ costs is calculated, and the cost of the path is obtained. The purpose of
this study was to find the best path between the start and target stations of each UAV.

Figure 2. The randomly created and optimized trajectory. (a) Randomly Created Path; (b) Optimized
Created Path.

Typically, the first step in path planning is to represent the workspace as a map. In
the maps, many obstacles were used to make the mobile robots’ tasks of finding the path
realistic and complex. The challenge was to avoid various obstacles and to reach the
position of the destination. In this study, a large-scale map was prepared to evaluate
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the proposed algorithms. The boundary of this map is shown in Figure 3a. In addition,
three mobile robots with different start and destination stations were used, and their three-
dimension points are given in Figure 3b. In this paper, it was assumed that the number of
obstacles was quite high in order to make our proposed methods applicable in real areas.
The number of obstacles was considered to be 150. Therefore, the coordination of some of
the obstacles is presented in Figure 3c, and the full list is presented in Supplementary File
1. The problem of avoiding and managing obstacles is one of the most important aspects
of path planning. The used mechanism includes two main steps and algorithms that take
place sequentially, which were inspired by [47].
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3.2. GWO-Based Path Planning

In this paper, the path planning for autonomous agricultural robots was realized
using the proposed method, inspired by Incremental Gray Wolf Optimization (I-GWO) and
Expanded Gray Wolf Optimization (Ex-GWO) algorithms. These algorithms are inspired
by gray wolves in nature. The natural behaviors of gray wolves such as encircling, hunting,
and attacking prey have been modeled mathematically. Encircling in the I-GWO and Ex-
GWO are calculated based on Equations (4) and (5). The hunting and attacking mechanism
in the I-GWO can be obtained by Equations (9)–(11), and in the Ex-GWO, this is based on
Equations (12)–(14). There are four types of wolves in each pack; alpha, beta, delta, and
omega wolves. Each wolf has different responsibilities in the pack. Alpha, beta, and delta
wolves are involved in encircling the prey, and omega wolves update their own positions
based on them to attack the prey. The I-GWO algorithm is based on leader wolf’s behavior.
Other wolves in the pack update their own positions based on all the wolves selected before
themselves. This may result in these wolves being present in similar regions. Thus, they
only search for prey (solution) in a particular and similar area, which may be a missing
point. The nth wolf in the pack updates its own position based on the n−1 wolf before
it. This algorithm is completely dependent on the alpha wolf. In the I-GWO algorithm,
all relative operations are addressed according to Equations (4)–(11), where t indicates

the current iteration, T demonstrates maximum iteration number,
⇀
X indicates the position
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vector of a wolf, and
→
Xp is the position vector of the prey. Additionally, D is a vector that

depends on the location of the target.

→
D =

∣∣∣∣→C ·→Xp −
→
Xt

∣∣∣∣ (4)

→
X(t + 1) =

→
Xt −

→
A·
→
D (5)

→
A = 2

→
a ·→r1 −

→
a (6)

→
C = 2·→r2 (7)

→
a = 2

(
1− t2

T2

)
(8)

→
Dα =

∣∣∣∣→Cα·
→
Xα −

→
X
∣∣∣∣ (9)

→
Xα =

→
Xα −

→
Aα·

→
Dα (10)

→
Xn(t + 1) =

1
n− 1

n−1

∑
i=1

Xi(t); n = 2, 3, . . . m (11)

Another metaheuristic algorithm (Ex-GWO) is based on the first three hierarchies of
the wolves (alpha, beta, and delta) in a pack. The fourth level of the wolves in a pack
update their positions based on the leading three wolves. Generally, the nth wolf updates
its own position relative to the prey according to the previous and the first three wolves
(Equations (12)–(14)). In the Ex-GWO algorithm, the attacking mechanism is used to avoid
the prey from escaping.

