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Abstract: Scouring can reduce the strength and rigidity of the pile–soil system and become one of the
major causes for the failure of the structure of the partially-embedded single pile. The stratification of
the soil fields has a significant influence on the internal force and deformation of laterally-loaded
piles. A dynamic model of the laterally-loaded single pile in layered soil is established employing
Hamilton’s principle based on the modified Vlasov foundation model. Then, the finite difference
method is used to obtain the numerical matrix containing the control equations of the single pile to
achieve accurate modeling of the soil–structure interaction (SSI) system affected by scouring, so as
to solve the natural frequencies of the single pile. Green’s function method obtains the analytical
solution of the forced vibration of the single pile. The effects of scouring and the layered soil on the
dynamic response of the single pile are studied by numerical calculation and parameter analysis.
It is shown that the dynamic model of the partially-embedded single pile in layered soil based on
the modified Vlasov foundation model can accurately predict the dynamic characteristics of pile
foundation affected by scouring. As the scouring degree intensifies, the first-order natural frequencies
of the single pile in layered soil decrease significantly. The subgrade reaction coefficient of each layer
of soil in the modified Vlasov foundation model decreases, and the shear coefficient increases. The
first-order natural frequencies of the single pile at each scour level increase with the increase in the
thickness of the underlying soil. When the elastic modulus of the first layer of soil is increased by one
time, the first-order natural frequencies of the single pile are increased by about 20%.

Keywords: partially-embedded single pile; layered soil; modified Vlasov foundation model; scour
effect; finite difference method; Green’s function method

1. Introduction

As a common form of deep foundation, pile foundations are usually used in bridges,
pile foundations of the abutment, and hydraulic structures. They are often subjected to
horizontal loads such as wind, waves, traffic, and earthquakes. Existing studies have
shown that scouring reduces the strength and stiffness of the pile–soil interaction system
and becomes one of the significant causes of structural failure [1–3]. Lin et al. proposed
a simplified method to evaluate the effect of scour-hole dimensions on the response of
laterally-loaded piles in the sand [4]. Zhang et al. studied the effects of stress history, scour
depth, scour width, and scour-hole slope angle on the response of laterally-loaded piles in
soft clay [5].

Due to the requirement of lateral load-bearing of pile foundations, the dynamic
research of laterally-loaded piles has become a hot issue [6]. Scholars at home and abroad
have conducted extensive studies on the dynamic characteristics of single piles under
horizontal loads. Their theoretical models can be classified into the Continuum model,
finite element or boundary element model, and Winkler foundation beam model. Using the
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continuum model, Poulos analyzed the deflection of piles in clay under a quasi-static cyclic
load [7]. Based on the coupling of finite element method and boundary element method,
Millán et al. studied the dynamic response of pile support structure under harmonic
excitation [8]. Using the linear elastic Winkler foundation model, Novak analyzed the
dynamic response of a single pile in the frequency domain [9].

For the study of the dynamic response of the partially-embedded single pile, it is criti-
cal to simulate the effect of the soil–structure interaction accurately. The Vlasov foundation
model not only overcomes the shortcomings of the Winkler model that cannot show the
shear characteristics of the foundation, but is also developed from the elastic half-space
model, reducing the complexity of the half-space model, and has a complete theoretical
basis [10]. Vallabhan correlated the elastic foundation parameters with the attenuation
parameters and proposed a modified Vlasov foundation model [11]. Based on the modified
Vlasov foundation model, Das and Sargand obtained the equation of displacement of
laterally-loaded piles under dynamic load [12]. Since most of the soil fields in the project
are layered, the physical properties of the soil fields that change with the buried depth have
a significant impact on the mechanical properties of the pile foundation. Using the Mindlin
integral equation, Pise numerically solved the horizontally-loaded pile in the two-layer
homogeneous isotropic elastic foundation [13]. Basu et al. analyzed the elastic solution of
horizontally-loaded piles in layered soil [14].

The numerical method Is the simplest way to solve the dynamic response of pile
foundations in complex sites, and the results are accurate [15,16]. For the evaluation of the
seismic behavior of the foundation system, M. Zucca et al. have conducted different types of
non-linear numerical analysis, taking into account the soil–structure interaction effects [17].
Using the finite difference method, Bao et al. analyzed the effect of the soil–structure inter-
action on the natural frequencies of partially-embedded single piles [18]. Compared with
fully-embedded single piles, the boundary conditions of partially-embedded single piles in
layered soil are more complicated. It is more difficult to use the method of undetermined
coefficients to solve the function of dynamic response. The above-mentioned finite element
method or boundary element method usually requires much work and often requires
professional software and complex models. Green’s function method has a clear concept
and can obtain an accurate solution of the closed-form of the system, which is especially
important for determining the dynamic response of the pile foundation. Using Green’s
function method, Abu-Hilal obtained the steady-state solution of the Euler–Bernoulli
beam [19]. Foda and Abdul-Jabbar obtained an analytical solution for the forced vibration
of a supported beam [20]. Liang et al. analyzed the dynamic impedance of pile groups in
soft clay and the effect of scouring [21]. Therefore, the combination of the finite difference
method and Green’s function method will effectively solve the dynamic response of the
partially-embedded single pile affected by scouring in the layered soil.

In order to accurately reveal the effect of scouring on the dynamic response of the
partially-embedded single pile in layered soil, a dynamic model of the laterally-loaded
single pile in layered soil is established employing Hamilton’s principle based on the
modified Vlasov foundation model. The numerical matrix containing the control equation
of a partially-embedded single pile is obtained by the finite difference method. The soil–
structure interaction system is modeled accurately by changing the type and number of
units in the process of scouring. Thereby, we can obtain a more accurate natural frequency
of the single pile under common boundary conditions (free-fixed piles and free-free piles)
and analyze the effect of scouring on its dynamic characteristics. Green’s function method
obtains the analytical solution of the forced vibration of the single pile. The effects of elastic
modulus and the thickness of layered soil on the dynamic response of a single pile are
analyzed.
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2. Solving Equations of Motion
2.1. Dynamic Model

