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Abstract: An accurate estimation of the state of health (SOH) of lithium-ion batteries is essential
for the safe and reliable operation of electric vehicles. As a single hidden-layer feedforward neural
network, extreme learning machine (ELM) has the advantages of a fast learning speed and good
generalization performance. The bat algorithm (BA) is a swarm intelligence optimization algorithm
based on bat echolocation for foraging. In this study, BA was creatively applied to improve the ELM
neural network, forming a BA-ELM model, and it was applied to SOH estimation for the first time.
First, through Pearson and Spearman correlation analysis, six variables were determined as the input
variables of the model. The actual remaining capacity of the battery was determined as the output
variable. Second, BA was used to optimize the connection weights and bias in ELM to construct
the BA-ELM model. Third, the battery data set was trained and tested with BA-ELM, ELM, Elman,
back propagation (BP), radial basis function (RBF), and general regression neural network (GRNN)
models. Five statistical error indicators, and the radar chart, scatter plot, and violin diagram were
used to compare the estimation effects. The results show that the evaluation function of BA-ELM can
converge quickly and effectively optimize the network model of ELM. The RMSE of the BA-ELM
model was 0.5354%, and the MAE was 0.4326%, which is the smallest among the 6 models. The
RMSE values of the other model were 2.27%, 3.53%, 3.07%, 3.86%, 3.24%, respectively, indicating the
BA-ELM has good potential for future applications.

Keywords: state of health; extreme learning machine; bat algorithm; Pearson and Spearman correla-
tion; actual remaining capacity; neural network

1. Introduction

Because of global warming, environmental pollution, energy shortages, and many
other challenges, electric vehicles are becoming increasingly more popular as a green,
efficient, and sustainable ideal transportation tool [1]. Lithium-ion batteries have become
an ideal power source for electric vehicles because of their high energy density, long cycle
life, and low self-discharge rate [2]. The batteries will age with repeated use, which will
decrease the battery’s charge and discharge capacity and the actual remaining capacity [3,4].
State of health (SOH) is a quantitative indicator used for evaluating the degree of battery
aging. Generally, SOH is defined as the ratio of the actual remaining capacity of the battery
to the rated capacity of the battery [5]. The accuracy estimation of the battery state of charge
(SOC) and the cruising range of the electric vehicle both depend on the accurate estimation
of the battery SOH [6]. In addition, aging batteries are more prone to thermal runaway [7].
Therefore, it is very important to evaluate reliable methods and strategies to accurately
estimate the current remaining capacity and SOH of the battery.

At present, SOH estimation methods mainly include direct measurement-based estima-
tion, model-based estimation, and data-based estimation. The direct measurement-based
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method estimates the battery SOH by measuring the battery’s characteristic parameters,
such as the voltage, current, temperature, and internal resistance. Weng et al. [8] proposed
a method to measure the available battery capacity based on the mapping relationship
between SOC and open-circuit voltage (OCV). However, as the battery ages or the ambient
temperature changes, the SOC and OCV curves must be corrected again. Galeotti et al. [9]
proposed a method for the performance analysis of lithium-ion batteries and SOH estima-
tion through electrochemical impedance spectroscopy (EIS). Although the EIS method can
accurately characterize the battery status, this method can generally only be performed in a
laboratory or under relatively stable conditions [10]. This also limits the use of this method
in real vehicles or in online situations. Significant efforts have been made to study the
model-based method to estimate the SOH and capacity of batteries. A method combining
the Kalman filter and equivalent circuit model (ECM) was developed to estimate the SOH
of lithium-ion batteries [11,12]. Mastali and Li et al. proposed electrochemical models
to describe the lithium-ion diffusion and migration inside a battery [13,14]. This type of
model needs to input a lot of physical and chemical parameters, leading to the need to
solve a series of algebraic equations and partial differential equations. How to balance the
complexity and computational efficiency of this method is worthy of further study. With the
development of artificial intelligence and the Internet, the data-based method has received
increasingly more attention. This method is based on battery laboratory measurements or
actual operating data of electric vehicles to achieve SOH estimation through algorithms,
such as neural networks [15]. Kristen et al. [16] applied machine-learning tools to both
predict and classify cells by their cycle life with the discharge–voltage curves obtained
from the early cycles to determine capacity degradation. The result showed a 4.9% test
error when the first 5 cycles were used for classifying the cycle life. Support vector ma-
chine (SVM) is a widely used machine learning technique [17–19]. Tian et al. reported a
deep convolutional neural network for capacity estimation based on measurements during
charging [20]. Based on the BP neural network, a three-layer BP neural network was trained
to estimate the SOH at a low computational cost [21]. Li et al. [22] proposed a variant
long-short-term memory (LSTM) neural network. An NASA dataset was trained for the
prediction of SOH and remaining service life, and the RMSE of the result was low.