→
Dα =

∣∣∣∣→C1·
→
Xα −

→
X
∣∣∣∣, →Dβ =

∣∣∣∣→C2·
→
Xβ −

→
X
∣∣∣∣,→Dδ =

∣∣∣∣→C3·
→
Xδ −

→
X
∣∣∣∣ (12)

→
X1 =

→
Xα −

→
A1·

→
Dα,

→
X2 =

→
Xβ −

→
A2·

→
Dβ,

→
X3 =

→
Xδ −

→
A3·

→
Dδ (13)

→
Xn(t + 1) =

1
n− 1

n−1

∑
i=1

Xi(t); n = 4, 5, . . . m (14)

It is assumed that the coefficient vectors
⇀
A and

⇀
C lead to encircle the prey. The

parameter
→
a decreases from 2 to 0 relative to the iteration number. It is used to improve

the convergence speed of the algorithm. These parameters control the tradeoff between
exploration and exploitation phases. It is used to get closer to the solution range.

→
r1 and

→
r2

are the random vectors in a range of [0, 1]. In every algorithm, the leader encircles the prey,

then hunts the prey, and finally attacks the prey based on the
⇀
A value. If

∣∣∣∣⇀A∣∣∣∣ < 1, the wolf

is attacking the prey; otherwise, it is busy trying to find prey (solution). Figure 4 depicts
the working of the proposed algorithms, considering exploration and exploitation phases.
Thanks to these features, the proposed 3D path planning methods were able to act in a
balance between the two phases and try to find the most appropriate path without falling
into any local optima trap.
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3.3. Working Mechanism of the Method

One of the most commonly applied methods of 3D path planning is to provide a
robot with a defined number of static stations and to allow an algorithm to discover the
most appropriate path. These types of algorithms are easier to apply mathematically, but
generally, their time and space complexity is relatively higher. Here, a pool of stations
is assumed so that these stations can be created randomly. Since the station selection in
our methods is based on metaheuristic algorithms, it works appropriately with fewer
parameters, and therefore, it can work efficiently by consuming resources in an acceptable
time. Mathematically, this pool has been described in the structure of the 3xn matrix. The
elements of search space represent distances between stations. Each station in the pool is
a possible position that a mobile robot can choose as the next station. This pool is used
to control the mobile robot’s movement in the area. In addition, by using the information
of this pool, it may be possible to help to avoid obstacles. The station selection process
used in our methods is presented in Algorithm 1. In this study, the number and positions
of stations (mobile robot stopovers) and obstacles are predefined similar to other studies
in the literature [5,6,15,20,53]. On the other hand, obstacle avoidance is one of the many
challenges that exist in the path planning problem. In this study, a method was used to
avoid the collision of the UAVs with obstacles (objects or other robots), which benefits from
geometric and calculus-based formulae. It was inspired by [47].

Algorithm 1. Pseudocode of station selection

1. State is array of candidate stations
2. w = distance obtained from metaheuristics //Equations (10) and (13)
3. d = The list of distances
4. For each station (i) in pool
5. di = distance between current and next stations + distance between next and

destination stations
6. End For
7. MinDist = Min(d) //Min function indicates minimum distance in the list
8. if (MinDist < w)
9. Select station with minimum distance as next station
10. Else
11. Select station by metaheuristics as next station
12. End if

Primarily, the proposed methods initialize the random position matrix. Each row of
the position matrix defines the path, and the columns represent the number of steps in
the path to the destination. These number of stations are denoted as p. The (xm

n , ym
n , zm

n )
presents a coordinate of each station, where m is the aforementioned index of stations and
n is the number of search agents in each method (Figure 5a). The search agents are the
configuration parameter of the metaheuristic algorithms. Then, for each metaheuristic
algorithm, a search space, based on the position matrix, is initialized. The search space
is shown in Figure 5b, which represents the distance between tuples. In this table, each
row represents a path length. Each element of the row shows the distance between two
points as dn

(i,j), where i is the current state and j is the previous state. Furthermore, n is in
the number of search agents. In addition, in the proposed methods, the path cost based on
a fitness function that was presented in Equation (3) is calculated.
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Figure 5. The working mechanism of the method. (a) The position matrix of each path; (b) the search
space that represents distance between tuples.