Figure 1 shows the analysis diagram of the partially-embedded single pile in the
layered soil with the pile top subjected to the lateral dynamic force P0(t) and the bending
moment M0(t). The physical parameters of the pile are: length L, radius R, elastic modulus
EP, the moment of inertia IP, which l1 is the length of the non-embedded section pile.
As shown in Figure 1a, taking the three-layer soil field as an example, the analysis area
is divided into five layers according to the embedded depth: the first layer is the non-
embedded section; the second, third, and fourth layers are the embedded section; the 5th
layer is the soil section below the pile end; the distance from the bottom of each layer to
the pile top is Hi (i= 1, 2, 3, 4, 5), and H0 = 0. Lame constants of the elastic foundation
are λs =

Esvs
(1+vs)(1−2vs)

and Gs =
Es

2(1+vs)
. Taking the undeformed pile top as the origin O,

the cylindrical coordinate system O− rθz is established. In Figure 1a, ur, uθ , wz are the
radial, tangential, and vertical displacement components of the pile body displacement
along with the cylindrical coordinate system with the central axis of the pile as the z-axis. θ
is the angle between any point and the r axis. The adopted Vlasov model simplifies the
basic equation of the isotropic linear elastic continuum by introducing the constraints of
displacement and stress and reduces the complexity of the half-space model. For simplicity,
modeling and analysis are based on the following assumptions: the pile is slender, vertical
and linear elastic; the soil field is a uniform, isotropic and of linear elastic material; there
is no slippage or detachment at the pile–soil interface; the displacement of the pile body
outside the direction of external excitation is ignored.
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Figure 1. Schematic diagram of the partially-embedded single pile in layered soil: (a) Laterally-loaded
single pile; (b) Analytical model of pile–soil system.

The displacement components of the soil field around the partially-embedded single
pile can ignore the vertical displacement. They can be written as:

ur(r, θ, z, t) = u(z, t)φ(r) cos θ (1)

uθ(r, θ, z, t) = −u(z, t)φ(r) sin θ (2)

wz(r, θ, z, t) = 0 (3)

where u(z, t) is the lateral displacement of the pile, wz is the vertical displacement compo-
nents of the pile body displacement, and φ(r) is the dimensionless function representing
the variation of the soil displacement along the r direction.

Based on the assumption of displacements given in Equations (1)–(3) and the stress–
strain relations, the potential energy of the pile and soil system is given by:
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U =
1
2

∫ ∞

R

∫ ∞

0
[π(λs + 3Gs)u2(

dφ

dr
)

2
+ 2πGs(

du
dz

)
2
φ2]r dr dz +

1
2

∫ L

0
EP IP(

d2u
dz

)

2

dz +
1
2

∫ ∞

L
πR2Gs(

du
dz

)
2
dz (4)

Correspondingly, the kinetic energy of the pile and soil system can be written as:

T =
1
2

∫ L

0
mP(

du
dt

)
2
dz +

1
2

∫ ∞

L
ms(

du
dt

)
2
dz + π

∫ ∞

0

∫ ∞

R
ρs(

du
dt

)
2
θ2r dr dz (5)

where ms and mP are the mass of the soil under the pile and the mass per linear meter of
the pile, respectively, ρs is the density of the soil around the pile.

The sum of work of non-conservative forces such as external force and bending
moment can be written as:

W = P0(t)u(0, t) + M0(t)
du(0, t)

dz
(6)

Substituting Equations (4)–(6) into Hamilton’s principle formulation, we can obtain:

−
∫ t2

t1

4
∑

i=1

∫ Hi
Hi−1

(EP IP
d4ui
dz4 + kiui − 2ti

d2ui
dz2 + mi

d2ui
dt2 )δuidz dt−

∫ t2
t1

∫ ∞
L (k4u5 − 2t5

d2u5
dz2 + m5

d2u5
dt2 )δu5dz dt

+
∫ t2

t1

4
∑

i=1

∫ Hi
Hi−1

∫ ∞
R [π(λsi + 3Gsi)n3(

d2φ

dr2 r + dφ
dr )− 2π(Gsin2 − ρsin1)φr]δφdr dt−

∫ t2
t1
{[EP IP

d3u1
dz3 − 2t1

du1
dz − P0]δu1

∣∣∣
z=0

+
3
∑

i=1

[(
−EP IP

d3ui
dz3 + 2ti

dui
dz

)
δui +

(
EP IP

d3ui+1
dz3 − 2ti+1

dui+1
dz

)
δui+1

]
z=Hi

+
[(
−EP IP

d3u4
dz3 + 2t4

du4
dz

)
δu4 − 2t5

du5
dz δu5

]
z=L

+2t5
du5
dz δu5

∣∣∣
z=∞

+ [EP IP
d2u1
dz2 + M0(t)]δ

du1
dz

∣∣∣
z=0

+
3
∑

i=1
(EP IP

d2ui
dz2 δ dui

dz − EP IP
d2ui+1

dz2 δ
dui+1

dz )

∣∣∣∣
z=Hi

+ EP IP
d2u4
dz2 δ du4

dz

∣∣∣
z=L
}dt

+
5
∑

i=1
2π
∫ Hi

Hi−1

∫ ∞
R ρsiφ

2rdr dz dui
dt δui|t2

t1
+
∫ ∞

L (λsi + 3Gsi)n3dz du5
dz δu5|t2

t1
= 0

(7)

where

ti = πGsi
∫ ∞

R φ2rdr; ki = π(λsi + 3Gsi)
∫ ∞

R (dφ
dr )

2
rdr; mi = mp + 2πρsi

∫ ∞
R φ2rdr; (i = 1, 2, 3, 4)

t5 = πGs4
∫ ∞

R φ2rdr + 1
2 πGs4R2(L ≤ z < ∞);n1 =

∫ ∞
0 (dui

dt )
2
dz; n2 =

∫ ∞
0 (dui

dz )
2
dz; n3 =

∫ ∞
0 ui

2dz

Therefore, the motion equation of the partially-embedded single pile can be obtained

EP IP
d4ui

dz4 + kiui − 2ti
d2ui
dz2 + mi

d2ui
dt2 = 0 (i = 1, 2, 3, 4) (8)

where k1 = 0, 2t1 = 0, m1 = mp.
With boundary conditions:

EP IP
d3u1

dz3 − 2t1
du1

dz
− P0 = 0 (z = 0) (9)

EP IP
d2u1

dz2 + M0(t) = 0 (z = 0) (10)(
−EP IP

d3u4

dz3 + 2t4
du4

dz

)
− 2t5

du5

dz
= 0 (z = L) (11)

k4u5 − 2t5
d2u5

dz2 + m5
d2u5

dt2 = 0 (L ≤ z < ∞) (12)

Collecting the coefficients of δφ for R ≤ r ≤ ∞ in Equation (7), we can obtain:

d2φ

dr2 r +
dφ

dr
− (

γ

R
)

2
φr = 0 (13)
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where

(
γ

R
)

2
=

2(Gsin2 − ρsin1)

(λsi + 3Gsi)n3
=

2[Gsi
∫ ∞

0 (dui
dz )

2
dz− ρsi

∫ ∞
0 (dui

dt )
2
dz]

(λsi + 3Gsi)
∫ ∞

0 u2
i dz

(14)

where i= 1, 2, 3, 4.
The solution to Equation (13) is:

φ(r) =
K0(r

γ
R )

K0(γ)
(15)

which satisfies the boundary conditions at r = R and r → ∞ : φ(R) = 1 and φ(∞) = 0.
K0( ) denotes the modified Bessel function of the second kind of order zero.

