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Abstract: Statistical methods were traditionally primarily used for time series forecasting. However,
new hybrid methods demonstrate competitive accuracy, leading to increased machine-learning-based
methodologies in the financial sector. However, very little development has been seen in explainable
AI (XAI) for financial time series prediction, with a growing mandate for explainable systems. This
study aims to determine if the existing XAI methodology is transferable to the context of financial time
series prediction. Four popular methods, namely, ablation, permutation, added noise, and integrated
gradients, were applied to a recurrent neural network (RNN), long short-term memory (LSTM), and
a gated recurrent unit (GRU) network trained on S&P 500 stocks data to determine the importance of
features, individual data points, and specific cells in each architecture. The explainability analysis
revealed that GRU displayed the most significant ability to retain long-term information, while
the LSTM disregarded most of the given input and instead showed the most notable granularity
to the considered inputs. Lastly, the RNN displayed features indicative of no long-term memory
retention. The applied XAI methods produced complementary results, reinforcing paradigms on
significant differences in how different architectures predict. The results show that these methods
are transferable in the financial forecasting sector, but a more sophisticated hybrid prediction system
requires further confirmation.

Keywords: time series forecasting; XAI RNN; LSTM; GRU

1. Introduction

Artificial intelligence (AI) is increasingly becoming an integral part of society, and is
applied in fields ranging from finance to healthcare and computer vision [1–3]. However,
there is an inverse relationship between explainability in a system and its predictive
accuracy [4]. Consequently, neural networks and deep learning, which offer the highest
accuracy for tasks such as natural language processing and computer vision, are also the
least interpretable. Equally, their inherent complexity and nonlinear nature enable such
models to learn abstract patterns whilst leading to difficulties in explaining their predictions.
As a result, researchers have classed such methods as being a “black box”, which runs
the risks of perpetuating computer-based discrimination and bias [5]. Furthermore, in the
worst-case scenario, failing to understand how an AI system may function could lead to
physical harm as AI becomes further integrated into society [6]. Recognising the necessity
of explainable AI (XAI) has seen a concerted effort by governments to implement laws
concerning the implementation of explainable prediction systems [7].

Notably, XAI has seen significant use and advancement in computer vision and
natural language processing, since it allows one to contrast how machines and humans
learn. Opaque models, such as neural networks, are those requiring post hoc analyses in
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order to achieve explainability. Such post hoc analyses can further be divided into model-
agnostic and model-specific [8,9]. Currently, the Shapley additive explanations (SHAP)
and local interpretable model-agnostic explanations (LIME) values are foremost choices
when it comes to agnostic XAI methods [10,11]. Practitioners commonly use these methods
to generate counterfactual explanations that describe the necessary changes required in
an input to change a classification [12]. While LIME and SHAP are desirable for their
model-agnostic property, researchers have also observed success among model-specific
XAI methods.

Recent advances in time series XAI methods focus on convolutional neural networks
(CNN) applications. The XCM algorithm developed by Fauvel et al. provides insights
behind feature importance through time and feature attribution maps in various health
data [13]. This algorithm boasts granularity in both global and local explainability and
is based on gradient-weighted class activation mapping (Grad-CAM) [14]. Additionally,
Viton et al. similarly incorporated the use of a CNN to generate heatmaps to describe
feature and time importance surrounding the decline of patients in health datasets [15].
Both methods demonstrate the practicality of CNN in determining feature importance
in deep classification networks. However, these methods prove ineffective for financial
time series forecasting. The methods are either not applicable to time series data or are
directed towards classification algorithms, further highlighting the need for XAI methods
for financial forecasting models. In devising such an algorithm, insight can be gained from
examining XAI methods used in other fields.

Ablation is one of the first local explainability methods used in computer vision. Abla-
tion infers image pixel importance by measuring the change in prediction when removing
information from a region [16]. Similar to LIME, ablation is a local method that explains
a specific prediction for a given input. However, ablation carries the disadvantage that
the size and shape of the ablation pattern may lead to false positive and false negative in
determining importance among features. Furthermore, the ablation pattern may fail to
account for feature interactions [17]. The integrated gradients approach uses backpropaga-
tion of attributions of the image against a blank baseline to improve the ablation method.
Similar to the blanked region in ablation, this baseline means to represent a state of no
information. By noting the change in gradients between the baseline and the standard
input and scaling against the input, it allows the identifications of informative features and,
in doing so, removes the noise generated by the ablation method [18]. In contrast to these
two methods, global explainability methods seek to explain which factors are essential
for all predictions of a given system. The permutation method is such a method where
the relative importance is determined based on the degree of change experienced in all
predictions after single feature values are randomised [19].