Among the many machine learning methods, ELM has the advantages of a simple
structure and easy adjustment of parameters [23]. Compared with the SVM and BP neu-
ral network models, ELM has a faster training speed, it does not easily fall into local
optimality, and its generalization ability is better [24,25]. Based on a stacked denoising
autoencoders ELM algorithm, Li et al. [26] proposed a big data-driven battery model-
ing method (SDAE-ELM). The battery data extracted from electric buses were used to
validate the effectiveness and accuracy of the model. Wang et al. [27] proposed a novel
robust ELM model to improve the estimation capability. The mean square error (MSE)
in ELM was substituted by a mixture-generalized maximum correntropy criterion. This
method solved the non-Gaussian complex noise interference problem to a certain extent.
Chen et al. [28] proposed a novel metabolic extreme learning machine (M-ELM) framework
to describe the complex battery degradation mechanism that can reflect the latest degra-
dation trend. Ma et al. [29] developed a new broad learning-ELM (BL-ELM). The feature
and enhancement nodes were merged to become the new input layer of the network. This
can provide the benefit of reducing the calculation time. Mariani et al. [30] proposed a
modified biogeography-based approach to optimize ELM for pressure prediction of a spark
ignition single-cylinder engine. The type of activation function, number of hidden layer
nodes, and sparse connection structure were obtained using the new approach. A possible
improvement in ELM design lies in attribute selection instead of using all variables in the
predictive model. Adnan et al. [31] proposed a new hybrid ELM model combined with
grey wolf optimization (WO) and hybrid particle swarm optimization (PSO) for streamflow
prediction. The new model reduced the RMSE in prediction effectively. However, it was
found that the PSOGWO algorithm is not very stable compared with the PSO and PSOGSA
algorithms. Bardhan et al. [32] proposed a novel hybrid of the ELM and adaptive neuro
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swarm intelligence techniques for the determination of the California bearing ratio of soils.
The results of the hybrid model were better than other ELM-based models. To fully utilize
the advantages of different algorithms, the development of a hybrid method for ELM and
other optimization algorithms has become a new research direction.

On the other hand, BA is a swarm intelligence optimization algorithm based on bat
echolocation for hunting [33]. As a metaheuristic algorithm used for searching for the
global optimal solution, the BA provides a completely different solution to the optimization
problem [34,35]. Yang et al. [36] proposed an enhanced adaptive BA for optimal energy
scheduling in a microgrid system. Because of the different search mechanisms applied
in the early and late search stages, the search performance improved. Shivaie et al. [37]
developed a reliability-constrained cost-effective model to identify the optimal sizing of an
autonomous hybrid renewable system. The bat search algorithm was used to obtain the
final optimal solution. Based on a hybrid bat algorithm (BA)-harmony search algorithm
technique, Peddakapu et al. [38] proposed a new two-degree freedom-tilted integral deriva-
tive with a filter controller for a two-area wind-hydro-diesel power system. A sensitivity
analysis showed that the robustness of the controller was improved. Thus, the BA has
global exploration and local exploitation capabilities, and it is entirely possible to use it to
optimize the ELM model.

Based on the above discussion, the main contributions of this study are as follows:

1. A globally optimized BA can be used to optimize the connection weights and bias of
the ELM neural network. The BA-ELM model can be creatively constructed.

2. The relevant data of the battery can be analyzed by Pearson and Spearman correlation;
thus, the data can be determined scientifically and reasonably.

3. Through a convergence analysis of the BA algorithm, the optimization effect can be
further evaluated.

4. Through a comparison of BA-ELM, ELM, BP, Elman, RBF, and GRNN, the effec-
tiveness of the proposed model and the performance of SOH estimation can be
comprehensively evaluated.