It is assumed that the pile is undergoing a steady-state harmonic motion. So let

P0(t) = P0eiωt (16)

M0(t) = M0eiωt (17)

u(z, t) =
{

up(z)eiωt, 0 ≤ z ≤ L
us(z)eiωt, L < z < ∞

(18)

where P0 and M0 are the amplitudes of lateral load and bending moment; ω is the circular
frequency; up(z) and us(z) are the configuration functions of the displacement of the pile
and the soil column below the pile end, respectively.

Substituting Equations (16)–(18) into Equation (8) gives:

EP IP
d4upi

dz4 − 2ti
d2upi

dz2 + (ki −miω
2)upi = 0 (i = 1, 2, 3, 4) (19)

with boundary conditions at z = 0:

EP IP
d3up1

dz3 − 2t1
dup1

dz
− P0 = 0 (z = 0) (20)

EP IP
d2up1

dz2 + M0(t) = 0 (free pile head) (21)

with boundary conditions at z = Hi (i = 1, 2, 3) according to continuity of deformation:

upi − upi+1 = 0 (22)

dupi

dz
−

dupi+1

dz
= 0 (23)

d2upi

dz2 −
d2upi+1

dz2 = 0 (24)

d3upi

dz3 − 2ti
dupi

dz
−
(

d3upi+1

dz3 − 2ti+1
dupi+1

dz

)
= 0 (25)

For free-fixed pile, boundary conditions at z = L are:

up4 = 0 (26)

dup4

dz
= 0 (27)

us(L) = up(L) (28)
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For free-free pile, boundary conditions at z = L are:

d2up4

dz2 = 0 (29)

d3up4

dz3 = 0 (30)

us(L) = up(L) (31)

Solving the differential equation given in Equation (19), with the boundary conditions
us(∞) = 0 and us(L) = up(L), we get the following solution:

us = up(L)e−a(z−L) (32)

where α =
√

k4−m4ω2

2t5
Meanwhile, the attenuation parameter γ can be written as:

(
γ

R
)

2
=

2
4
∑

i=2

[
Gsi
∫ Hi

Hi−1
(

dupi
dz )

2
dz + ρsiω

2
∫ Hi

Hi−1
upi

2
dz
]
+ N

4
∑

i=2
(λsi + 3Gsi)

∫ Hi
Hi−1

upi
2
dz + D

(33)

where N =
(

Gs4α + ρs4ω2

α )u2
p4(L) , D =

(
λs4+3Gs4

2α )u2
p4(L)

2.2. Finite Difference Method

By ignoring the effect of external load and damping, Equation (19) can be rewritten as:

u1
′′′′ + ω2(

−m1

Ep Ip
u1) = 0, 0 ≤ z ≤ l1 (34)

ui
′′′′ − 2ti

Ep Ip
ui
′′ +

ki
Ep Ip

ui + ω2(
−mi
Ep Ip

ui) = 0, –(i = 2, 3, 4), l1 < z ≤ L (35)

Taking free-free pile as an example, the boundary conditions are:

Pile top
{

u1
′′ (0) = 0

u1
′′′ (0) = 0

(36)

Continuous


ui(Hi) = ui+1(Hi)

ui
′(Hi) = ui+1

′(Hi)
ui
′′ (Hi) = ui+1

′′ (Hi)
ui
′′′ (Hi) = ui+1

′′′ (Hi)

(37)

Pile end
{

u4
′′ (L) = 0

u4
′′′ (L) = 0

(i = 1, 2, 3) (38)

The discretization of Equations (34) and (35) using the FDM is performed as [18]

δ4
z u1,n + ω2(

−m1

Ep Ip
u1,n) = 0, 0 ≤ z ≤ l1 (39)

δ4
z ui,n −

2ti
Ep Ip

δ2
z ui,n +

ki
Ep Ip

ui,n + ω2(
−mi
Ep Ip

ui,n) = 0, (i = 2, 3, 4), l1 < z ≤ L (40)

In Equations (39) and (40), the subscript i in ui,n represents the displacements u1 and u2,
u3, u4 of the non-embedded section and the embedded section of the pile and the subscript
n represents the number of nodes in this section and δz is the discretization expression of
the mode shape function, which is derived using the Taylor series expansion [22].
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In the range of l1 < z ≤ L, the second and fourth derivatives of ui(i = 2, 3, 4) can be
written as:

ui
′′′ ′ ≈ ui,n−2 − 4ui,n−1 + 6ui,n − 4ui,n+1 + ui,n+2

∆z4 (41)

ui
′′ ≈ ui,n−1 − 2ui,n + ui,n+1

∆z2 (42)

Considering the virtual nodes u4,b+1 and u4,b+2, from the boundary condition (36)–(38)
we have

z = L : u′′ 4,b =
u4,b−1 − 2u4,b + u4,b+1

∆z2 = 0, (43)

u′′′ 4,b =
u4,b+2 − 3u4,b+1 + 3u4,b − u4,b−1

∆z3 = 0 (44)

Substituting Equations (41)–(44) into Equation (40), we can obtain

([A] + ω2[B]){Ui} = 0 (45)

In Equation (45), A and B are diagonal matrices and {Ui} = [ui,a+1, ui,a+2, . . . ui,b−1, ui,b]
T

(i = 2, 3, 4), where the subscript a is the number of nodes in the non-embedded section,
the subscript b is the total number of nodes in a pile. Substituting Equations (36)–(38) into
Equation (45), the matrix formulation of Equation (45) can be written as:





BBi NNi 1 0 · · · 0
NNi BBi NNi 1 · · · 0

1 NNi BBi NNi
. . . 0

...
. . . . . . BBi NNi 1

0 0 1 NNi BBi NNi
0 0 0 4/3 NNi − 2 BBi + 6


+ ω2



DDi 0 0 0 · · · 0
0 DDi 0 0 · · · 0

0 0 DDi 0
. . . 0

0 0 0 DDi
. . . 0

...
...

