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Abstract: Cloud computing has been studied and used extensively in many scenarios for its nearly
unlimited resources and X as a service model. To reduce the latency for accessing the remote cloud
data centers, small data centers or cloudlets are deployed near end-users, which is also called edge
computing. In this paper, we mainly focus on the efficient scheduling of distributed simulation tasks
in collaborative cloud and edge environments. Since simulation tasks are usually tightly coupled
with each other by sending many messages and the status of tasks and hosts may also change
frequently, it is essentially a dynamic bin-packing problem. Unfortunately, popular methods, such
as meta-heuristics, and accurate algorithms are time-consuming and cannot deal with the dynamic
changes of tasks and hosts efficiently. In this paper, we present Pool, an incremental flow-based
scheduler, to minimize the overall communication cost of all tasks in a reasonable time span with the
consideration of migration cost of task. After formulating such a scheduling problem as a min-cost
max-flow (MCMF) problem, incremental MCMF algorithms are adopted to accelerate the procedure of
calculating an optimal flow and heuristic scheduling algorithm, with the awareness of task migration
cost, designed to assign tasks. Simulation experiments on Alibaba cluster trace show that Pool can
schedule all of the tasks efficiently and is almost 5.8 times faster than the baseline method when few
tasks and hosts change in the small problem scale.

Keywords: distributed simulation; task scheduling; minimum cost maximum flow; incremental
scheduling

1. Introduction

By incorporating grid computing, virtualization technology, and the idea of servitiza-
tion, cloud computing, as a new computational paradigm, has been widely studied and
applied in many fields since its emergence. The most influential definition of cloud com-
puting is given by National Institute of Standards and Technology (NIST) [1], who firstly
proposed three service models: Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS), and four deployment patterns, namely public
cloud, private cloud, community cloud, and hybrid cloud [2]. The main advantages of
cloud computing can be summarized as serve-as-you-need, widely network access, elastic
scaling, and efficient management.

Computer simulation, as a kind of computer application, has been used widely, such
as education, entertainment, medical care, and military field. However, with the deepening
and extension of its application, simulation also confronts many new issues [3]. On the one
hand, the increasing number of simulation entities and the continuously refined model
functions call for more computing resources. Simulation users need to pay a great amount
of money to buy, operate, and manage these high-performance servers. On the other
hand, the heterogeneous simulation models, systems, and other simulation resources
developed by different institutes are isolated with each other, which may result in repeated
development and waste of resources.
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Considering the issues associated with simulation and the advantages of cloud com-
puting, a new research area called cloud-based simulation or cloud simulation comes into
being [3–5]. Fujimoto et al. [3] summarized the benefits of combining simulation and cloud
technology from four aspects: (1) reducing the usage cost of simulation; (2) simplifying the
usage of simulation; (3) helping the operation and management of simulation resources;
(4) improving the capacity of fault tolerance.

Although cloud computing can bring many benefits to simulations, some limitations
also exist. For example, cloud data centers are usually located far away from users, which
may incur long data transmission delay. As some simulation applications, especially those
involved with real human or equipment, are sensitive to the time delay, edge computing [6]
is introduced as a compliment for cloud computing.

Unlike the relatively independent tasks submitted by common users, simulation tasks
tend to be tightly coupled. At the same time, they are usually highly heterogeneous
and both communication-sensitive and computation-sensitive [7]. To achieve the high
performance of executing simulations in the cloud, we need to assign all the tasks to
proper hosts in a reasonable time span. In this paper, we mainly focus on the efficient task
scheduling of simulation tasks in collaborative cloud and edge environments. Considering
the frequent changes of the status of tasks and hosts, it is actually an NP-hard dynamic
bin-packing problem.

Many scholars have conducted in-depth research in this field and put forward many
useful solutions. To achieve the fast responses to users’ requests, task schedulers, which
have been seen as the core modules in modern clusters, are needed to assign the submitted
tasks to hosts efficiently. From the perspective of the working mechanism, they can be
classified as queue-based [8–10] and batching-based schedulers [11–13]. In queue-based
schedulers, tasks are assigned sequentially according to some predefined rules. To cope
with a great number of tasks, these queue-based schedulers can be further divided as
centralized, distributed, and hybrid designs. As tasks are processed independently, this
kind of schedulers can be easily implemented in a parallel or distributed manner and
can be deployed on-line without the need of a priori knowledge about tasks. On the
contrary, batching-based schedulers try to deploy tasks jointly aimed at finding the global
optimal assignment decision. As all the information about tasks and hosts is needed, this
kind of scheduler requires more a priori knowledge and usually more time is consumed
to solve such a combinational optimization problem. Considering the frequent message
transmissions between simulation tasks, they should be deployed jointly to avoid degrading
the performance of simulation applications. Thus, scheduling simulation tasks with a
batching-based scheduler is a better choice.

To solve such an NP-hard problem, many algorithms are also proposed. Some re-
searchers adopted meta-heuristics to find approximate optimal solutions. These algorithms
are usually inspired by natural phenomena [14], such as the predation behaviors of birds
(particle swarm optimization, PSO) and ants (ant colony optimization, ACO). Although
they are easy to perform well in some optimization problems with complicated constraints,
they tend to be time-consuming and non-deterministic even if all the parameters keep
unchanged. To improve the time performance of the scheduler, heuristics were also utilized
by some scholars, such as dominant resource fairness [15] and shortest job first [16]. As a
trade-off, the deployment quality of tasks is not always satisfying and it is prone to fall into
local minimum for these algorithms.