In the next step, the proposed methods calculate the distance between each tuple for
each station in the pool. In this case, we have a distance cost (d) between the current station
and candidate next stations. The d includes two values: first is the distance between the
current and next states, and the second is the distance between next and destination states.
However, the metaheuristic algorithms find the best solution for the next station of each
current station. If the distance of the possible next stations is smaller than the obtained
value from metaheuristic algorithms (w), the relevant station with the minimum value is
selected as the elected next station. Otherwise, the UAV chooses the achieved solution of
the metaheuristic algorithms as the next station (Algorithm 1). The proposed method’s aim
is to reduce the cost of each path and try to find the optimal path with minimum cost for
multi-UAVs. In this study, three UAVs were used that had dissimilar start (source) and final
(destination) stations. The results obtained from this method are explained in the analysis
and results section. The pseudocode and flowchart of the proposed path planning can be
found in Algorithm 2 and Figure 6.

Algorithm 2. Pseudocode of proposed path planning

1. Initialize the grey wolf population Xi (i = 1, 2, . . . .., n)
2. Initialize A, C and a //Equations(6)–(8)
3. Initialize positions matrix and search space
4. Calculate fitness of each agent //Equation (3)
5. While (t < Max number of iterations)
6. For each search agent
7. Update the position of current search agent //Algorithm 1.
8. End For
9. Update a, A and C
10. Calculate the fitness of all search agents
11. Update position //Equation (11) or Equation (14)
12. Update the search space matrix
13. t = t +1
14. End While
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3.4. Other Possible Features: Applicability in Farmlands

Based on the functionality of farmland, farmers can analyze the data to increase
productivity before the agricultural year begins. Most farmers fertilize their farmland based
on the experimental information. Modern agriculture tries to use the source efficiently
and encourages farmers to use new technologies in cultivation to increase productivity
along with their income. While data that have been collected are stored in a light server
to serve the clients, peer-to-peer communication can be held between monitoring devices
with the robots via the Global System for Mobile communications (GSM). In precision
agriculture, farmers are able to increase productivity by using the previous data analysis.
As the connections are bidirectional, exchanging urgent commands such as changing
tasks, terminating current tasks, and more can be performed. A tiny unit of computers of
robots provides a mid-layer infrastructure to receive commands and to respond to requests.
Thanks to the proposed algorithms, the farmer is able to lunch a UAV with predetermined
states to monitor and control their land. Farmers can track the whole of their agricultural
land and their crops remotely, and they can also meet their needs such as irrigation and
harvesting using the related autonomous UAV and agricultural robot robots on an optimal
path and minimum costs. In addition, the proposed methods can be used to find optimal
routes for multiple UAVs at the same time in parallel or concurrently. In this case, each
UAV perceives the other UAV as an obstacle andso, the relevant UAV can continue its
mission without colliding with our obstacle management mechanism. In addition, thanks
to this mechanism, it will be possible for the proposed methods to work successfully in
dynamic or uncertain environments.

4. Results and Discussion

This section presents the performance of the proposed methods, which is analyzed
and compared with the GWO-based 3D path planning method [20]. The authors used
the Gray Wolf optimizer (GWO) algorithm to find an optimal path with minimal cost



Appl. Sci. 2022, 12, 943 14 of 23

in 3D environments. According to the results of the study, in path planning, the GWO-
based method is better than Dijkstra, A*, D*, and several famous metaheuristic-based
methods. They proved that the GWO-based method presents a more balanced and better
performance in similar problems. In addition, GWO-based algorithms are sought after
in many research and application areas due to their balanced behavior amongst various
metaheuristic algorithms [19,20]. Therefore, we selected this method for the comparison
of results and performance. The implantation and analysis presentation was performed
in Java and MATLAB. The algorithms proposed in this study were performed on a Core
i7-5500 U 2.4 processor with 8GB of RAM.

4.1. Simulation Setting

In the simulation, large-scale, agricultural land was considered. The size of the
environment was 1000 m ∗ 1000 m ∗ 1000 m. In addition, 150 obstacles were also placed in
this area. Three UAVs with different start and endpoints were considered in each simulation
of the used methods. The map boundaries, UAVs, and obstacle positions were assumed
based on Figure 3. Each used algorithm was run 15 times. Furthermore, simulation
parameters are presented in Table 1. The best, worst, and average costs (distance traveled
in meters), execution times and complexity, and finally, convergence curve analysis for each
UAV in each algorithm was applied by different population sizes and iteration numbers.