Researchers have made less progress in explainable financial time series forecast-
ing despite the diversity and improvement of explainability methods [20]. The slow
progress in XAI research in time series forecasting stems from the previous lack of ne-
cessity, as inherently explainable statistical methods see preferential use over machine
learning methods [21,22]. The delayed uptake of XAI methods in financial forecasting
is apparent when considering the limited recently published methods pertaining to re-
gression rather than classification problems [23,24]. Furthermore, existing time series XAI
methods may not apply to financial forecasting; here, the aim of XAI is often to determine
if models, prone to backtest overfitting, are fitting patterns that are random noise [25].
Among the machine learning techniques for forecasting, practitioners often employ RNN
architectures [26,27]. This preference is because they perform reasonably for sequential
data, despite in many instances being overshadowed by exponential smoothing and au-
toregressive methods [28,29]. However, recent results suggest that an ensemble of purely
deep learning methods provide a more accurate means of prediction, which has led to
an increased usage of neural-network-based forecasting strategies [30,31]. As it stands,
financial time series forecasting lags other fields in explainability in the number of available
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methods and use in industry, making application of these state-of-the-art methods difficult
in conforming to current XAI governance policies [20].

The lack of progress in explainable forecasting raises the question of whether existing
XAI methodologies are transferable to the financial time series forecasting context or if
novel methods are needed. In addressing this question, the research presented here aims to
establish a baseline for XAI in time series forecasting using existing methods in the hope of
guiding future efforts into more accurate and context-specific XAI methods. In doing so,
this study will support the uptake of increasingly accurate “black box” machine-learning
forecasting methods by providing additional means to comply with XAI policies.

This paper explores the feasibility of using established explainability methods, namely
ablation, permutation, random noise, and integrated gradients, within the context of
financial prediction and RNN architectures. Specifically, the baseline RNN, LSTM, and a
GRU form the focus of this study. The results presented here demonstrate that existing XAI
techniques are transferable to financial time series forecasting RNN architectures, providing
insight into how each model makes predictions.

The presented analysis provides evidence for the applicability among existing XAI
methods in financial time series forecasting, providing robust complementary results.
Furthermore, we have outlined an alteration to the random noise method more applicable
to recurrent neural network architectures. Collectively, these results form a baseline for
future research aimed at developing methods specific to explainable time series forecasting
machine learning strategies.

2. Materials and Methods
2.1. Dataset and Processing

We constructed the multivariate time series Tl; f from the daily S&P 500 between
2 December 1984 and 28 May 2021, excluding weekends, spanning l = 9197 days. Each day
contains f = 6 features representing the opening, closing, adjusted closing, maximum price,
minimum price, and volume traded for the day for each asset. Subsequently, the trend
was removed through seasonal and trend decomposition using local regression (LOESS).
The augmented Dickey–Fuller test confirmed if the time series was stationary before it
underwent global normalization [32].

Additionally, as shown in Figure 1, the data were split into training, validation, and
test dataset, where the validation and test datasets constituted the last 400 data points,
split evenly between them. Furthermore, the last 99 values of the training dataset were
prepended to the validation set to allow for the prediction of the first validation value.
The inclusion of the preceding 99 values of the validation set was repeated in the test
dataset to allow for the same predictions.
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Figure 1. The closing price of S&P 500 stocks divided into training, validation, and test datasets.
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2.2. Models

The study used three different recurrent neural network architectures as models to
investigate explainability methods: a standard RNN, a GRU, and an LSTM. Hyperparam-
eters (# hidden states, # layers(cells), dropout and alpha) were optimised using Adam,
minimising the mean-squared error on the validation set [33,34]. As shown in Figure 2,
the networks follow the same general structure. The models used w = 92 time steps as an
input window, representing a financial quarter. The models forecast the closing price ŷ at a
horizon h = 7 days in the future.
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Figure 2. Architecture for each of the three models. Models were initialized with a zero vector (red
region) and provided a series of 92 days of financial data. Nonlinearity was introduced in each
model using the ReLU function prior to the fully connected layer where the dropout was applied
to the LSTM and GRU. The Dropout was applied to the 8, 46, 61, 67, 83, 92, and 123rd values in the
fully connected layer. The same dropout was applied to the GRU with the addition of the 64 and
125th values.