By relaxing some constraints and converting the task scheduling problem into a
min-cost max-flow problem, tasks can be scheduled jointly in polynomial time, which is
called flow-based scheduling [17–19]. In this method, tasks and computation nodes are
modeled as nodes and the feasible deployment solutions are modeled as arcs. By setting the
cost value and upper capacity of each arc properly, the final assignment decisions can be
extracted from the generated optimal flow. However, current flow-based schedulers cannot
deploy tasks efficiently, especially when the status of tasks and hosts changes frequently.
In this paper, we propose a new scheduler called Pool to cope with this issue. Firstly, the
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network optimization problem is solved efficiently using incremental MCMF algorithms
in Pool. Then, tasks are rescheduled with the consideration of migration cost of tasks. In
such a way, tasks are deployed properly with the aim of minimizing the communication
cost of all tasks, as well as reducing the overall migration cost when the status of tasks and
hosts changes. Compared to the existing flow-based schedulers, Pool can achieve almost
5.8 times faster time performance with a small proportion of changing tasks and hosts.

In summary, the main contributions of this paper can be stated as follows:

• We formulate the problem of scheduling simulation tasks in collaborative cloud and
edge environments as a MCMF problem and incremental MCMF algorithms are
adopted to find the optimal flow quickly when the status of tasks and hosts changes;

• We propose a new heuristic method to reschedule tasks efficiently based on both the
newly generated optimal flow and the current deployment decisions of all tasks to
minimize both the overall communication cost and the migration cost of all tasks;

• Extensive experiments on Alibaba cluster trace are conducted to illustrate the effec-
tiveness of Pool.

The rest of this paper is organized as follows: Section 2 reviews the related work
about task scheduling. Section 3 states the problem background and models it as a MCMF
problem. Section 4 details the design of our incremental task scheduler. Section 5 evaluates
the performance of Pool, and conclusions and possibilities of future works are given in
Section 6.

2. Related Works

Task scheduler is a very import module in current clusters and there are many impres-
sive achievements in this area. In this section, the current research work is summarized in
detail from two perspectives, namely scheduler structures and scheduling algorithms.

2.1. Scheduler Structures

According to the structure of schedulers, they can be centralized, distributed, and
hybrid. In centralized designs, all the information about tasks and hosts is collected by the
centralized scheduler and each task is processed based on global information. A single
scheduler is adopted in Borg [8] to improve the resource utilization with the consideration
of machine sharing and performance isolation. Jin et al. [20] proposed a task execution
framework called Ursa, in which a centralized task scheduler was adopted to assign tasks
globally. Although better deployment quality can be obtained, the deployment latency may
increase since information about all tasks and hosts needs to be collected, especially when
the number of tasks is very large.

To deal with a high throughput of tasks, distributed designs are proposed, where tasks
and hosts are divided into several sub-sets and each scheduler is in charge of deploying a
sub-set of tasks independently. For example, each host has its own scheduler and tasks are
scheduled asynchronously bases on local load information. Tarcil [21], 3Sigma [22], and
Apollo [23] are all distributed schedulers to achieve high throughput of tasks. In Tarcil,
the sampling sizes of tasks are adjusted dynamically to reduce the scheduling latency and
improve the deployment quality. The wait-time matrix for CPU and memory in each host
is recorded in Apollo and high cluster efficiency is achieved in 3Sigma by predicting the
runtime of tasks. However, tasks are more likely to be deployed on sub-optimal hosts
because of the lack of global information.

To process a great number of tasks quickly, while maintaining better deployment
quality, hybrid designs are proposed. Similar to distributed schedulers, tasks and hosts are
also divided into different sub-sets. However, a centralized coordinator is also adopted to
synchronize status between different schedulers. In general, the centralized coordinator is
in charge of determining the scheduling policy of each sub-cluster, while the distributed
schedulers process tasks locally. Forestiero et al. [24] considered the efficient management
of geo-distributed data centers and proposed a hierarchical approach to preserve the
autonomy of single data centers and, at the same time, allow for an integrated management
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of heterogeneous platforms. Curino et al. [25] adopted a hybrid architecture to adapt to the
changing workload and cluster status, in which tasks are distributed among hosts and the
per-host scheduler schedules them locally. Similarly, centralized and distributed schedulers
are adopted in Hawk [26] and Eagle [10] to deal with long and short tasks, respectively.

As stated above, the three scheduler designs can be utilized in different scenarios and
the proper structure of scheduler should be determined based on the characteristics of
tasks. In simulation applications, tasks are usually tightly coupled with each other and the
scheduling of tasks should be considered jointly. Thus, centralized design may be a better
choice, which is also adopted in our scheduler.

2.2. Scheduling Algorithms

When scheduling the tasks jointly with the consideration of information about all
tasks and hosts, it is actual an NP-hard combinational optimization problem. Meth-
ods on this issue can be classified as three types, namely heuristics, meta-heuristics and
accurate methods.

Heuristic algorithms are a set of constraints that aim at finding a good enough solution
for a particular problem [14]. It is assumed that the overall deployment quality of all
tasks is acceptable if each task is scheduled in an optimal way. The advantages of this
kind of algorithms are apparent. For example, the runtime of heuristic algorithms is often
satisfying and these algorithms can be easily deployed on-line. As a trade-off, they are
easily tracked in the local optimum.

Meta-heuristics are a class of random search algorithms which are designed for gen-
eral purpose problems. They can be divided into two categories based on the number
of candidate solutions, namely single-solution-based and population-based algorithms.
In single-solution-based meta-heuristics, a single candidate solution is maintained in the
searching process, such as simulated annealing, hill climbing and tabu search [27]. Despite
the remarkable simplicity, their performance degrades when the search space is very com-
plicated [7]. By managing multiple candidate solutions in each iteration, population-based
algorithms can obtain a better performance. According to the relationship between indi-
viduals, they can be further classified as evolutionary and swarm intelligence algorithms.
Evolutionary algorithms, such as bacterial foraging optimization (BFO) [28,29], genetic
algorithms (GA) [30], and their variants, are inspired by evolution theory and the candi-
date solutions in each iteration are updated based on selection, crossover, and mutation
operations. In swarm intelligence algorithms, however, the candidate solutions survive in
the whole searching process and their fitness values are optimized by exchanging infor-
mation with each other. Typical swarm intelligence algorithms includes particle swarm
optimization (PSO) [7], artificial bee colony (ABC) [31], ant colony optimization (ACO) [32],
and so on.