Table 1. The simulation parameters.

Parameter Value

Population size 30, 50, 100

Maximum iteration 50, 100, 200

Farmland Square 1000 m ∗ 1000 m ∗ 1000 m

r1, r2 Rand [0,1]

a linearly decreased from 2 to 0 over

A [−2a, 2a]

C Rand [0, 2]

4.2. Analysis and Evaluation (Cost of Paths)

In this section, the proposed path planning methods are analyzed based on the cost
function, introduced in Equation (3). The results obtained are presented in Table 2. The
starting and ending points of UAVs are assumed to be different from each other. In this
table, the costs for these autonomous robots were obtained from a set of various populations
and iterations. This process was evaluated for all algorithms used. According to the results
obtained, the Ex-GWO-based method achieved the best result compared to other used
path planning methods. The Ex-GWO-based method gave the best solution in five of the
assumed nine scenarios and ranked first among the three methods with a 55.56% success
rate. In the ranking, the I-GWO-based method was second with 38.88% and the GWO-based
method was third with 5.56%. These results are presented in Table 3.
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Table 2. Simulation results for each path planning algorithm on crowded large-scale map.

Algorithm Pop Iter

UAV1

(Cost-m)
UAV2

(Cost-m)
UAV3

(Cost-m) Overall Simulation Time
(s)

Best Ave Worst Best Ave Worst Best Ave Worst
GWO 30 50 2199 2645 3385 2019 2328 2566 2148 2611 3526 8.416
I-GWO 30 50 2199 2736 3290 2087 2378 2579 2107 2446 2723 11.747
EX-GWO 30 50 2250 2649 3205 1996 2314 2655 2156 2713 4195 9.910
GWO 50 100 2145 2573 3295 1955 2234 2497 2095 2526 3469 15.040
I-GWO 50 100 2181 2558 3119 1993 2321 2520 2090 2361 2662 17.654
EX-GWO 50 100 2128 2621 3121 1918 2238 2593 2102 2638 4139 16.686
GWO 100 200 2070 2522 3202 1870 2136 2403 2026 2453 3417 23.378
I-GWO 100 200 2045 2537 3047 1936 2223 2466 2016 2261 2588 26.659
EX-GWO 100 200 2088 2479 2983 1858 2186 2528 2007 2568 4065 24.794

* The best values are bold.

Table 3. Ranking summary of metaheuristic algorithms in cost parameter.

Algorithm Success Rate (Percent) Rank

GWO 5.56 3

I-GWO 38.88 2

Ex-GWO 55.56 1

Based on the obtained results, it is determined that the Ex-GWO-based method exhibits
good performance in large-scale and complex farmland with a high number of obstacles.
This is because the Ex-GWO-based method finds the best solution according to the alpha,
beta, delta wolves, and whole pack. The wolves use the whole pack’s location knowledge to
update their positions, so for experiments with larger population sizes and more iterations,
the Ex-GWO-based method has a better chance of reaching the best solution. Therefore,
the wolves in the pack minimize the escape paths of the hunt (prey), and hence, the prey
can be caught faster. The fact that this mechanism can be better than other methods can be
seen more clearly in large and crowded environments. On the other hand, another method
proposed in this study, the I-GWO-based path planning method, outperforms good results
in smaller and less populated environments. The basic update process in this method
is very dependent on the alpha setup. Therefore, the speed of growth and the selection
of the right places for the first wolf is of great importance. In this method, there is the
possibility of finding problem solutions (prey) much faster in fewer iterations. For this
reason, our proposed methods may be the most appropriate choices in various real-life
application areas of mobile autonomous systems such as the use of UAVs for different
and varied purposes and environments. In general, the GWO-based method has good
performance in medium, small-sized, and not too crowded environments. In fact, the
usage capacity of it may be between our two methods, but its success rate is not considered
good according to the results. Briefly, the Ex-GWO-based path planning method may be
performed more successfully in larger and crowded environments with larger populations
and more iterations, and the I-GWO-based path planning method may give good results in
medium and smaller, less populated environments.