The structure of this paper is arranged as follows: Section 2 provides an overview of the
standard ELM and BA algorithms. Section 3 describes the data acquisition and processing
related to the battery charge and discharge test. Section 4 provides detailed information
about the BA-ELM model. Section 5 reports a comparison with another 5 neural network
models. Section 6 provides conclusions and future work directions.

2. Methods for SOH Estimation
2.1. ELM

Huang et al. [39] first proposed relevant theories and applications of ELM in 2006.
The structure of the classic ELM model is mainly composed of an input layer, a hidden
layer, and an output layer, as shown in Figure 1. The input layer has n neurons, i.e., n input
variables x. The output layer has m neurons, i.e., m output variables y. The hidden layer
has l neurons. ωij represents the connection weight between the i-th neuron in the input
layer and the j-th neuron in the hidden layer. βjk represents the connection weight between
the j-th neuron in the hidden layer and the k-th neuron in the output layer. g(·) is the
activation function, b is the bias of the hidden layer, X is the input matrix, Y is the output
matrix, and the number of training samples is Q. The main steps of the ELM algorithm are
shown in Table 1.
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Figure 1. Neural network structure of ELM.

Table 1. Algorithmic process of ELM.

Algorithm of ELM

Step 1: The number of neurons in the input layer n, hidden layer l, and output layer m are
determined separately. The connection weight ω between the hidden layer and the input layer
and the bias b of the hidden layer are randomly set.
Step 2: The activation function of the hidden layer neurons g(x) is determined, then the hidden
layer output matrix H is calculated.
Step 3: The connection weight β between the output layer and the hidden layer is calculated by
the formula β = H+YT.

where:

ω =


ω11 ω12 · · · ω1n
ω21 ω22 · · · ω2n

...
...

...
ωl1 ωl2 · · · ωln


l×n

(1)

β =


β11 β12 · · · β1m
β21 β22 · · · β2m

...
...

...
βl1 βl2 · · · βlm


l×m

(2)

b =


b1
b2
...

bl


l×1

(3)

The output Y of the ELM neural network can be calculated using Equation (4):

Y =



l
∑

i=1
βi1g(ωixj + bi)

l
∑

i=1
βi2g(ωixj + bi)

...
l

∑
i=1

βimg(ωixj + bi)


m×l

(4)
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where H is the hidden layer output matrix of the ELM neural network, as shown in Equation (5):

H =


g(ω1 · x1 + b1) g(ω2 · x1 + b2) g(ωl · x1 + bl)
g(ω1 · x2 + b1) g(ω2 · x2 + b2) g(ωl · x2 + bl)

...
g(ω1 · xQ + b1) g(ω2 · xQ + b2) g(ωl · xQ + bl)


Q×l

(5)

The connection weight β between the output layer and hidden layer can be calculated
using the least squares solution of Equation (6):

min
β
‖Hβ−YT‖ (6)

The solution can be expressed as follows:

β = H+YT (7)

The estimation of SOH based on the neural network algorithm is a new artificial intelli-
gence method. As a single hidden-layer feedforward neural network, ELM has the advantages
of a fast learning speed, high calculation efficiency, and good generalization performance.
However, during the establishment of ELM, the number of hidden layer neurons is not fixed,
and the connection weight and threshold are randomly set, which may cause the battery
SOH estimation to be inaccurate. To overcome these shortcomings, we tried to use the BA
optimization algorithm to improve the SOH estimation performance of ELM.

2.2. BA

Bats emit ultrasonic waves through their mouths. When the ultrasonic waves en-
counter prey or obstacles, they reflect back to form an echo, which is received by the bat’s
ears. The bat relies on these echoes for accurate positioning, which allows it to fly freely
and hunt accurately in a completely dark environment, as shown in Figure 2. Interestingly,
the wavelength of the ultrasonic waves emitted by bats is very close to the size of the prey.
Inspired by this fact, Yang first proposed the theory and basic framework of the BA in
2010 [40]. BA is a heuristic algorithm used for searching for the global optimal solution.
The main steps of BA are shown in Table 2, where x∗ is the current global optimal solution.
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Table 2. Algorithmic process of BA.