In general, heuristics and meta-heuristics are both approximate algorithms. By con-
trast, accurate methods try to find the theoretically optimal solution based on complicated
mathematical analysis and calculation. Some scholars formulate this scheduling problem
as integer linear programming (ILP) and some off-the-shelf optimizers, such as CPLEX [33],
can be utilized to solve it. For example, in FlowTime [12] models, the scheduling of recur-
ring data workloads with inter-task dependencies as an ILP and Medea [34] considers the
optimal deployment of long running applications. Moreover, some researchers try to solve
this problem based on game theory and the scheduling problem is also reduced to mixed
integer linear programming (MILP). However, the long runtime of these algorithms makes
them improper in our scenario.

By relaxing some constraints and converting the task scheduling problem into a
MCMF problem, flow-based scheduler can obtain the approximate optimal solution in
polynomial time. It is firstly proposed in Quincy [17] to schedule jobs with locality and
fairness constraints with data centers. Experiments conducted on real clusters show that
Quincy can reduce the volume of data transferred across the cluster by up to a factor of
3.9 and increase the throughput by up to 40%. Firmament [18] generalizes Quincy and
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improves placement latency by 20× over Quincy based on experiments with a Google
workload trace. Aladdin [19] applies this idea to deploy long tasks with anti-affinity and
priority constraints, and improves resource efficiency by 50% compared some baseline
schedulers using Alibaba workload trace. However, the changes of tasks and hosts are not
highlighted in their work and the task migration cost is also not taken into consideration.
In this paper, we mainly focus on how to reschedule tasks efficiently with the consideration
of minimizing the overall communication cost, as well as the migration cost of all tasks.

3. Problem Statements

In this section, we will firstly describe the background of our application and then
formulate it as an optimization problem.

3.1. Application Background

With the development of computer and network technology, simulation has been
recognized as a powerful tool in the area of training. Compared to the traditional field train-
ing, simulation can significantly reduce the operation cost and enhance the convenience of
training. If the involved personnel or equipment is relatively few, simulation applications
can be executed efficiently in local clusters. However, for a large-scale geo-distributed sim-
ulation scenario, cloud computing is necessary benefiting from its unlimited computation
and storage resources. To alleviate the long data transmission delay between users and the
remote cloud data centers, edge computing is also introduced, which is called collaborative
cloud and edge simulation.

In this kind of simulation, three kinds of simulation federates are involved, namely
live (real person and equipment), virtual (various simulators), and constructive (computer
generated forces) federates, which is also called LVC simulations. For example, a pilot
in a plane simulator can fire a simulated missile at a real tank with many sensors and
receivers. These federates may be distributed geographically and they also show different
characteristics. Live federates usually refer to the trainees or some real equipment. For
these members, they need to upload a great amount of data to update their corresponding
digital avatars maintained in the unified simulation environment. At the same time, they
have certain maneuverability and can move between adjacent areas. For virtual federates,
namely simulators, they are usually located in some fixed locations. Since simulators
themselves can process data locally, a much lower volume of data are needed to update
their avatars. As for constructive federates, they are essentially computer programs and
can be deployed anywhere throughout the whole network.

3.2. Problem Modeling

To achieve the efficient execution of such a large-scale distributed simulation, various
simulation tasks should be deployed properly with the consideration of communication
patterns between tasks, as well as the network topology among computation nodes. Addi-
tionally, the resource capacity of hosts is an important constraint.

Simulation tasks. As stated in Section 3.1, federates in a large-scale simulation show
various forms and characteristics. For live and virtual federates, their corresponding digital
avatars need to be built to fulfill the interaction between other virtual or real objects. In
this paper, these digital avatars together with the constructive computer programs are
called tasks, and the real personnel, real equipment and simulators are called users. For
constructive federates, they can also be allocated corresponding virtual users.

We use T to denote the set of tasks in a simulation application. For task i, the volume
of data sent from it to task j at time τ can be denoted as sτ

ij. On the other hand, dτ
i data

should also be exchanged between task i and its corresponding user. For constructive tasks
i, dτ

i is set at 0. R represents the set of regions and each user should be located in one of
them. The resource requirements of task i at time τ can be expressed as πτ

i = (φτ
i , ψτ

i ),
where φi and ψi indicate the number of CPU cores and the volume of memory, respectively.
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For each task, a basic image is needed to provide some necessary libraries or system
APIs, no matter if it is encapsulated in a container or a virtual machine. We use ζτ

i to
indicate the size of image for task i. Similarly, the size of task i itself is denoted as lτ

i . When
a task is executing on a host, some data will be written into memory or cache to improve
access speed or store temporary variables. Migrating a running task can, thus, cause extra
cost to restore such cached data. In this paper, we use ρτ

i to indicate how many time steps
task i has been assigned in current host at time τ. In time τ + 1, this value is incremented
by 1 if task i is not migrated to other hosts, otherwise this value is set at 0.

Computation nodes. Constructive federates, as well as the digital avatars of real and
virtual federates, should be deployed on some hosts with adequate resources. These hosts
may belong to different cloud data centers or edge nodes. Data centers are usually located
far away from users and have almost unlimited resources. By contrast, edge nodes are
deployed near end users and have limited capacities. Without the loss of generality, we
assume that all the data centers and edge nodes can exchange data with each other with
deterministic and various unit data transmission costs (infinity if they are disconnected).

The set of data centers and edge nodes are expressed as C and E, respectively. H
denotes the set of hosts. The resource capacity of host h can be defined as Πτ

h = (Φτ
h , Ψτ

h ),
where Φh and Ψh indicate the number of cores and volume of memory host h can provide.
Unit data transmission cost between region r and data center c, region r and edge node e,
edge node e and data center c, and data center p and data center q are expressed as αrc, βre,
γec, and λpq, respectively. In this paper, we assume that the capacities of hosts may change
and hosts can be removed or added dynamically.