We trained the models for 30 epochs with minibatches of size 3000. After that, we eval-
uated model performance using the symmetric mean absolute percentage error (SMAPE):

2
n

n

∑
i=1

|Yi − Ŷi|
|Yi|+ |Ŷi|

(1)

where Yi is the actual value and Ŷi is the predicted value over n predictions. Despite the
differences in the parameters among the models, the models were comparable in accuracy,
as shown in Table 1.
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Table 1. Hyperparameters and test accuracy for the various RNN architectures.

Model Hidden States Layers (# Cells) Dropout Alpha Test Accuracy (SMAPE)

RNN 64 1 0.000 0.005 1.83
GRU 128 2 0.065 0.010 1.81
LSTM 128 2 0.050 0.008 1.81

2.3. Ablation

Ablation studies use regions of noninformation to determine significant data points
in an input. In RNNs, zeroing of input can be achieved through forward filling with the
average of prior inputs. The rationale for using the average is that an RNN exploits prior
information in the time series. Therefore, replacing a single input value with the average
of the previous cells removes any information supplied by those cells as seen in Figure 3.
A single data point would be ablated and fed into the model, whereby predictions would
be made by sliding over the single ablated feature value (Algorithm 1 and Figure 3). For a
given multivariate time series Tl of length l, a region A exists, which can be ablated at point
p, given that there are w− 1 values that precede the value and an additional w− 1 values
that follow it. It follows the understanding that there must be a sufficient number of entries
preceding the ablated value, whilst still allowing the RNN to slide over the time series,
generating the errors. Specifically, in this study, using models that take in w = 92 values
and have a 7-day forecast horizon(h = 7), A spans the central 108 values. The method
produces w pairwise errors e, calculated by taking the absolute value of the differences
between the ablated and non-ablated predictions as the RNN slides over the ablated data.
The algorithm returns the average percentage pairwise error for all the inputs into the RNN.

Algorithm 1: Ablation Algorithm.
input :A time series Tl, f // length l and features f

: An RNN model (·) l − (w + h) predictions

output :An error matrix EAvg of size w× f
1 ErrorAvg =[ ]

2 ŷ← model(X)

3 for feature in f do
4 EFeature = [ ]

/* Iterate over region A */

5 for i in 1:len (A) do
6 XAblated ← ablate(X, i + 91, feature)

7 ŷAblated ← model(XAblated)

8 e← |ŷAblated − ŷ|
ŷ

/* Concatenate nonzero errors from RNN sliding over ablated value */

9 EFeature ← concat(EFeature, e [i:i + 91])

10 end

11 EAvg[ f eature]← 1
len(A)

∑
j=1
len(A)

E f eature[j]

12 end
13 return EAvg
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Figure 3. Overview of the ablation method on the test dataset. The time series T comprises an
ablation area (orange), a prediction horizon (h), and two flanking regions (yellow) of size w where l is
the sequence length of the RNN models. As the models slides over, T predictions that differ from the
ŷ due to inclusion of the ablated input are noted (red).

2.4. Integrated Gradients

The integrated gradients approach assigns importance to features as attributions. It
achieves this by considering the gradients of an output with respect to its input whilst
desaturating the data to a predefined baseline [18]. A baseline represents a state of no infor-
mation for the model prediction. Gradients that mark a large change in predictive accuracy
are determined and scaled against the input by integrating between the baseline and the
original data. Following the same reasoning used for the ablation method, the baseline
used in the study replaced each value with the average of the previous 91 entries. In doing
so, the model only receives information regarding the average of the previous time step,
thereby receiving no new information other than a trend.