The Pseudo Code of Bat Algorithm

Step 1: Initialize parameter settings, including the population size n, initial impulse loudness A0,
initial impulse emission rate r0, maximum frequency Qmax, minimum frequency Qmin, max
number of iterations N, and fitness evaluation function Fitness (x).
Step 2: While (t < the max number of iterations)
Calculate the frequency Qi, location Si, speed Vi, and fitness value Fitnessi of each bat.
Step 3: If (rand > ri)
1. Obtain an optimal solution BestS in this iteration.
2. Calculate the local solutions around the optimal solution.
Step 4: End if
Produce new solutions by change randomly
Step 5: if (rand < Ai and Fitness (xi) < Fitness (x∗)).
1. Accept the new solutions.
2. Decrease the impulse loudness Ai and increase the impulse emission rate ri.
Step 6: End if
Sort all bats and obtain the optimal solution BestS in this iteration.
Step 7: End while

The flight frequency of the bat can be obtained using Equation (9), where rand ∈ [0, 1]
is a random vector obtained from a uniform distribution. According to the sound wave
calculation formula, the speed is the multiplication of the wavelength and the frequency.
Thus, the flying speed of the bat can be obtained using Equation (10). The position of the
bat can be obtained using Equation (11). f min represents the bat with the smallest fitness;
BestS is the position corresponding to the bat with the smallest fitness, i.e., the current best
position, where α and γ are constants; A is the loudness; and r is the pulse emission rate:

fmin = min(Fitness) (8)

Qi = Qmin + (Qmax −Qmin)× rand (9)

Vi
t = Vt−1

i + (Si
t−1 − BestS)×Qi (10)

Si
t = Vi

t + Si
t−1 (11)

Ai
t+1 = αAi

t (12)

rt+1
i = r0 × (1− e−γ·t) (13)

The BA changes the frequency randomly, providing a good global exploration and op-
timization ability. The local exploitation capabilities are enhanced by varying the loudness
and pulse emission rate. The BA uses tuning technology to control the dynamic behavior of
the bat population. The fitness function is used to compare the pros and cons of each bat’s
location. Survival of the fittest in a bat colony is likened to an iterative process of replacing
poorer feasible solutions with good feasible solutions. The characteristics of the BA provide
a completely different solution to the optimization problem. Therefore, we tried to use the
BA algorithm to optimize the connection weights and bias in the ELM model.

3. Data Acquisition and Processing
3.1. Data Acquisition

In this study, the battery data set obtained from the NASA Prognostic Center of
Excellence (PCoE) was used for related research [41]. The B6 lithium-ion battery of NASA
has a rated capacity of 2 Ah. The battery was charged and discharged at room temperature,
and the data, such as the voltage, current, and battery temperature, were collected. First,
the battery was charged in the 1.5 A constant current mode until the battery voltage reached
4.2 V. Then, the battery was continuously charged in a constant voltage mode until the
charging current dropped to 20 mA. Next, the battery was discharged in the 2A constant
current mode until the voltage dropped to 2.5 V. As the battery was repeatedly charged
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and discharged, the available capacity of the battery decayed. The experiment was stopped
when the actual battery capacity dropped from 2 to 1.2 Ah.

We further sorted out the data of the eight variables in the experiment, namely, the
constant current charging time TI, constant voltage charging time TV, total charging time
Ttotal,charge, battery voltage change at charging ∆Vcharge, total discharge time Ttotal,discharge,
battery temperature change during discharge ∆Tempdischarge, battery voltage change at
discharge ∆Vdischarge, and the actual remaining capacity of battery Caged. The relationship
between the actual remaining capacity and number of cycles is shown in Figure 3.
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3.2. Data Processing

To determine the input data of the neural network more scientifically and reasonably,
we first drew the scatter figures between the 7 variables of the battery and the actual re-
maining capacity, and added a confidence ellipse to the scatter figure, where the confidence
level of the ellipse was 95%, as shown in Figures 4–10. Then, the eight variables of the
battery were analyzed for the Pearson and Spearman correlation analyses. The coefficient of
Pearson assesses the linear correlation between two variables while the coefficient of Spear-
man assesses the monotonic relationship between two variables. Taking the two variables
of X and Y as examples, the coefficient of Pearson could be obtained using Equation (14),
and the coefficient of Spearman could be obtained using Equation (15), where di is the
difference of the rank of the i-th data pair, and N is the number of samples. Table 3 shows
the judgment criteria between the degree of correlation and the correlation coefficient. The
results are shown in Table 4.