Additionally, in Figure 7, the movements of UAVs for each algorithm are also shown
on the defined map based on the obtained simulation results in various population sizes
and iterations. In this figure, the circles show the start state of each UAV, and the star
symbols show the destination state of each UAV.
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4.3. Analysis and Evaluation (Taken Times and Complexity)

The execution times of the proposed methods are also taken into consideration. The
best execution time analyses for each method are presented in Figure 8 for various popula-
tion sizes and iterations. The GWO has the best overall-time performance, while Ex-GWO
and I-GWO rank second and third, respectively. Indeed, the GWO-based path planning for
three UAVs in the parallel periods consumes the minimum time to reach its destination.
The reason for this may be due to the fact that it depends on the three first wolves. In the
I-GWO, the incorrect position or the wrong movement of the alpha wolf can move the
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whole pack away from the target or cause them to catch the prey late. At the Ex-GWO, each
pack member has more roles and contributions than the other two methods, which means
that this algorithm may need a longer execution time. However, the Ex-GWO may not be
the worst in terms of time, as seen with its better performance in crowded environments.
The results show that in the crowded map scenarios with many barriers, the I-GWO-based
method does not perform well with regard to the overall time and optimum path cost. The
fact that the GWO had the best overall time does not mean that the other two methods were
bad, because these two methods could be concluded in an acceptable time. In addition, the
time complexity analysis of the proposed methods is O(n2).
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4.4. Analysis and Evaluation (Convergence Curve)

Figure 9 presents the convergence curve of each proposed path planning algorithm.
As mentioned before, the number of obstacles and the boundary sizes of the map are
listed in Figure 3. The three metaheuristic algorithms used have different structures
in the exploration and exploitation phases. Figure 9 illustrates the convergence curve
of each method with various iterations and population sizes. In the I-GWO algorithm,
the transition from exploration to the exploitation phase is faster than the other two
metaheuristic algorithms (GWO and Ex-GWO). As a result of the observations, it was
concluded that 50 iterations were enough to analyze of convergence rate because the results
achieved did not display remarkable differences [20].



Appl. Sci. 2022, 12, 943 18 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 23 
 

 

Figure 8. Taken time for each method on the relevant map. 

4.4. Analysis and Evaluation (Convergence Curve) 

Figure 9 presents the convergence curve of each proposed path planning algorithm. 

As mentioned before, the number of obstacles and the boundary sizes of the map are listed 

in Figure 3. The three metaheuristic algorithms used have different structures in the ex-

ploration and exploitation phases. Figure 9 illustrates the convergence curve of each 

method with various iterations and population sizes. In the I-GWO algorithm, the transi-

tion from exploration to the exploitation phase is faster than the other two metaheuristic 

algorithms (GWO and Ex-GWO). As a result of the observations, it was concluded that 50 

iterations were enough to analyze of convergence rate because the results achieved did 

not display remarkable differences [20]. 

 

Figure 9. Convergence analysis for each UAV on the relevant map in population of 30 and 50 iter-

ations. 
Figure 9. Convergence analysis for each UAV on the relevant map in population of 30 and 50 iterations.

In Figure 10, the statistical results of the path planning methods with the boxplot
graph are presented. Boxplots are a standard method for displaying data distribution based
on statistical indicators such as minimum, first quartile (Q1), median, third quartile (Q3),
and maximum. This diagram also provides information regarding the existence of outlier
data. In addition, the symmetry ratio in the data can be analyzed from this graph. The
values were obtained from three metaheuristic algorithms with a population size of 30
and 50 iterations after 15 runs. The box plot graph analysis describes the maximum and
minimum values of the obtained best cost and the frequency of the values. The x-axis of
each figure indicates the name of the respective algorithm, whereas the y-axis indicates the
average of best cost obtained. From Figure 10, it can be observed that the results obtained
using the Ex-GWO algorithm are near to the best solution, whilst the algorithm tries to
find the best solution. As well as this, after initial iterations in the exploitation phase the
Ex-GWO obtained results near to the best cost.
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Figure 11 illustrates the distributions of costs in 15 runs. While the UAV2 has an
almost uniform distribution, both UAV1 and UAV3 have lower cost densities. Note that
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obstacles are employed as a marker for these metaheuristic algorithms, and paths with an
appropriate number of obstacles help to improve the performances. For this purpose, a
Student’s t-test was applied for all combinations of UAVs. The p-value of UAV1 and UAV2
for all combinations of algorithms, population, and iterations count in 15 runs is 9.3× 10–12,
the p-value of UAV1, and UAV3 is 0.201, and the p-value of UAV2 and UAV3 is 9.8 × 10–6.
Generally, p-values less than 0.05 are accepted for hypothesis rejection. The null hypothesis
is that all UAV s do not have a meaningful relationship. The significant difference between
UAV2 with both UAV1 and UAV3 is proved. Therefore, the null hypothesis is rejected.
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5. Conclusions