2.5. Added Noise

A variant of random noise was implemented on the trained networks to test which cells
in the network contribute most to predictions. The noisy time series, XNoise, was constructed
by adding 1% noise to all features f iteratively in Tl, f so that following unrolling, the same
cell in the RNN model received additional noise for each prediction (Algorithm 2). This
approach ensured that the added noises were localised to a single position in the RNN
model, whereas the ablation method leveraged the model sliding over the ablation to infer
importance. The calculated SMAPE between the resulting prediction, ŷNoise, and original
prediction, ŷ, inferred the degree to which each cell contributed to the prediction.

2.6. Permutation

This method entails permuting each feature by randomly replacing each value with
another value that preceded it in the time series. Thereby ensuring that the model is not
exposed to any future information when making a prediction. Following the permutation of
a single feature, the SMAPE was calculated between the permuted and original predictions
(Algorithm 3). Each feature was permuted 300 times to account for the stochastic nature
of permutation. A simple linear regression, fitting the one-hot-encoded (OHE) permuted
features to the SMAPE error inferred feature importance. Specifically, the magnitudes of
the regression coefficient determined the feature importance.
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Algorithm 2: Noise Algorithm.
input :A time series Xl; f // length l and features f

: An RNN model (·) l − (w + h) predictions

output :SMAPE error array eDay of size w
1 ecell = [ ]

2 ŷ← model (X)

/* Iterate over each cell in the unrolled RNN model (·) */

3 for each cell in 1:w do
4 XNoise = [ ]

5 for i in 1:l-w-7 do
6 Xtemp = X[i:i+w]

/* Adds 1% noise to all features received by cell */

7 XNoise[i] = Xtemp[cell;] +
Xtemp[cell; ]

100
8 end
9 ŷnoise ← model (Xnoise)

10 eSMAPE ← SMAPE (ŷNoise, ŷ)

11 ecell ← concat (ecell ,eSMAPE)

12 end
13 return ecell

Algorithm 3: Permutation Algorithm.
input :A time series Xl; f // length l and features f

: An RNN model (·) l − (w + h) predictions

output : Importance of each feature to prediction
1 XOHE ← [ ]

2 ŷError ← [ ]

3 ŷ← model (X)

4 for feature in f do
/* Repeated to address stochastic nature of permutation */

5 for i in 1:300 do
6 XPermuted ← permute(X, f eature) // Permute all of X f=Feature

7 ŷPermuted ← model (XPermuted)

8 eSMAPE ← SMAPE (ŷ,ŷPermuted)

9 XOHE ← concat (XOHE, OHE for Feature F)

10 ŷError ← concat (ŷError, eSMAPE)

11 end
12 end
13 OLS← Fit XOHE to ŷError using a simple linear regression

14 Importance← 1
n

OLS
∑ OLS

// OLS refers to the feature coefficients

15 return Importance
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2.7. Hardware and Software

All three models were implemented using the Pytorch(v1.8.1) library within a Python
(v3.8.8) environment [35]. The data were scraped and preprocessed using the pandas-datareader
(v0.80), scipy (v1.6.2) and statsmodel (v0.12.2) libraries, respectively [36,37]. The Captum (0.3.1)
library was implemented with the integrated gradients method [38]. Custom scripts that
incorporated patsy (v0.5.1) and statsmodels generated results for the ablation, permutation,
and noise methods. Visualisation was performed using a combination of matplotlib (v3.3.4)
and seaborn (v0.11.1) [39,40]. A 64-bit system incorporating an Intel Core i7-7700HQ CPU
with 16GB RAM and a NVIDIA Geforce GTX 1050 GPU with 4GB internal RAM performed
the model training and analysis. Due to restrictions in GPU memory requirements, the GRU
and LSTM analysis could only run on the CPU.