Analyzing Figures 4–10 and Table 4, the coefficients of Spearman corresponding to TI,
Ttotal,discharge, and ∆Tempdischarge are all positive. This shows that the relationship between
these three variables and the available remaining capacity monotonically increased. The
coefficients of Spearman corresponding to TV, Ttotal,charge, ∆Vcharge, and ∆Vdischarge are all
negative, indicating that the relationship between these four variables and the available
remaining capacity monotonically decreased. In Figure 4, the ratio of the long axis to the
short axis of the confidence ellipse corresponding to TI is the largest, and the coefficients of
Pearson and Spearman are the largest. This indicates that the linear correlation between
TI and the actual remaining capacity is the largest, and the monotonic correlation is the
strongest. The absolute value of the Pearson and Spearman coefficients of Ttotal,charge
is the smallest, and the ratio of the major axis to the minor axis of the confidence ellipse
corresponding to Ttotal,charge is the smallest, indicating that the correlation between Ttotal,charge
and the actual remaining capacity is the smallest.



Appl. Sci. 2022, 12, 1398 8 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 26 
 

 
Figure 3. Relationship between the actual remaining capacity and cycles. 

3.2. Data Processing  
To determine the input data of the neural network more scientifically and reasonably, 

we first drew the scatter figures between the 7 variables of the battery and the actual 
remaining capacity, and added a confidence ellipse to the scatter figure, where the 
confidence level of the ellipse was 95%, as shown in Figures 4–10. Then, the eight variables 
of the battery were analyzed for the Pearson and Spearman correlation analyses. The 
coefficient of Pearson assesses the linear correlation between two variables while the 
coefficient of Spearman assesses the monotonic relationship between two variables. 
Taking the two variables of X and Y as examples, the coefficient of Pearson could be 
obtained using Equation (14), and the coefficient of Spearman could be obtained using 
Equation (15), where di is the difference of the rank of the i-th data pair, and N is the 
number of samples. Table 3 shows the judgment criteria between the degree of correlation 
and the correlation coefficient. The results are shown in Table 4. 

 
Figure 4. Scatter figure of TI. 

0 20 40 60 80 100 120 140 160 180
1.0

1.2

1.4

1.6

1.8

2.0

2.2

Ca
pa

ci
ty

 (A
h)

Cycle

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0

1000

2000

3000

4000

T I
 (s

)  

Capacity (Ah)

 

Figure 4. Scatter figure of TI.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 26 
 

 
Figure 5. Scatter figure of TV. 

 
Figure 6. Scatter figure of Ttotal,charge. 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

6000

7000

8000

9000

10000

11000

T V
 (s

)  

Capacity (Ah)

 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
9500

10000

10500

11000

11500

T t
ot

al
,c

ha
rg

e (
s)

 

Capacity (Ah)

 

Figure 5. Scatter figure of TV.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 26 
 

 
Figure 5. Scatter figure of TV. 

 
Figure 6. Scatter figure of Ttotal,charge. 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

6000

7000

8000

9000

10000

11000

T V
 (s

)  

Capacity (Ah)

 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
9500

10000

10500

11000

11500

T t
ot

al
,c

ha
rg

e (
s)

 

Capacity (Ah)

 

Figure 6. Scatter figure of Ttotal,charge.



Appl. Sci. 2022, 12, 1398 9 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 26 
 

 
Figure 7. Scatter figure of Ttotal,discharge. 

 
Figure 8. Scatter figure of ΔTempdischarge. 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
2400

2600

2800

3000

3200

3400

3600

3800

T t
ot

al
,d

isc
ha

rg
e (

s)
 

Capacity (Ah)

 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
6

8

10

12

14

16

ΔT
em

p d
isc

ha
rg

e (
℃

)  

Capacity (Ah)

 

Figure 7. Scatter figure of Ttotal,discharge.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 26 
 

 
Figure 7. Scatter figure of Ttotal,discharge. 

 
Figure 8. Scatter figure of ΔTempdischarge. 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
2400

2600

2800

3000

3200

3400

3600

3800

T t
ot

al
,d

isc
ha

rg
e (

s)
 

Capacity (Ah)

 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
6

8

10

12

14

16

ΔT
em

p d
isc

ha
rg

e (
℃

)  

Capacity (Ah)

 

Figure 8. Scatter figure of ∆Tempdischarge.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 26 
 

 
Figure 9. Scatter figure of ΔVcharge. 