Optimization goal and constraints. Our main goal is to deploy all the simulation
tasks properly with the consideration of minimizing overall communication cost and task
migration cost when the status of tasks and hosts changes. With the assumption that user i
is located in region r at time τ, we use binary variables zτ

ih, xτ
hc and yτ

he to indicate whether
task i is assigned to host h, whether host h belongs to data center c and whether host h
belongs to edge node e, respectively. The variables are set at 1 for true, and 0 otherwise.
Suppose the centralized management node of a distributed simulation is located in data
center o. Since the values of xτ

hc and yτ
he are known before, the overall communication cost

of all tasks at time τ can be described by Equation (1), where sτ
i = ∑j∈T,j 6=i sτ

ij + ∑j∈T,j 6=i sτ
ji.

In Equation (1), the first part represents the communication cost between tasks and users
while the second part denotes the communication cost between tasks.

comu_costτ = ∑
i∈T

(dτ
i · ( ∑

h∈H
∑
c∈C

zτ
ih· x

τ
hc· αrc + ∑

h∈H
∑
e∈E

zτ
ih· y

τ
he· βre)

+ sτ
i · ( ∑

h∈H
∑
c∈C

zτ
ih· x

τ
hc· λco + ∑

h∈H
∑
e∈E

zτ
ih· y

τ
he· γeo))

(1)

When the status of tasks and hosts changes at time τ + 1, some tasks may need to
be rescheduled. To migrate a task dynamically, a new container or VM needs to be firstly
initialized on the target host. Time consumed in this process is proportional to the size of
image [35] and the coefficient is denoted as ω1. After that, data about this task should be
transferred and the status data should also be restored to memory and cache. ω2 is used to
represent the cost for transferring unit data between hosts. Intuitively, the longer a task is
running in a host, the more resources are wasted when migrating this task. This part of
migration cost for task i is embodied by ρτ

i and the corresponding coefficient is denoted as
ω3. Binary variable ντ

i is used to indicate whether task i is migrated to other hosts at time
τ, 1 for true and 0 otherwise. Thus, the overall migration cost of all tasks at time τ can be
expressed as Equation (2).

migra_costτ = ∑
i∈T

ντ
i · (ω1· ζτ

i + ω2· lτ
i + ω3· ρτ

i ) (2)
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It should be noted that the total resource requirements of tasks must not exceed the
capacity of the corresponding host. Thus, the scheduling goal and the constraints of this
optimization problem can be denoted as Equations (3)–(6).

Minimize gτ = comu_costτ + migra_costτ subjected to (3)

∑
i∈T

zτ
ih·π

τ
i ≤ Πh, ∀ h ∈ H (4)

∑
h∈H

zτ
ih = 1, ∀ i ∈ T (5)

zτ
ih ∈ {0, 1} (6)

4. Design of Pool

In this section, we will firstly introduce the basic framework of scheduling tasks
based on network optimization theory. To achieve the efficient rescheduling of tasks when
the status of some tasks and hosts changes, we then details how to obtain the optimal
flow using some MCMF algorithms incrementally and how to extract the task assignment
solution from the optimal flow with the consideration of minimizing task migration cost.
To avoid ambiguity, the procedure of extracting task assignments based on the optimal
flow is called reassigning tasks and this procedure together with calculating the optimal flow
is called rescheduling tasks. The overall work flow of Pool is given in Figure 1.

… … … …

Solving MCMF Reassigning tasks

Rescheduling tasks

Figure 1. Work flow in Pool.

4.1. Basic Framework of Flow-Based Scheduling

Flow-based scheduling was first proposed in Quincy [17], in which the mapping
between tasks and hosts is converted to a MCMF optimization problem over a flow network.
A flow network is essential a directed graph G = (V, E), where V and E are the sets of
nodes and arcs, respectively. Each node i ∈ V has a corresponding supply bi and nodes are
called sources or sinks according to whether their supplies are positive or negative. Each
arc (i, j) ∈ E is attached with three attributes, namely unit flow cost cij, upper capacity uij,
and flow fij. Thus, the goal of MCMF problem can be expressed as Equations (7)–(9).

Minimize ∑
(i,j)∈E

cij· fij subject to (7)

∑
k:(j,k)∈E

f jk − ∑
i:(i,j)∈E

fij = bj, ∀j ∈ V (8)

0 ≤ fij ≤ uij, ∀(i, j) ∈ E (9)

When applying it in scheduling scenarios, nodes can be seen as tasks or computation
facilities while arcs are used to express the placement preferences of tasks and capacity
constraints of hosts. A feasible path from task i to host h means that task i can be assigned
to host h. In general, flow-based scheduling has four main steps: (1) constructing the
network; (2) setting the parameter values of nodes and arcs; (3) solving the MCMF problem
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to obtain the optimal flow f ; (4) extracting the deployment decisions based on f and some
heuristics rules.

A typical flow network for task scheduling includes at least two kinds of nodes,
namely task nodes and hosts nodes. In this situation, task nodes are sources and host
nodes are sinks. In our scheduler, we introduce a virtual node t as the unique sink node.
Additionally, task aggregator nodes TA, host aggregator node HA, data center node X and
edge node Y are also adopted to reduce the total number of arcs. Tasks belonging to the
same TA should share the similar resource requirements, communication patterns, and
located regions of their corresponding users. Similarly, hosts belonging to the same HA
should have the comparable resource capacities. Network structure in Pool is illustrated in
Figure 2.

t

Figure 2. Network structure in Pool.

After determining the structure of network in Pool, we need to set supply value bi
for node i, cost vaule cij, and upper capacity uij for arc (i, j). Since tasks and hosts are all
highly heterogeneous, it is improper to set bi at 1 just as Quincy and Firmament. In this
paper, CPU is considered as the dominated resource type. bi is set according to how many
CPU cores task i requires. uij is set based on the total number of CPU cores on node j. Only
arcs from HA to X or Y has nonzero cij and this value is used to express the corresponding
communication cost.