3. Results
3.1. Ablation

Ablation can be considered a more straightforward form of integrated gradients: the
technique removes information from a feature, and the change in prediction is measured.
We can then use the magnitude of the predictive error to infer a feature’s importance. If a
feature is noninformative to the prediction, ablating it would fail to produce a large change
in prediction, leading to a near-zero error. Following feature importance, a unifying feature
between models is that the most informative cells lie at the last few inputs (cells 90–92).
Feature importance decays, albeit at different rates, moving backwards through the model.
Specifically, the GRU network considers the most features in making predictions, with most
of the uninformative inputs situated in cells 4–38 as seen in Figure 4. In contrast, the LSTM
shows the least number of informative features, which most are present from the 78th cell.
Interestingly, the RNN presents with an alternating banding pattern of features importance
from the 60th cell onward. Notably, volume was the only feature that showed the smallest
change following ablation in all three models.
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Figure 4. The log percentage SMAPE difference between the ablated prediction and reference
prediction in (A) RNN, (B) LSTM, and (C) GRU neural networks.

3.2. Integrated Gradients

Integrated gradients have become a popular and intuitive method to measure the
correlations between the input features and correct prediction. The magnitude of the
attribution pertains to how strongly the input correlates to the prediction. In contrast,
the sign relates to whether the correlation is positive or negative. A value close to 0
represents a feature with close to no influence on the prediction. In contrast, a high
positive value would suggest that the input feature is positively associated with the correct
prediction. However, in regression, the signs of the attributes represent regions within the
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neural networks responsible for increasing (+) or decreasing (−) the prediction, whilst the
magnitude refers to the scale of change.

There were both commonalities between the models as well as model-specific features.
Notably, the magnitude of the attributions for volume was consistently lower than the
attributions for any other feature in a given day, shown in Figure 5. In addition, all
three models demonstrated their largest magnitudes clustered towards the last inputs.
Interestingly, the patterns of negative attributions presented differently in each model.
The RNN model demonstrated an alternating pattern between positive and negative
attributions, reminiscent of the banding pattern seen in Figures 4 and 6. This result is
contrasted against the LSTM, which had negative attributions localised at the front and the
GRU, with negative attributions in the back half (0–40). Furthermore, the LSTM displayed
fewer negative attributions than the RNN and the GRU. Lastly, it should be noted that the
overall magnitudes found in the GRU model were higher than both the RNN and LSTM,
particularly at the early inputs (cells 0–46).

35

30

25

20

15

10

5

Log 
Attribution

Cell in unrolled network

Figure 5. The absolute log attributions for (A) RNN, (B) LSTM, and (C) GRU neural networks.
Bordered areas represent negative attributions.

Figure 6. The log error introduced after adding 1% of noise at each day.

3.3. Added Noise

To determine which cells, and by extension which days were most important to
the prediction, a defined level of noise (1%) was added to all inputs in a particular cell.
Complementing the ablation results, it is further evidence that almost all the predictive
power lies in the last three (90–92) cells, as seen in Figure 6. Furthermore, the decay of
importance between models is more clearly visible, where the LSTM shows the most
significant decay in importance whilst GRU shows the slowest change. However, it is
interesting to note that the same banding pattern present in the RNN ablation results in
Figure 4 is also present in Figure 6. Notably, the LSTM shows a banding pattern, but to
a lesser extent, between the 87–91th cells. Interestingly, the GRU is the only three to
demonstrate a recovery in the magnitude of the error at cells 0–3.
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3.4. Permutation

The focus of the permutation methods was to determine which feature contributes the
most to the prediction for each RNN architecture. Interestingly, all three models assigned
the lowest priority to the volume of traded stock, whilst there was no single feature with
the highest priority between the three models, as shown in Figure 7. In addition, there
was considerable similarity between feature importance between both GRU and LSTM
networks, suggesting that their optimal predictions require each to consider the remaining
four features equally. However, this is not unexpected considering that the normalised
data for these four features show slight variations. In contrast, the RNN showed the most
differences in where it placed importance in its features. The RNN appeared to emphasise
the adjusted closing price and the opening rather than the high and low price for stocks.