. . . . . . . . . 0
0 0 0 0 0 DDi







u2,a+1
u2,a+2
u2,a+3

...
u2,b−1

u2,b


= 0 (46)

where BBi = 6 + ki∆z4/EI + 4ti∆z2/Ep Ip, NNi = −4− 2ti∆z2/Ep Ip(i = 2, 3, 4).
From Equations (36)–(38), we can obtain:

z = 0 : u1
′′ =

u1,0 − 2u1,1 + u1,2

∆z2 = 0 (47)

u1
′′′ =

u1,2 − 3u1,1 + 3u1,0 − u1,−1

∆z3 = 0 (48)

and so
([C] + ω2[D]){U1} = 0 (49)

where C and D are diagonal matrices and {U1} = [u1,1, u1,2, . . . ua−1, ua]
T. In the same

way, substituting boundary condition Equations (36)–(38) into Equation (49), the matrix
formulation of Equation (49) can be obtained as:



1 −2 1 0 · · · 0
−2 5 −4 1 · · · 0

1 −4 6 −4
. . . 0

0 1 −4 6
. . . 1

...
...

. . . . . . . . . −4
0 0 0 1 −4 6


+ ω2



DD1 0 0 0 · · · 0
0 DD1 0 0 · · · 0

0 0 DD1 0
. . . 0

0 0 0 DD1
. . . 0

...
...

. . . . . . . . . 0
0 0 0 0 0 DD1







u1,1
u1,2
u1,3

...
u1,a−1

u1,a


= 0 (50)

where DD1 = −m1∆z4/Ep Ip.
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Considering the continuity condition in Equations (36)–(38), the diagonal matrix of
the system is given by

([E] + ω2[F]){U} = ([E] + ω2[F])



u1,1
u1,2
u1,3

...
u1,a−1

u1,a
ui,a+1
ui,a+2
ui,a+3

...
ui,b−1

ui,b



= 0 (51)

where {U} = [U1, Ui]
T = [u1,1, u1,2 · · · ua−1, ua, ui,a+1, ui,a+2, · · · ui,b−1, ui,b]

T (i = 2, 3, 4)

E =



1 −2 1 0 · · · 0 · · · · · · · · · · · · · · · 0

−2 5 −4 1 · · · 0
. . . . . . . . . . . . . . .

...

1 −4 6 −4
. . . 0 · · · . . . . . . . . . . . .

...

0 1 −4 6
. . . 1 0 · · · . . . . . . . . .

...
...

...
. . . . . . . . . −4 0 1 0

. . . . . .
...

0 0 0 1 NNi BBi 0 NNi 1 0 · · · 0
0 · · · 0 1 NNi 0 BBi NNi 1 0 · · · 0

0
. . . · · · 0 1 0 NNi BBi NNi 1 · · · 0

...
. . . . . . . . . . . . . . . 1 NNi

. . . . . . . . .
...

...
. . . . . . . . . . . . . . . . . . . . . . . . BBi NNi 1

...
...

. . . . . . . . . . . . 0 0 1 NNi BBi NNi
0 · · · · · · · · · · · · · · · 0 0 0 4/3 NNi − 2 BBi + 6



F =



DDi 0 0 · · · 0 0 · · · · · · · · · · · · · · · 0

0 DDi 0 · · · 0 0
. . . . . . . . . . . . . . .

...

0
. . . DDi

. . . 0
...

. . . . . . . . . . . . . . .
...

0
. . . . . . . . . . . . 0

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . DDi 0 0

. . . . . . . . . . . . 0

0 0 0 0 0 DDi 0 0 0
. . . . . . 0

0
. . . . . . . . . 0 0 DDi 0 0

. . . . . .
...

...
. . . . . . . . . . . . . . . 0 DDi 0

. . . . . .
...

...
. . . . . . . . . . . . . . . 0

. . . DDi
. . . . . .

...
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . 0 0
...

...
. . . . . . . . . . . . . . . . . . . . . . . . DDi 0

0 · · · · · · · · · · · · · · · 0 · · · · · · 0 0 DDi


Therefore, we can obtain the natural frequencies of each order of partially-embedded

single piles by letting the matrix determinant Equation (51) be zero.
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3. Green’s Functions for Dynamic Response
3.1. Embedded Section

We can assume that there is a simple harmonic lateral load at the pile top, which can
be written as:

P0(t) = δ(z− z0)P0eiΩt (52)

where δ( ) is the Dirac function, Ω is the frequency of the external excitation. We can let
Ω = ω when calculating the Green’s functions for the dynamic response of the pile. For
the pile top, z0 = 0.

Substitution of Equation (52) into Equation (35) gives:

ui
′′′ ′ + a1ui

′′ + a2ui = bP0δ(z− z0), (i = 2, 3, 4), l1 < z ≤ L (53)

where a1 = − 2ti
Ep Ip

, a2 = ki−miΩ
2

Ep Ip
, b = 1

Ep Ip
.

Using the Green’s function method, the solution of Equation (53) can be written as:

ui(z) =
∫ L

l1
P0(z0)G(z; z0)dz0 (54)

where P0(z0) is the function of the external excitation, G(z; z0) is the Green’s function to be
determined which is the solution of the following formulation:

ui
′′′ + a1ui

′′ + a2ui = bδ(z− z0) (55)

From Equation (55), it is seen that G(z; z0) = U(z; z0). Laplace transformation is
applied to the variable z in Equation (55), we can obtain:

ûi(s; z0) =
1

s4 + a1s2 + a2
[be−sz0 + (s3 + a1s)ui(0) + (s2 + a1)ui

′(0) + sui
′′ (0) + ui

′′′ (0)] (56)

where s = σ + iτ, ui(0), ui
′(0), ui

′′ (0) and ui
′′′ (0) are constants which can be determined

by the boundary conditions. To obtain the inverse transform of ûi(s; z0), we assume that

s4 + a1s2 + a2 =
4

∏
i=1

(s− si). We can get the results of the inverse transform by referring to

the literature [23]:

L−1[
be−sz0

(s− s1)(s− s2)(s− s3)(s− s4)
] = H(z− z0)[A1(z− z0)b + A2(z− z0)b + A3(z− z0)b + A4(z− z0)b] (57)

L−1[ s3+a1s
(s−s1)(s−s2)(s−s3)(s−s4)

] = A1(z)(s1
3 + a1s1) + A2(z)(s2

3 + a1s2) + A3(z)(s3
3 + a1s3) + A4(z)(s4

3 + a1s4) (58)

L−1[
s2 + a1

(s− s1)(s− s2)(s− s3)(s− s4)
] = A1(z)(s1

2 + a1) + A2(z)(s2
2 + a1) + A3(z)(s3

2 + a1) + A4(z)(s4
2 + a1) (59)

L−1[
s

(s− s1)(s− s2)(s− s3)(s− s4)
] = A1(z)s1 + A2(z)s2 + A3(z)s3 + A4(z)s4 (60)

L−1[
1

(s− s1)(s− s2)(s− s3)(s− s4)
] = A1(z) + A2(z) + A3(z) + A4(z) (61)

where H(·) is the Heaviside function, and Ai(z) (i = 1, 2, . . . , 4) are functions specified by

A1(z) =
es1z

(s1 − s2)(s1 − s3)(s1 − s4)
(62)

A2(z) =
es2z

(s2 − s1)(s2 − s3)(s2 − s4)
(63)

A3(z) =
es3z

(s3 − s1)(s3 − s2)(s3 − s4)
(64)
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A4(z) =
es4z

(s4 − s1)(s4 − s2)(s4 − s3)
(65)

From Equation (56), we can obtain:

G(z; z0) = L−1( b
s4+a1s2+a2

e−sz0) + L−1( s3+a1s
s4+a1s2+a2

)ui(0) + L−1( s2+a1
s4+a1s2+a2

)ui
′(0)

+L−1( s
s4+a1s2+a2

)ui
′′ (0) + L−1( 1

s4+a1s2+a2
)ui

′′′ (0)
(66)

Substitution of Equations (62)–(65) into Equation (66) gives the undetermined Green
function G(z; z0)

G(z; z0) = H(z− z0)φ1(z− z0) + φ2(z)ui(0) + φ3(z)ui
′(0) + φ4(z)ui

′′ (0) + φ5(z)ui
′′′ (0) (67)

where φi(z) (i = 1, 2, . . . , 5) are functions specified by

φ1(z) =
4

∑
i=1

Ai(z)b (68)

φ2(z) =
4

∑
i=1

Ai(z)(si
3 + a1si) (69)

φ3(z) =
4

∑
i=1

Ai(z)(si
2 + a1) (70)

φ4(z) =
4

∑
i=1

Ai(z)si (71)

φ5(z) =
4

∑
i=1

Ai(z) (72)

From Equations (62)–(65) and (68)–(72), we can obtain:

φ1
(k)(z) =

4

∑
i=1

si
k Ai(z)b (73)

φ2
(k)(z) =

4

∑
i=1

si
k Ai(z)b (74)

φ3
(k)(z) =

4

∑
i=1

si
k Ai(z)(si

2 + a1) (75)

φ4
(k)(z) =

4

∑
i=1

si
k+1 Ai(z) (76)

φ5
(k)(z) =

4

∑
i=1

si
k Ai(z) (77)

and so

ui(z; z0) = H(z− z0)φ1(z− z0) + φ2(z)ui(0) + φ3(z)ui
′(0) + φ4(z)ui

′′ (0) + φ5(z)ui
′′′ (0) (78)

ui
′(z; z0) = φ1

′(z− z0) + φ2
′(z)ui(0) + φ3

′(z)ui
′(0) + φ4

′(z)ui
′′ (0) + φ5

′(z)ui
′′′ (0) (79)

ui
′′ (z; z0) = φ1

′′ (z− z0)+ φ2
′′ (z)ui(0)+ φ3

′′ (z)ui
′(0)+ φ4

′′ (z)ui
′′ (0)+ φ5

′′ (z)ui
′′′ (0) (80)

ui
′′′ (z; z0) = φ1

′′′ (z− z0) + φ2 ′′′ (z)ui(0) + φ3 ′′′ (z)ui
′(0) + φ4

′′′ (z)ui
′′ (0) + φ5 ′′′ (z)ui

′′′ (0) (81)

Substitution of Equation (67) into Equation (54) gives the response function of the pile
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ui(z) =
∫ L

0 P0(z0)G(z; z0)dz0 =
∫ L

0 P0δ(z− z0)[H(z− z0)φ1(z− z0) + φ2(z)ui(0) + φ3(z)ui
′(0) + φ4(z)ui

′′ (0) + φ5(z)ui
′′′ (0)]dz0

= P0[H(z− z0)φ1(z− z0) + φ2(z)ui(0) + φ3(z)ui
′(0) + φ4(z)ui

′′ (0) + φ5(z)ui
′′′ (0)]

(82)

Correspondingly, the dynamic response function of the embedded pile is given by

ui(z, t) = P0[H(z− z0)φ1(z− z0) + φ2(z)ui(0) + φ3(z)ui
′(0) + φ4(z)ui

′′ (0) + φ5(z)ui
′′′ (0)] cos Ωt, (i = 2, 3, 4) (83)

3.2. Non-Embedded Section

As described in Section 3.1, Equation (34) can be written as:

u1
′′′′ + κu1 = bP0δ(z− z0) (84)

where κ = −m1Ω2

Ep Ip
.

Obviously, the solution of Equation (84) is given by

u1(z) =
∫ L

0
P0(z0)G(z; z0)dz0 (85)

Applying the Laplace transform method for the variable z in Equation (84), we can
obtain:

û1(r; z0) =
1

r4 + κ
[be−rz0 + r3u1(0) + r2u1

′(0) + ru1
′′ (0) + u1

′′′ (0)] (86)

where κ = −m1Ω2

Ep Ip
, r = σ + iτ, and u1(0), u1

′(0), u1
′′ (0), u1

′′′ (0) are constants which can be
determined by the boundary conditions of the pile.

To obtain the inverse transform of û1(r; z0), we assume that r4 + κ =
4

∏
i=1

(r− ri).