 
Figure 10. Scatter figure of ΔVcharge. 

Table 3. Judgment criteria between the degree of correlation and the correlation coefficient. 

The absolute value of 
the correlation 

coefficient 
0.8–1.0 0.6–0.8 0.4–0.6 0.2–0.4 0.0–0.2 

The degree of 
correlation 

Very strong Strong Medium Weak Very weak 

Table 4. Coefficient of Pearson and Spearman. 

. TI TV Ttotal,charge Ttotal,discharge ΔTempdischarge ΔVcharge ΔVdischarge 
Pearson 0.9969 −0.9412 −0.2589 0.9931 0.9710 −0.9828 −0.9567 

Spearman 0.9986 −0.91615 −0.2202 0.9979 0.9579 −0.9889 −0.9619 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.40

0.45

0.50

0.55

0.60

0.65

 Δ
V

ch
ar

ge
 (V

)

Capacity (Ah)

 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

 Δ
V

di
sc

ha
rg

e (
V

)

Capacity (Ah)

 

Figure 9. Scatter figure of ∆Vcharge.



Appl. Sci. 2022, 12, 1398 10 of 23

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 26 
 

 
Figure 9. Scatter figure of ΔVcharge. 

 
Figure 10. Scatter figure of ΔVcharge. 

Table 3. Judgment criteria between the degree of correlation and the correlation coefficient. 

The absolute value of 
the correlation 

coefficient 
0.8–1.0 0.6–0.8 0.4–0.6 0.2–0.4 0.0–0.2 

The degree of 
correlation 

Very strong Strong Medium Weak Very weak 

Table 4. Coefficient of Pearson and Spearman. 

. TI TV Ttotal,charge Ttotal,discharge ΔTempdischarge ΔVcharge ΔVdischarge 
Pearson 0.9969 −0.9412 −0.2589 0.9931 0.9710 −0.9828 −0.9567 

Spearman 0.9986 −0.91615 −0.2202 0.9979 0.9579 −0.9889 −0.9619 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

0.40

0.45

0.50

0.55

0.60

0.65

 Δ
V

ch
ar

ge
 (V

)

Capacity (Ah)

 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

 Δ
V

di
sc

ha
rg

e (
V

)

Capacity (Ah)

 

Figure 10. Scatter figure of ∆Vcharge.

Table 3. Judgment criteria between the degree of correlation and the correlation coefficient.

The absolute value of the
correlation coefficient 0.8–1.0 0.6–0.8 0.4–0.6 0.2–0.4 0.0–0.2

The degree of correlation Very
strong Strong Medium Weak Very

weak

Table 4. Coefficient of Pearson and Spearman.

TI TV Ttotal,charge Ttotal,discharge ∆Tempdischarge ∆Vcharge ∆Vdischarge

Pearson 0.9969 −0.9412 −0.2589 0.9931 0.9710 −0.9828 −0.9567

Spearman 0.9986 −0.91615 −0.2202 0.9979 0.9579 −0.9889 −0.9619

ρX,Y =
N∑ XY−∑ X∑ Y√

N∑ X2 − (∑ X)2
√

N∑ Y2 − (∑ Y)2
(14)

ρ = 1− 6∑ di
2

N(N2 − 1)
(15)

According to the absolute value of Pearson’s correlation coefficient, the order of linear
correlation can be expressed as follows:

TI > Ttotal,discharge > ∆Vcharge > ∆Tempdischarge > ∆Vdischarge > TV > Ttotal,charge

According to the absolute value of Spearman’s correlation coefficient, the order of
monotonic correlation is as follows:

TI > Ttotal,discharge > ∆Vcharge > ∆Vdischarge > ∆Tempdischarge > TV > Ttotal,charge

Through a comparative analysis, the variable Ttotal,charge with the lowest correlation
was eliminated. The constant current charging time TI, constant voltage charging time TV,
battery voltage change at charging ∆Vcharge, total discharge time Ttotal,discharge, battery tem-
perature change during discharge ∆Tempdischarge, and battery voltage change at discharge
∆Vdischarge were determined as the input variables of the model. The actual remaining
capacity of the battery Caged was determined as the output variable.