High
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Volume

Adj closed

RNN LSTM GRU
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20.0%

19.47%

3.42%

19.7%

19.24%

17.86%

18.49%

20.34%

4.67%
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Percent of Predicted Error Contributed  

Figure 7. Feature importance derived from permutation method for RNN, LSTM, and GRU

4. Discussion
4.1. Input Importance

Feature importance provides information to model users on where the learned model
focuses when making a prediction. The ablation and integrated gradients methods share
this function but perform this differently, leading to complementary results (Figure 4 and 5).
However, a notable difference is that the integrated gradients method provides a greater
sensitivity than the ablation method since all inputs are assigned an attribution, and the
sign provides additional information. Despite deriving more information from attributions,
it is notable that the results derived from the ablation method are less abstract. Indeed,
the results from the ablations represent the log percentage change in the SMAPE error
following ablation of an input, providing tangible understanding to the results. For in-
stance, the black regions in the ablation results are absent in the integrated gradients
method, showing practically where the regions of nonimportance lie in the input. Notably,
the choice of the baseline is vital as this will considerably alter the results for the integrated
gradients method. Subsequently, this discussion considers the baseline whilst interpreting
the attributions. Given that XAI forecasting is an emerging field, it is uncertain if there is
a better alternative to the baseline used in this study. The conclusions derived from the
integrated gradients method are made cautiously and relative to the baseline.

The RNN demonstrated the most irregularity of the results regarding input importance
compared to the LSTM and GRU (Figures 4 and 5A). Notably, these irregularities presented
as alternating bands of low and high importance. This banding pattern was prevalent
in both the magnitudes and signs of the attributions. By considering both the model
properties and understanding behind attributions, these results suggest that the function of
this pattern is to fine-tune the prediction. The RNN derives most of its meaning from the last
three days of input (cells 90–92), whereby all subsequent inputs alternate between adjusting
the prediction up and down from the moving average, whilst these adjustments decay in
magnitude. This banding pattern is also present in the permuted results (Figure 6). This
behaviour suggests that the RNN is randomly adjusting predictions rather than applying
focus to specific areas in the data, thus supporting the paradigm that RNNs are unable to
learn long-term information. Given this information, the results suggested that the RNN
model could provide comparable performance with a smaller input size.
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The LSTM architecture has successfully demonstrated its ability to learn long-term
patterns in data [41]. Despite this, the LSTM network in this study assigns very little
importance to data preceding the 78th cell. There are a few possibilities that could explain
this. It may signal a lack of memory from the system, or it may reveal that the model is
deliberately forgetting long-term information in order to improve the prediction. The LSTM
ablation errors show similarities with those of both the GRU and RNN. Similar to the RNN,
the LSTM displays a considerable noise surrounding the most recent inputs but lacks a
distinctive banding pattern. Furthermore, the LSTM network demonstrates the spectrum
decay of importance present in the GRU network, particularly between the 76–84th day.
This decay suggests that this LSTM model displays the ability to learn, as this decay signals
the network is retaining past information through the transduction of the cell state through
the network. However, the LSTM long-term memory retention appears to be less critical in
prediction than in the GRU.

A possible reason is that the sequence length (92) may be insufficient for the LSTM
to learn long-term patterns adequately. Given that the LSTM performs better with longer
and more complex sequences, the LSTM may rely more on its granularity in remembering
information when provided a smaller input size [42]. Unlike the GRU, the LSTM can
fine-tune the contents of its memory through the output gate, meaning that the predictive
strength of the LSTM, in this context, is derived from how it applies importance explicitly to
each input rather than long-term patterns. This idea is further supported when considering
the attributions of the LSTM (Figure 5). The LSTM demonstrates the least number of
negative attributions, and they are all localised towards the end of the network meaning
these inputs are critical in reducing the magnitude of the prediction whilst considering
relatively few inputs. Consequently, the LSTM is considering fewer data points of relatively
high importance to adjust the prediction down to the correct level. Interestingly, while the
92nd cell confers most of the information to the prediction, it also is the cell that contains
most of the negative attributions, excluding the open feature. This result implies that
the LSTM functions by primarily considering the opening price, at the 92nd cell, to raise
the prediction whilst considering the remaining features to create an upper ceiling to
the prediction.