G(z; z0) = L−1(
b

r4 + κ
e−rz0) + L−1(

r3

r4 + κ
)u1(0) + L−1(

r2

r4 + κ
)u1
′(0) + L−1(

r
r4 + κ

)u1
′′ (0) + L−1(

1
r4 + κ

)u1
′′′ (0) (87)

From Equation (87), we can obtain:

G(z; z0) = H(z− z0)ψ1(z− z0) + ψ2(z)u1(0) + ψ3(z)u1
′(0) + ψ4(z)u1

′′ (0) + ψ5(z)u1
′′′ (0) (88)

where ψi(z) (i = 1, 2, . . . , 5) are functions specified by

ψ1(z) =
4

∑
i=1

Bi(z)b (89)

ψ2(z) =
4

∑
i=1

Bi(z)ri
3 (90)

ψ3(z) =
4

∑
i=1

Bi(z)ri
2 (91)

ψ4(z) =
4

∑
i=1

Bi(z)ri (92)

ψ5(z) =
4

∑
i=1

Bi(z) (93)

Therefore, the response function of the non-embedded section of the pile is as follows:
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u1(z) =
∫ L

0 P0(z0)G(z; z0)dz0

=
∫ L

0 P0δ(z− z0)[H(z− z0)ψ1(z− z0) + ψ2(z)u1(0) + ψ3(z)u1
′(0) + ψ4(z)u1

′′ (0) + ψ5(z)u1
′′′ (0)]dz0

= P0[H(z− z0)ψ1(z− z0) + ψ2(z)u1(0) + ψ3(z)u1
′(0) + ψ4(z)u1

′′ (0) + ψ5(z)u1
′′′ (0)]

(94)

The dynamic response function of the pile of the non-embedded section is given by

u1(z, t) = P0[H(z− z0)ψ1(z− z0) + ψ2(z)u1(0) + ψ3(z)u1
′(0) + ψ4(z)u1

′′ (0) + ψ5(z)u1
′′′ (0)] cos Ωt (95)

4. Numerical Calculations
4.1. Solution Process

According to the modified Vlasov foundation model, the lateral displacement of a
partially-embedded single pile in a layered soil field can be obtained by iteratively solving
attenuation parameters. The process is shown in Figure 2.
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4.2. Validity of the Present Solutions

In order to verify the validity of the finite difference method, the calculation model of
Prendergast et al. and the model and calculation method of this paper were used to solve
the variation of the first-order natural frequencies of the steel pipe pile with a length of
8.76 m under scouring conditions. The results are compared with the results measured
on-site [16].

As shown in Figure 3, when the pile (free-free pile or fixed-free pile) is analyzed under
the scour conditions, the scour effect is considered by completely removing the entire soil
layer to a certain depth. After scouring, part of the pile body is exposed to the soil surface,
and the pile is treated as partially-embedded. In this paper, the pile is divided into 40 pile
units. There is no pile–soil interaction above the scour depth so they can be regarded as
beam elements. Moreover, they can be regarded as spring-beam elements because of the
pile–soil interaction below the scour depth. In the process of numerical calculation, the
initial pile’s length of the non-embedded section is 2.19 m (scour level is 0), which can be
represented as 10 beam elements and 30 spring-beam elements. The scouring process is
simulated by removing spring supports from top to bottom.
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The physical parameters of the pile and the foundation are shown in Table 1. The
elastic modulus of the foundation is [18]:

Es =
ρsν2

c (1 + νs)(1− 2νs)

1− νs
(96)

where ρs and νs are the soil’s density and Poisson’s ratio, respectively, and νc is the velocity
of the compression wave (213 m/s for sand [18]).

The subgrade reaction coefficient of the model of Prendergast et al. is [24]:

k0 =
1.0Es

1− νs2 [
EsD4

p

Ep Ip
]

1
12

(97)

where Dp is the outer diameter of the pile, and Ep Ip is the flexural rigidity of the pile.

Table 1. Physical parameters of the single pile and foundation during the verification.

Physical Meaning, Symbols and Units Numerical Value

Length of the pile L [m] 8.76
Outer diameter of the pile R [m] 0.17
Inter diameter of the pile r [m] 0.157
Density of the pile ρ [kg/m3] 7.8 × 103

Elastic modulus of the pile EP [MPa] 2.0 × 105

Poisson’s ratio of the pile ν 0.3
Poisson’s ratio of elastic foundation νs 0.3

Density of elastic foundation ρs [kg/m3] 2 × 103

Figure 4 shows the comparison of the first-order natural frequencies of the partially-
embedded single pile under scouring obtained by the model of Prendergast et al., the
method in this paper, and the actual measured dates on-site. Referring to Equation (97),
the subgrade reaction force in the calculation model of Prendert et al. has nothing to do
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with the pile diameter. The first-order natural frequencies of the single pile obtained by
Prendergast et al.’s calculation model have the same trend as the actual measured dates
on-site. The first-order natural frequencies of the single pile calculated by the method in
this paper are closer to the measured dates on-site, and they are highly consistent with the
measured dates on-site within the range of common scour depth (1–3 m). The results of the
calculation model in this paper can more effectively predict the dynamic characteristics of
partially-embedded single piles under the scouring action.
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The displacement curve of the single pile with pile diameter d = 0.3 m, slenderness
ratio λ = 10, dimensionless frequency a0 = 0.3 is calculated by using the proposed model
and the model presented by the literature [25], which assumes that the pile has a fixed end
and a pile top with a constrained angle. The calculation results are compared with the
results given by the literature [25] and demonstrated in Figure 5. It can be seen from Figure 5
that the calculation results in this paper are basically consistent with the literature [25],
which verifies the validity of Green’s function method in this paper.

Appl. Sci. 2022, 11, x FOR PEER REVIEW 15 of 23 
 

0 1 2 3 4 5
0

10

20

30

40

fir
st

-o
rd

er
 n

at
ur

al
 fr

eq
ue

nc
y 

(H
z)

Scour depth (m)

Literature[16]
Literature[18]
first-order natural frequencies calculated with this paper

 
Figure 4. Comparison of the first-order natural frequencies calculated by the finite difference 
method with the measurement result by Prendergast et al. [16,18]. 

The displacement curve of the single pile with pile diameter =0.3m d , slenderness 
ratio =10λ , dimensionless frequency 0 =0.3a  is calculated by using the proposed model 
and the model presented by the literature [25], which assumes that the pile has a fixed end 
and a pile top with a constrained angle. The calculation results are compared with the 
results given by the literature [25] and demonstrated in Figure 5. It can be seen from Figure 
5 that the calculation results in this paper are basically consistent with the literature [25], 
which verifies the validity of Green’s function method in this paper. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

u(
z)

/u
(0

)

Depth of embedment (m)

 Literature[22]
 Green's function method in this paper

 
Figure 5. Comparison of pile displacement calculated by Green’s functions method and the litera-
ture [22,25]. 