By saving the above information about nodes and arcs in a DIMACS [36] file, MCMF
algorithms can be adopted to solve such a network optimization problem. The final task
assignment decisions can then be extracted from the generated optimal flow f .

4.2. Obtaining Optimal Flow Incrementally

Suppose optimal flow f τ and the corresponding task assignment solution F τ have
been obtained at time τ. We need to recalculate the optimal flow f τ+1 at time τ + 1
before rescheduling the tasks. If the status of merely a small proportion of tasks or hosts
changes, solving the MCMF problem incrementally using past information may be more
time-efficient compared to solving the problem from draft. In this part, we mainly detail
how to solve MCMF problem incrementally.

4.2.1. Changes of Tasks and Hosts

In general, the changes of tasks can be categorized into five types: (1) some new tasks
are added; (2) some existing tasks are deleted; (3) resource requirements of some tasks
change; (4) communication patterns of some tasks change; and (5) users of some tasks
move to other regions.

For type 1, there are also two different cases. If the newly added task matches with
some existing task aggregator, we only need to create a new task node and add a new arc
from this task node to the corresponding task aggregator node. Otherwise, we need to
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create both a new task node and a new task aggregator node. In this case, |C|+ |E| arcs
are created from the newly generated task aggregator node to all data centers and edge
nodes. Situation in type 2 is simpler compared to that in type 1, where we only need to
delete the task node and the corresponding arc. Figure 3 shows an example of adding a
new task T3 and deleting an existing task T4. For T3, it cannot match with any existing task
aggregators, thus a new aggregator is also created. Since aggregator TA3 has only one task
T4, it is deleted together with T4.

t

Newly 

Added

Deleted

Figure 3. Influences of changing tasks on the network structure.

When the resource requirements of some tasks change in type 3, the supply values of
related nodes should be modified accordingly. To maintain the mass balance constraint in
such a MCMF problem, supply value bt of the sink node must also be modified.

As for type 4 and 5, they show similar characteristics. In this case, the task node
may match with another existing or a newly created task aggregator node. Some old arcs
are deleted and some new arcs are created. Moreover, cost value cij of some arcs may
also change.

Changes of hosts are similar to that of tasks. For example, hosts can be added or
deleted and their resource capacities can also be modified. In this case, some nodes are
added or deleted and upper capacities uij of some arcs are also modified.

4.2.2. Solving MCMF Incrementally

As stated in Section 4.2, influences of the changes of tasks and hosts on the flow
network can be summed up as 7 types: (1) nodes are added; (2) nodes are deleted; (3) supply
values bi of some tasks change; (4) arcs are added; (5) arcs are deleted; (6) cost values cij of
some arcs change; and (7) upper capacities uij of some arcs change.

Generally, algorithms on MCMF problems can be categorized into three types, namely
primal, dual, and primal–dual methods [37]. Primal methods, such as cycle cancelling [38]
and network simplex [39], try to reduce the overall cost on all arcs by increasing flow along
the negative cost loops iteratively. During the process, feasibility of flow f in each iteration
is ensured while the optimality is continuously improved until no negative cost loop can be
found. On the contrary, dual methods, such as relaxation [40] and successive shortest path [41],
optimize the dual problem iteratively based on Lagrangian duality. Optimal flow f can
be obtained by keeping the so-called complementary slackness optimality. In this process,
reduced cost optimality is maintained while feasibility is improved. Cost scaling [42] is a
typical primal-dual method, which has been seen as the most efficient MCMF algorithm.
During iterations, both feasibility and optimality are maintained by introducing a new
concept called ε-complementary slackness optimality.

Since changes on the network usually take place locally, the solving process can
be significantly accelerated when MCMF problems are solved incrementally. As stated
above, different kinds of algorithms should keep some specific features during an iteration.
For primal and primal–dual methods, the feasibility of flow should be ensured in each
iteration. On the contrary, complementary slackness is maintained in dual algorithms. As
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these features are always destroyed after changing the network, these features need to be
restored first before reoptimizing the problem. In general, three steps are needed when
solving MCMF problems incrementally, namely (1) updating network and the associated
data structures; (2) restoring the features of algorithms; and (3) reoptimizing.

Time performance about these algorithms has been studied widely and cost scaling
(CS) and network simplex (NS) are recognized as the two most efficient algorithms [37]. To
have a more complete analysis, relaxation algorithm together with CS and NS are discussed
in detail. In relaxation, flow is increased along an augmenting path to improve the feasibility
of f . Destruction on complementary slackness can be easily restored by adjusting flow.
In CS, feasibility is maintained and flow f is improved by scaling down ε, which can
be seen as the error. The smaller ε is, the faster CS executes. However, ε may change
significantly even if only a few arcs change. Experiments in Hapi [43] show that runtime
of CS is unpredictable with large variance. In NS, a tree data structure is adopted which
can be used to preserve past information. To solve problems incrementally, changes on
network need to be reflected on the modification the tree.

Time performance on solving MCMF problems incrementally has been verified in
Firmament [18], where only CS2 (a version of CS) and RelaxIV (a version relaxation) were
compared. In this paper, CS2, RelaxIV and network simplex are all implemented and
compared. In our experiments, the numbers of tasks and hosts are set at 3200 and 1000,
respectively. Percentage of changed tasks and hosts increases from 0.001 to 0.2 with a step
of 0.001. Experiment results depicted in Figure 4 show that runtime of RelaxIV and NS is
proportional to the percentage of changed nodes and arcs. When the percentage is relatively
small, significant speed-up can be obtained. Compared to RelaxIV, runtime of NS has a
much lower growth rate. As a contrast, although CS has the best time performance when
solving MCMF problems from draft, its incremental runtime is un-deterministic with big
variance. Surprisingly, its runtime is even longer when only 0.1% of tasks and hosts change.
This can be attributed to that some extra operations are needed to adjust corresponding
data structures in CS2 before executing reoptimization. Thus, CS2 is not a good choice
for the acceleration of solving MCMF problems incrementally. In Pool, NS is adopted to
reschedule tasks iteratively.
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4.3. Reassigning of Tasks

After obtaining the optimal flow f τ+1, task assignment solution F τ+1 at time τ + 1
is then extracted from it. However, as different solutions can be extracted from the same
flow, it will result in a great number of migrations if the assignment solution F τ at time τ
is not considered. In this part, we will introduce how to reassign the tasks based on both
the optimal flow f τ+1 and the assignment solution F τ at time τ. The detailed procedures
are presented in Algorithm 1.