The focus of the paper was to solve the NP-hard problem of efficient crop harvesting
by finding the most suitable and optimal paths for UAVs. This study presented adaptive
3D path planning methods using metaheuristic algorithms (I-GWO and Ex-GWO) for
autonomous agricultural UAVs. Therefore, in this study, maximum profit was achieved
by consuming the least energy by harvesting the most crops in the shortest possible time.
In addition, the use of resources such as human and natural resources was carried out
efficiently by creating sustainable and smart agriculture. In other words, the method allows
farmers to monitor crop variability and stress conditions continuously and harvest the
best crops, resulting in efficient resource consumption and an increase in profits. The
proposed methods tried to find the best solution in an acceptable time without falling
into any local optima trap. The proposed method’s aim was to reduce the cost of each
path and try to find the optimal path with the minimum cost for multi-UAVs. In addition,
this study also proposed a mechanism for obstacle management. In this study, a large-
scale farmland map with many various obstacles was considered. From the results, it can
be concluded that in terms of the minimum execution time parameter, the GWO-based
method did the best, whereas in finding the optimal path with the minimum cost, the
Ex-GWO-based method was better. The proposed method based on the Ex-GWO attained
a 55.56% success rate, the I-GWO, and the GWO-based method attained 38.88% and 5.56%
success rates in optimal path costs, respectively. In addition, in the analysis of convergence
curve behavior for metaheuristic algorithms, the proposed I-GWO-based method was
observed to offer the best solution. Thanks to the algorithms proposed in this study,
efficient resource consumption and product growth rate can be achieved with low risk and
cost. They can also be used in real agricultural applications. In addition, the consideration
and installation of specific mechanical and hardware devices to mobile robots and farmland
can play an important role. In this regard, information about the mission environment can
be gathered by other types of sensors (e.g., laser spot), which are mounted on mobile UAVs.
These sensors can provide information about the shape, size, and location of an obstacle.
Using sensory information, robots may advance towards a target without colliding with an
obstacle or coming under enemy radars. On the other hand, various sensor devices are used
to collect information on parameters such as humidity, temperature, etc. in agricultural
land for different applications. Briefly, since the map information and the starting and
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destination points of each mobile device are certain, the developed method can be easily
embedded on these devices. Thanks to the obstacle and object detection feature used of the
method, the supposed parameters in the defined fitness function, and the station selection
feature on the map, method can be applicable in the real world as well. It can also be even
more useful when combined with special equipment used in farmland and mobile devices.

In future studies, we would like to explain our roadmap below with a focus on smart
and sustainable agriculture. Alongside mobile robots, it will focus on a method that tracks
and harvests crops in large-scale farmland with Internet of Vehicles (IoVs). In such a
scenario, the mobile robots would only be tasked with monitoring the farmland. In this
case, a blended mechanism with image processing methods will be presented. It will then
use the results from these autonomous robots as an input matrix for the IoVs. Since a
complex and NP-hard type of problem will arise here, metaheuristic-based algorithms
will again come into play. In this regard, hybrid or new algorithms will be presented. On
the other hand, the 3D path planning methods proposed in this study can be applied to
IoT systems such as smart cities, industries, and agriculture in hybrid form with machine
learning algorithms such as reinforcement-learning- or game-theory-based algorithms.

Supplementary Materials: The supporting information about maps can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12030943/s1.
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