5. Parameter Analysis 
5.1. Effect of Scour Depth 

In this section, the effect of scour depth on the dynamic response of the partially-
embedded single pile in layered soil is analyzed. Table 1 shows the physical parameters 
of the single pile and the layered soil required for the calculation. In the calculation, the 
partially-embedded single pile passes through the three-layer foundation. The geological 

Figure 5. Comparison of pile displacement calculated by Green’s functions method and the litera-
ture [22,25].



Appl. Sci. 2022, 12, 1504 15 of 21

5. Parameter Analysis
5.1. Effect of Scour Depth

In this section, the effect of scour depth on the dynamic response of the partially-
embedded single pile in layered soil is analyzed. Table 1 shows the physical parameters
of the single pile and the layered soil required for the calculation. In the calculation, the
partially-embedded single pile passes through the three-layer foundation. The geological
condition from top to bottom is: the first layer is the loose sand layer (Es1 = 10 MPa); the
second layer is the medium sand layer (Es2 = 20 MPa); the third layer is the tight sand layer
(Es3 = 50 MPa). For sand, the Poisson’s ratio is approximately 0.3. The lateral excitation
amplitude of the pile top is P0= 2000 N. The setting of the scouring levels is shown in
Figure 3, with each scouring level separated by 1.095 m.

Table 2 shows the variation of Vlasov foundation parameters and dynamic characteris-
tics of partially-embedded single piles with the scour levels under the boundary conditions
of free-free piles and fixed-free piles. Table 2 shows that the subgrade reaction coefficient
ki of each layer of soil decreases with the increase in the scour levels, while the shear
coefficient 2ti increases with the increase in the scour levels.

Table 2. Effect of the scour on Vlasov foundation parameters and dynamic characteristics of the
single pile.

Type of
Single Pile

Scour
Levels

Distribution of
Soil Layers

Vlasov Foundation
Parameters Dynamic Characteristics of Pile

ki [Nm2] 2ti [Nm2]
Natural

Frequency [Hz]
Amplitude of
Pile Top [m]

Free-fixed
pile

0
l1 30,516,730 931,855

24.75 0.00270l2 61,033,460 1,863,709
l3 152,583,651 4,659,273

5
l1 24,721,884 1,411,277

15.13 0.00663l2 49,443,769 2,822,553
l3 123,609,421 7,056,383

10
l1 / /

10.87 0.01343l2 41,639,243 3,771,832
l3 104,098,106 9,429,580

15
l1 / /

7.72 0.02424l2 40,133,534 3,987,401
l3 100,333,835 9,968,503

Free-free
pile

0
l1 30,140,280 956,033

24.11 0.00330l2 60,280,561 1,912,067
l3 150,701,402 4,780,167

5
l1 24,439,564 1,441,149

14.63 0.00900l2 48,879,128 2,882,297
l3 122,197,820 7,205,743

10
l1 / /

10.47 0.02063l2 41,411,422 3,803,738
l3 103,528,555 9,509,346

15
l1 / /

7.34 0.04313l2 40,015,209 4,004,815
l3 100,038,023 10,012,037

The frequencies of each order of the partially-embedded single pile decrease rapidly
with the increase in scouring levels. The depth of the embedded soil decreases with the
scour process, and the pile–soil interaction effect gradually weakens.

l3 The effect of the degree of scouring on the dynamic response amplitudes of the
partially-embedded single pile in the layered soil fields is investigated in Figure 6. As
shown in Figure 6, the displacement of the pile top of the single pile increases with the
increase in the scour levels. When the scour level reaches 10, that is, the length of the
non-embedded section of the pile satisfies l1 ≥ L/2 (L is the pile length), the response
amplitudes of the pile top of the partially-embedded single pile in the layered soil fields
were greater than 0.01 m, and the single pile has presented lateral instability under dynamic
load [26]. In addition, as the degree of scouring intensifies, the inverted point of the pile
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body moves downward, and the displacement at the inverted point increases gradually.
The response amplitude of the free-free pile top is slightly larger than that of the free-fixed
pile, and the difference between them increases with the increase in scour depth.
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5.2. Effect of Soil Thickness

In the process of parameter analysis, the steel pipe piles in Table 1 are still used. The
setting of the scouring levels is shown in Figure 3. Partially-embedded single piles pass
through the three-layer foundation soil, the elastic modulus is 10, 20, 50 MPa from top to
bottom, and the Poisson’s ratio is 0.3. In order to study the effect of the thickness of the
bottom layer (third layer) of the layered soil fields on the dynamic response of a single pile,
the depth of the first layer of soil is kept constant, and the thickness of the third layer is
changed by changing the ratio of the thickness of the second and third layers of soil, in
order: h1 = 2.19 m, h2 = 3.28 m, h3 = 1.10 m; h1 = 2.19 m, h2 = 2.19 m, h3 = 2.19 m;
h1 = 2.19 m, h2 = 1.10 m, h3 = 3.28 m (hi represents the thickness of the soil layer).

In order to more clearly explore the effect of the thickness of the underlying soil in the
layered soil fields on the dynamic response of the partially-embedded single pile, Table 3
shows the effect of h3 on the first-order natural frequencies and amplitudes of the pile top
of the pile under varied scour levels. It can be seen from Table 3 that the first-order natural
frequencies of the single pile under each scour level increase with the increase in h3. In
addition, as the scour degree intensifies, the natural frequencies decrease significantly, and
the response amplitudes of the pile top increase significantly. When the scour level reaches
10, the lateral instability of a single pile appears.

The variations of the mode shapes of the partially-embedded single pile under varied
scour levels with the change of the thickness of the underlying soil are investigated in
Figure 7. It is shown that the response amplitudes of the pile top of the single pile and the
displacement amplitudes at the inverted point of the pile body decrease with the increase
in the thickness of the underlying soil, regardless of the degree of scour.
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Table 3. Effect of the thickness of the underlying soil on dynamic characteristics of the single pile
under varied scour levels.