Algorithm 1: Rescheduling of tasks in Pool

Input:
The optimal flow f τ+1 at time τ + 1
The assignment solution F τ at time τ

Output:
Assignment solution F τ+1 at time τ + 1

1 sortTasksByMigraCost()
2 unScheList.clear()
3 for task t in T do
4 if t.isAssigned then
5 h = getAssignment(t,F τ)
6 else
7 unScheList.push_back(t)
8 continue
9 end

10 if ! h.isDeleted then
11 if hasFeasibleFlow(t, h, f τ+1) then
12 setAssignment(t, h,F τ+1)
13 updateFlow(t, h, f τ+1)

14 else
15 if hasEfficientResource(t, h, F τ+1) then
16 c_migra = getMigrationCost(t)
17 c_curr = getCurrentCost(t)
18 c_mini = getMinimumCost(t)
19 if c_migra ≥ c_curr− c_mini then
20 setAssignment(t, h,F τ+1)
21 updateFlow(t, h, f τ+1)

22 else
23 t.isAssigned = False
24 unScheList.push_back(t)
25 end
26 else
27 t.isAssigned = False
28 unScheList.push_back(t)
29 end
30 end
31 else
32 t.isAssigned = False
33 unScheList.push_back(t)
34 end
35 end
36 extractAssignSolution(unScheList, f τ+1)
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As tasks are processed sequentially when determining their assignments based on the
optimal flow, tasks with larger migration cost should be considered first. In our algorithm,
we first calculate the migration cost of each task based on Equation (2), and then sort
all tasks in a descending order. Each task has an attribute called isAssigned to indicate
whether this task has been assigned to some host at time τ. For a newly added task, this
value is set at false. There exists two ways to express the migration cost of task i. On
the one hand, a new arc from task i to its corresponding host h can be added to indicate
the preference of task i for staying in h. However, it can increase the complexity of flow
network markedly. On the other hand, the migration cost of task i can be calculated and
taken into consideration when assigning tasks based on optimal flow f . In this case, the
structure of flow network needs not to be modified. In Pool, the second strategy is adopted
for simplicity.

For task t which has been assigned at time τ, if its corresponding host h is deleted
at time τ + 1, it must be migrated to other hosts and its value of isAssigned is reset at
false. Otherwise, we need to justify whether there exists a feasible path between the
corresponding task node of t and host node of h in f τ+1. If true, it means that assigning t to
h confronts to the optimal flow and incurs the least communication cost. In this case, the
assignment of t keeps unchanged and the optimal flow f τ+1 is updated.

However, the non-existence of feasible path between t and h does not mean that task t
must be migrated. On the one hand, the reason may be that host h can provide adequate
resources while assigning t to some other hosts may incur smaller cost. On the other hand,
it can be attributed to that h cannot provide enough resources to process t due to resource
competition from other tasks. For the first situation, we need to further verify whether the
gain obtained from migrating t can make up the migration cost of t. Communication cost
of current assignment and the migration cost for task t can be easily calculated based on
Equations (1) and (2), respectively. To be simplified, the minimum communication cost for
t in all possible assignments is calculated heuristically to obtain the migration gain (see
Lines 14–16 in Algorithm 1). If the gain is less than migration cost, task t is still assigned to
host h. Otherwise, value of isAssigned for t is set at false (see Lines 17–22 in Algorithm 1).
For the second situation, we just need to set isAssigned at false.

After processing all the tasks, those whose value on isAssigned is false are all stored
in list unScheList. At this time, tasks can be assigned in a traditional way without the
consideration of task migration based on unScheList and the updated flow f τ+1 (see Line 35
in Algorithm 1). As this procedure is similar to other flow-based schedulers, it is not
described in detail for simplicity.

4.4. Time Complexity of Pool

In each iteration of Pool, two procedures are needed, namely obtaining the optimal
flow incrementally and reassigning the tasks based on both the newly obtained optimal
flow and the assignments of tasks in the last iteration.

For the first procedure, all the tasks and hosts change in the worst scenario and thus
the time complexity equals to solving MCMF problems from draft. Since network simplex
is adopted as the MCMF solver, the time complexity is O(NM2CU), where N denotes the
number of nodes, M the number of arcs, C the maximum value of arc cost, and U the
maximum value of arc capacity.

In the second procedure, there exists two extreme situations. If all tasks have been
assigned to some hosts in the last iteration (See line 4 in Algorithm 1), the time complex-
ity in this procedure can be denoted as O(|T|· log(|T|)) + |T|· (O(1) + O(|C| + |E|)) =
O(|T|· log(|T|)). Otherwise, the assignments of tasks should be extracted greedily from
the optimal flow, which may incur O(|T|· |H|) time complexity. Thus, the time complexity
of procedure 2 is max(O(|T|· log(|T|)), O(|T|· |H|)).

Considering that M > N > |T| > |H|, the overall time complexity of Pool is
O(NM2CU).
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5. Experiments and Analysis

In this section, performance of Pool is analyzed and evaluated. We mainly focus on
scheduling tasks efficiently when the status of tasks and hosts changes frequently. Thus,
two evaluation indicators are adopted, namely time performance and deployment quality.
Time performance is quantified by the time span between the changing of tasks and hosts
to the completion of task assignments. Deployment quality is expressed by the overall
communication cost of tasks according to Equation (1).