The GRU, much like the LSTM, displays the ability to learn long-term patterns; how-
ever, it displays a more simplified architecture [43]. Notably, the GRU in this study demon-
strates evidence of learning long-term patterns as it displays consistently higher errors
throughout the sequence (Figures 4–6). Further supporting the notion of memory in GRUs,
the results demonstrate that the GRU uniquely places greater attention on early network
inputs. Given that GRUs combine the input and forget gate, creating the update gate,
GRUs are only able to act on the entire contents of their memory when remembering
past information [43]. Subsequently, GRUs demonstrate less precision in forgetting past
information compared to LSTM. Therefore, the results suggest the GRU model relies on
remembering more past information while the LSTM leverages its precision in forgetting
past information to achieve comparable levels of accuracy. Interestingly, the GRU assigns
increased importance to the early cells (0–2), suggesting the use of attention in the GRU
in making predictions. This attention shows that the GRU has learned that the start of
a financial quarter confers mores information to the future prediction than what occurs
during the middle portion. Furthermore, when considering the signs of the attributions,
it is clear that most of the attributions increase the prediction, with an initial few inputs
serving to lower the prediction (Figure 5C). The positioning and magnitudes of negative
attributions suggest that the initial inputs, where the GRU places attention, serve as a fine-
tuning mechanism. In contrast, the LSTM remembers less information while considering a
few high importance features to modulate prediction. Interestingly, the magnitudes of the
first and last attributions in the region of negative attribution are smaller than those in the
centre. This observation suggests that the GRU specifies the regions that reduce prediction
when the magnitude of the attribution drops below a specific threshold.
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4.2. Feature Importance

The results show that the volume of traded stocks had little to no effect in the predic-
tions of all three of the models (Figure 7). The potential reason is that volume only refers to
the number of stocks traded within a given day, not necessarily the price. The volume for a
given stock could increase following a spike in stock price, indicating investors’ interest in
buying the stock. Equally, the volume may also increase following the decrease of a stock,
which indicates that investors are selling a given stock following the reduction in stock
price. Consequently, volume taken in isolation does not provide a strong correlation to the
price of a stock at closing.

Notably, all three models are cognisant of the lack of correlation between volume
and closing stock price and have primarily disregarded volume when making predictions
(Figure 7). The GRU and the LSTM place higher importance on volume compared to the
RNN, and by considering the attributions, the reason becomes clear (Figure 5). In the
LSTM, volume importance comes from the negative attributions, whereby 45% of negative
attributions fall in the volume feature. In comparison, the GRU focuses on the first few cells
(0–4), which contain a region of negative attributions present in the volume feature. While
the LSTM uses the most recent inputs to create the upper predictive ceiling, the GRU uses
the most distant inputs, where it places attention for its predictive ceiling. This observation
around attributions and attention may explain why the RNN largely disregards the volume
data: it cannot apply attention in long-term patterns or precisely regulate information
retention. Overall, there are striking similarities between the feature importance for the
GRU and LSTM compared to the RNN. This similarity is present despite the attributions
displaying considerably different modes of prediction (Figure 5). It is unlikely that the
ability to retain long-term information, as seen with LSTM and GRU neural networks, is
responsible given that the RNN shows greater retention than the LSTM (Figures 4 and 6).
Instead, it is more likely that both models lay within the same local minima following
training using the same deterministic seed.

5. Conclusions

The overarching goal of this research was to determine if existing XAI methods
were transferable to financial time series prediction models. All four presented methods
provided complementary results despite testing different aspects of the network, providing
a robust means in understanding how each of the three models came about their prediction.
Collectively, these results provided insight behind where models place importance on input
features and revealed contrasting strategies of prediction fine-tuning between architectures.
These results suggest that the principles that form the basis of the explainability methods
are applicable in financial time series forecasting and can provide an understanding of their
complex architectures. An important limitation of this study is that the methods applied
here were not tested on a comprehensive set of architectures, opting for the three standard
RNN models instead. The performance of these methods may not apply to all deep learning
strategies, as it relies on visualisation to derive meaning. A further limitation is that the
methods may not be a suitable fit for CNNs, which are on occasion employed in the finance
sector [44,45]. Furthermore, whilst the different error metrics provided an understanding
for different aspects of the network, they may not prove intuitive to the average person
seeking to benefit from explainable AI. Given these limitations, the recommendation is that
future studies should expand to see if such methods apply in deep forecasting strategies and
other popular architectures such as CNN. A further recommendation is the development
of less abstract metrics to impart more practical information regarding model mechanisms.
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