Type of Single
Pile

The Thickness of
the Soil Layer h3

[m]
Scour Levels

Dynamic Characteristics of Pile

Natural
Frequency [Hz]

Amplitude of Pile
Top [m]

Free-fixed pile

1.10
0 24.71 0.002720
5 15.03 0.006851

10 10.85 0.013457

2.19
0 24.75 0.002701
5 15.13 0.006631

10 10.87 0.013429

3.29
0 24.83 0.002683
5 15.34 0.006608

10 10.91 0.012976

Free-free pile

1.10
0 24.07 0.003322
5 14.543 0.009181

10 10.419 0.020786

2.19
0 24.11 0.003296
5 14.628 0.009050

10 10.468 0.020628

3.29
0 24.18 0.003271
5 14.632 0.008998

10 10.503 0.019846
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5.3. Effect of Elastic Modulus of Soil

This section analyzes the effect of the elastic modulus of the first layer of soil on the
dynamic characteristics of the partially-embedded single pile. The first layer of soil around
the pile is: mucky soil layer (Es1 = 7 MPa), loose sand layer (Es1 = 10 MPa), silty sand
layer (Es1 = 15 MPa) and medium sand layer (Es1 = 20 MPa), successively. The second
layer is the medium sand layer (Es2 = 20 MPa). The third layer is the tight sand layer
(Es3 = 50 MPa). Table 4 shows the physical parameters of the single pile and layered soil
field required for the calculation.

Table 4. Physical parameters of the single pile and foundation in the parameter analysis.

Physical Meaning, Symbols and Units Numerical Value

Elastic modulus of the first layer of soil Es1 [MPa] 7, 10, 15, 20
Elastic modulus of the second and third layers of soil Es2, Es3 [MPa] 20, 50

Poisson’s ratio of elastic foundation νs 0.3
Thickness of the first, second and third soil layers hi [m] h1 = h2 = h3 = 2.19

Table 5 shows the variation of the first-order natural frequencies of the partially-
embedded single pile and the response amplitudes of the pile top under varied scour levels
with the elastic modulus of the first layer of soil. When the scour level is 10, the first layer of
soil is completely cleared due to scour, so the dynamic characteristics of the single pile are
the same. It can be seen from Table 5 that under each scour level, the response amplitudes of
the pile top decrease significantly with the increase in the parameter Es1, and the first-order
natural frequencies of a single pile increase with the increase in the parameter Es1. For
example: if the elastic modulus of the soil increases by about 0.5 times, one time, and two
times, the first-order natural frequencies of the single pile increase by about 10%, 20%, and
30%, respectively. The subgrade reaction coefficients of the elastic foundation increase with
the increase in the elastic modulus of the soil, and accordingly, the lateral constraint of the
soil field around the pile is strengthened.

Table 5. Effect of the elastic modulus of soil on dynamic characteristics of the single pile under varied
scour levels.

Type of Single
Pile

Elastic Modulus
[MPa] Scour Levels

Dynamic Characteristics of Pile

Natural
Frequency [Hz]

Amplitude of Pile
Top [m]

Free-fixed pile

7
0 22.69 0.00311
5 14.49 0.00673

10 10.87 0.01343

10
0 24.75 0.00270
5 15.13 0.00663

10 10.87 0.01343

15
0 27.20 0.00230
5 15.98 0.00633

10 10.87 0.01343

20
0 28.97 0.00208
5 16.75 0.00597

10 10.87 0.01343

Free-free pile

7
0 22.14 0.00379
5 13.99 0.00904

10 10.77 0.02063

10
0 24.11 0.00330
5 14.63 0.00900

10 10.77 0.02063

15
0 26.46 0.00283
5 15.46 0.00869

10 10.77 0.02063

20
0 28.14 0.00257
5 16.15 0.00828

10 10.77 0.02063
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Figure 8 shows the variation of the mode shapes of the partially-embedded single
pile under varied scour levels with the change of the elastic modulus of the first layer of
soil. Overall, the effect of parameter Es1 on the mode shapes of the pile body is significant.
With the increase in the parameter Es1, the lateral displacement amplitudes of the pile
top of the single pile under each scour level decrease, while the displacement amplitudes
at the inverted point of the pile body increase referring to the detail drawn in Figure 8.
Corresponding to the results shown in Table 5, with the increase in the elastic modulus of
soil around the pile, the lateral constraint of soil around the pile on the pile foundation
increases. The pile-soil interaction effect is enhanced and the lateral deformation of the
partially-embedded single pile is reduced.
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6. Conclusions

A dynamic model of the laterally-loaded single pile in layered soil is established
employing Hamilton’s principle based on the modified Vlasov foundation model. The
finite difference method and Green’s function method are combined to obtain the single
pile’s first-order natural frequencies and dynamic response configuration. Then, numerical
results and discussions are presented to explore the single pile’s dynamic characteristics
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and examine the effects of scouring, elastic modulus, and the thickness of layered soil on
the dynamic response of the partially-embedded single pile in the layered soil fields. The
conclusions are as follows:

1. As the scour degree intensifies, the subgrade reaction coefficient of each layer of
soil in the modified Vlasov foundation model decreases, and the shear coefficient
increases. Furthermore, the first-order natural frequencies of the single pile in layered
soil decrease significantly.

2. When scouring to the length of the non-embedded section of the pile satisfies l1 ≥ L/2
(L is the pile length), the partially-embedded single pile will demonstrate lateral
instability under the action of dynamic load.

3. As the thickness of the underlying soil increases, the first-order natural frequencies of
the single pile under varied scour levels increase. During the response, amplitudes of
the pile top decrease.

4. As the elastic modulus of the first layer of soil increases, the first-order natural
frequencies of the single pile increase, and the response amplitudes of the pile top
decrease significantly, while the displacement amplitudes at the inverted point of the
pile body increase. The elastic modulus of the first layer of soil is increased by about
0.5 times, 1 time and 2 times, and the first-order natural frequencies of the single pile
increase by about 10%, 20%, and 30%.

The model in this paper has certain limitations, such as not considering the slip or
separation phenomenon of the pile–soil interface and nonlinear dynamic analysis. The
pile–soil dynamic response in most sites is particularly complex. As a weak part of the pile
foundation, the pile–soil contact surface is prone to the damage of the soil around the pile
and even the detachment of the contact surface, which leads to the lack of binding force of
the soil and instability of the pile foundation. Therefore, in the future study of the dynamic
response of pile foundations, it is necessary to explore the dynamic characteristics of the
laterally-loaded piles, considering the weakening effect of the contact surface.
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