As described in Section 2.2, various algorithms can be adopted to schedule tasks. Since
the superiority of flow-based scheduler has been verified in previous studies [17–19], we
mainly evaluate whether it still works well when the status of tasks and hosts changes
frequently. In the design of Pool, optimal flow f τ+1 is calculated based on incremental
MCMF algorithms and task assignments are determined with the consideration of task
migration cost. This strategy is called Pool_Inc in the latter parts. For comparison, Pool_nInc
is designed, in which f τ+1 is calculated from the draft and tasks are assigned at time τ + 1
based on only the optimal flow f τ+1 and current assignments F τ without the consideration
of task migration cost. For simplicity, Pool_Inc and Pool_nInc are abbreviated as Inc and
nInc, respectively.

5.1. Parameter Settings

In our experiments, Alibaba cluster trace [44] was adopted to generate resource
requirements of tasks, as well as resource supplies of hosts. It consists of 13,654 hosts
and 116,418 tasks, which are highly heterogeneous and rich in runtime information. In this
paper, only number of CPU cores and volume of memory of tasks and hosts were derived
from the trace.

To evaluate the performance of Pool in different problem scales, the numbers of hosts
were set at 13,654 and 1000, which were also called big and small problem scale, respectively.
For each scale, different load levels called Low, Medium, and High were adopted. Details
about the number of tasks and hosts are given in Table 1.

Table 1. Workload settings for the experiments.

No. of Hosts
No. of Tasks

Low Load Medium Load High Load

1000 1600 3200 4300

13,654 22,000 44,000 58,000

However, information about network topology of computation nodes and the commu-
nication patters between tasks are not recorded in Alibaba trace. In our experiments, these
values were generated randomly. For parameters α, β, γ, and λ, they were all derived from
a uniform distribution. Considering that skewed distributions with long tails are much
more common in computer workloads, gamma distribution was adopted to generate di
and si for task i.

As migration cost of each task i ∈ T is calculated in Algorithm 1, image size ζi, task size
łi, task life ρi and their corresponding coefficients ω1, ω2, and ω3 should also be set properly
according to Equation (2). Intuitively, tasks with more resource requirements have a large
size of ζi and łi. In our experiments, ζi and łi were set at C1·ψi and C2·ψi, respectively,
where ψi is the required memory size of task i and C1 and C2 are two constants sampled
from N(1, 5) and N(0.1, 1), respectively. Value of ρi was set for task i during iterations.
Values of ω1, ω2 and ω3 were all set at 0.1. Table 2 shows the detailed parameter settings.
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Table 2. Parameter settings for the experiments.

Symbol Value Description

|C| 20 Number of data centers
|E| 100 Number of edge nodes
|R| 100 Number of regions

dτ
i Γ(3, 17) MB Volume of interactive data between user and task i

sτ
i Γ(3, 17) MB Total volume of interactive data for task i

ζi ψi·N(1, 5) Image size for task i
łi ψi·N(0.1, 1) Task size for task i

αrc (50,200) ms/MB Unit transferring cost between region r and datacentre c
βre (10,30) ms/MB Unit transferring cost between region r and edge e
γec (50,200) ms/MB Unit transferring cost between edge e and datacentre c
λkl (50,200) ms/MB Unit transferring cost between datacentre k and l

To evaluate the scheduling performance of Pool, status of some tasks and hosts is
modified. In our experiments, the percentage of changed tasks and hosts increased from 1%
to 100% with step 1%. For a certain number of changed tasks and hosts, three operations
were adopted sequentially, namely adding, deleting and changing tasks and hosts. In the
third operation, besides the resource requirements of tasks and supplies of hosts were
changed, communication patterns of tasks were also modified.

5.2. Experiment Environment

Our experiments were implemented and analysed on Ubuntu 20.04 LTS in a computer
with Intelr i7-7700 8 core CPU (3.60 GHz), and 16 GB RAM. Scheduler Pool was written
in C++ and a open source MCMF algorithm library called MCFClass [45] was adopted to
obtain the optimal flow. All our experiments were carried out in a simulation environment.

5.3. Time Performance

Considering the frequent changes of the status of tasks and hosts, scheduler should
give the approximate optimal assignment decisions as soon as possible. Thus, time perfor-
mance is an important evaluation metric. In each time step, two procedures are required
before obtaining the assignments, namely solving the new MCMF problem and extracting
assignments from the generated optimal flow. In this part, runtime consumed in both the
procedures is discussed.

5.3.1. Time in Solving MCMF Problem

Figure 5 depicts the runtime of solving MCMF problems using NS when the numbers
of hosts were set at 1000 and 13,654 in different load levels. Figure 5a presents the exper-
iment results when setting the number of hosts at 1000. When solving MCMF problems
incrementally, runtime of NS is proportional to the percentage of changed tasks and hosts
in all three load levels. The larger the load level, the bigger the growth rate of runtime. This
is obvious since more tasks are changed for a certain percentage. On the contrary, runtime
of solving MCMF problems from draft increases very slightly, which can be attributed to
the polynomial time complexity of NS. At the same time, its variance is very big especially
in high load level (4300 tasks). The reason may be that the initial feasible tree adopted in
NS algorithm has a great impact on the successive iterative efficiency. Similar conclusions
can be obtained when setting the number of hosts at 13,654 in Figure 5b.
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Figure 5. Runtime of NS when solving MCMF problems incrementally in different load levels. In
the legends of figure, number denotes how many tasks are considered, and nInc or Inc indicates the
corresponding MCMF problem is solved from draft or incrementally, respectively. (a) 1000 hosts.
(b) 13,654 hosts.

To evaluate the improvement on time performance quantitatively, Figure 6 presents the
speed-up of solving MCMF problems incrementally compared to solving them from draft.
It can be found that the highest speed-up can be obtained when only very few tasks and
hosts change. However, it decreases rapidly as the change percentage grows. Still, the value
of speed-up is greater than 1 even when all tasks and hosts are modified. In general, there
seems to be no significant difference between different load levels in both host settings. As
we compare Figure 6a,b horizontally, bigger speed-up can be obtained in a bigger problem
scale (13,654 hosts) when the percentage is less than 10%. It means that solving MCMF
problems incrementally using NS is well suited for large scale scheduling problems.
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Figure 6. Speed-up of solving MCMF problems incrementally compared to solving them from draft.
(a) 1000 hosts. (b) 13,654 hosts.

5.3.2. Time in Reassigning Tasks

Runtime of assigning tasks based on the generated optimal flow is given in Figure 7.
Figure 7a shows the results when setting the number of hosts at 1000. It can be found that
time used to assign tasks in Inc is proportional to the percentage of changed tasks and hosts
in all three load levels. The larger the number of tasks, the bigger the slope of growth. On
the contrary, runtime of assigning tasks in nInc increases very slightly. In general, Inc is
much faster than nInc especially when only a small proportion of tasks and hosts change.
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Figure 7. Runtime of assigning tasks based on the generated optimal flow. (a) 1000 hosts.
(b) 13,654 hosts.

However, situation seems to be much different in Figure 7b. Firstly, we can observe
that the difference between Inc and nInc is much smaller. Moreover, after changing certain
percentage of tasks and hosts, 18%, for example, when number of tasks is set at 5800,
assigning tasks incrementally is even slower. In fact, only constant time complexity is
introduced in Inc compared to nInc , except that a sort procedure with time complexity
|T|· log(|T|) is needed in Inc (See lines 1 in Algorithm 1). This extra overhead can, thus,
reduce the overall gains of Inc when the value of |T| is very large.

To evaluate the time performance quantitatively, speed-up of assigning tasks incre-
mentally is given in Figure 8. In can be found that speed-up when setting the number of
hosts at 1000 in Figure 8a is greater than 1 for all three levels with less than 20% changed
tasks and hosts. However, assigning tasks incrementally consumes more time compared
to the traditional method. This means that assigning tasks incrementally is only suitable
when only a small proportion of tasks change.
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Figure 8. Speed-up of assigning tasks incrementally. (a) 1000 hosts. (b) 13,654 hosts.

Both of the two procedures of solving MCMF problem and reassigning tasks are
required in each time step. Figure 9 presents the overall time performance of Inc and
nInc in different problem scales and load levels. We can find that Inc has the better time
performance in all cases especially when the changing percentage is relatively small. For
example, Inc is almost 5.8 times faster than nInc (0.21 s to 1.22 s) when the numbers of tasks
and hosts are set at 4300 and 1000, respectively, and the change percentage is set at 1%.
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Figure 9. Runtime of scheduling tasks. (a) 1000 hosts. (b) 13,654 hosts.

5.4. Deployment Quality

To evaluate the deployment quality of all tasks in each scheduling cycle, average
scheduling cost gτ/|T| of all tasks is recorded. As depicted in Equation (3), scheduling cost
of a task can be divided as communication and migration cost, which can be calculated
according to Equations (1) and (2), respectively.

The average scheduling cost of all tasks is given in Figure 10. For all three load levels
and two settings of hosts, the value of scheduling cost increases with a big variance as the
percentage grows. This can be attributed to the randomness when changing tasks and hosts.
For example, adding and deleting of some tasks with large amount of resource requirements
and high communication strength have a huge impact on the overall communication cost.
However, for a certain load level and changing percentage, we can observe that average
scheduling cost of Inc is slightly bigger than that of nInc. The reason for this phenomenon
is that migration cost of tasks is not considered in nInc. As shown in Equation (3), we
should minimize the sum of communication cost and migration cost of all tasks.

To study the impact of migration cost on the overall deployment quality, the number
of migrated tasks are given in Figure 11. We can observe from both subgraphs that more
tasks are migrated with the increase in changing percentage. For all load levels, the number
of migrated tasks in Inc are much smaller than that in nInc, especially when status of a
big proportion of tasks and hosts are modified. As some tasks are not assigned based on
the optimal flow (See lines 15–25 in Algorithm 1), results in Figure 11 show why Inc has a
better performance on the deployment quality of all tasks.

0 20 40 60 80 100

Percentage of changed tasks and hosts

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

A
v
er

ag
e 

sc
h
ed

u
li

n
g
 c

o
st

 o
f 

al
l 

ta
sk

s

1000 hosts

1600_nInc 3200_nInc 4300_nInc 1600_Inc

3200_Inc 4300_Inc

0 20 40 60 80 100

Percentage of changed tasks and hosts

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

A
v
er

ag
e 

sc
h
ed

u
li

n
g
 c

o
st

 o
f 

al
l 

ta
sk

s

13654 hosts

22000_nInc 44000_nInc 58000_nInc 22000_Inc

44000_Inc 58000_Inc

(a) (b)

Figure 10. Average scheduling cost of all tasks. (a) 1000 hosts. (b) 13,654 hosts.
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Figure 11. Number of migrated tasks. (a) 1000 hosts. (b) 13,654 hosts.

6. Conclusions and Future Work

In this paper, we mainly focus on the efficient scheduling of simulation tasks in a
collaborative cloud and edge environment, especially when the status of tasks and hosts
changes frequently. We present a new scheduler called Pool and the main goal of Pool is to
minimize the overall communication cost and migration cost of all tasks in a reasonable
time span.

Firstly, such a combinational optimization problem is formulated as a MCMF problem
by relaxing some constraints and network simplex is adopted as the solver. When the status
of tasks and hosts changes, the corresponding MCMF problem is also modified. To improve
the time performance of Pool, MCMF problem is solved incrementally by utilizing the past
information. Moreover, tasks are rescheduled heuristically with the consideration of both
past assignments and task migration cost. Extensive simulation experiments are conducted
based on Alibaba cluster trace and the results show that Pool can efficiently accelerate the
solving process of MCMF problems especially when the proportion of changed tasks and
hosts is relatively small. At the same time, the number of migrated tasks can be minimized
without increasing the overall communication cost. In the future, we plan to implement
Pool in a real simulation scenario to verify its effectiveness.
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