In this study, the values of the six input variables have different dimensional ranges.
For example, the min value of ∆Vdischarge is 0.2; the max value of TV is 9800; the difference
between the two is 49,000 times. The large gap will oscillate the neural network model
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back and forth when the gradient is updated, and affect the final accuracy of the model.
Therefore, Equation (16) was used to uniformly process the values of the 6 input variables
and converted them into an interval of [−1, 1], where ymin and ymax are the minimum
and maximum values of y. In all the samples, 70% of the data were randomly selected for
training, and the remaining 30% for testing:

y =
2× (y− ymin)

(ymax − ymin)
− 1 (16)

4. The Proposed Model

In this study, we proposed a BA-ELM model and applied it to estimate battery SOH
for the first time. The process of SOH estimation based on the BA-ELM model is shown in
Figure 11. The pseudo code of BA-ELM is shown in Table 5. The main steps are as follows:

S1: Battery charge and discharge test.
The lithium-ion battery was charged and discharged at room temperature. The specific

test process is described in Section 3.1.
S2: Obtain the battery data and analyze the correlation.

(1). The data of the eight variables in the test were sorted. The sample data were nor-
malized to the same dimension range: 70% of the data were randomly selected for
training, and the remaining 30% was tested.

(2). Through Pearson and Spearman correlation analysis, TI, TV, Ttotal,discharge, ∆Vcharge,
∆Tempdischarge, and ∆Vdischarge were determined as the input variables of the model, and
Caged was determined as the output variable.

S3: The global exploring ability of the BA was used to optimize the output connection
weight, input connection weight, and bias b of the hidden layer of the ELM.

(1). Initialize the parameter of BA.
(2). While t < the max number of iterations; calculate the frequency Qi, location Si,

speed Vi, and fitness of each bat.
(3). If rand > ri. Obtain an optimal solution BestS and calculate the local solutions around

the optimal solution.
(4). End if. Produce new solutions by change randomly.
(5). If rand < Ai and Fitness (xi) < Fitness (x∗), accept the new solutions and decrease the

impulse loudness Ai and increase the impulse emission rate ri.
(6). End if. Sort all bats and obtain the optimal solution BestS in this iteration. Update β

and Fitness.
(7). End while. Accept the optimal output connection weight β.

S4: Determine the input connection weight ω.
S5: Determine the bias b of the hidden layer. Determine the network structure of

BA-ELM.
S6: The test data set was tested in the BA-ELM to estimate the actual battery capacity.
In the parameter initialization of BA, n = 10, A0 = 0.9, r0 = 0.9, Qmax = 1, Qmin = 0,

α = 0.9, γ = 0.9, the max number of iterations N was 5000. The fitness function of the bat is
the objective function, expressed by the root MSE (RMSE) of Equation (17), where T is the
output of the training set, G is the sample size, and Y can be calculated using Equation (18):

Fitness =

√√√√ 1
G

G

∑
i=1

(T −Y)2 (17)

Y = [HT β]
T

(18)
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Table 5. The pseudo code of the proposed model.

The Pseudo Code of BA-ELM

Step 1: Data acquisition and data processing.
Step 2: Generate the training set and the test set.
Step 3: Initialize the parameters of BA, including the population size n, initial impulse loudness
A0, initial impulse emission rate r0, maximum frequency Qmax, minimum frequency Qmin, the
max number of iterations N, and fitness evaluation function Fitness (x).
Step 4: While (t < the max number of iterations)
Calculate the frequency Qi, location Si, speed Vi, fitness value Fitnessi of each bat.
Step 5: If (rand > ri)
1. Obtain an optimal solution BestS in this iteration.
2. Calculate the local solutions around the optimal solution.
Step 6: End if
Produce new solutions by change randomly
Step 7: If (rand < Ai and Fitness (xi) < Fitness (x∗)).
1. Accept the new solutions.
2. Decrease the impulse loudness Ai and increase the impulse emission rate ri.
Step 8: End if
Sort all bats and obtain the optimal solution BestS in this iteration.
Step 9: End while and accept the optimal output connection weight β.
Step 10: Determine the input connection weight ω and the bias b. Obtain the network structure of
BA-ELM
Step 11: Estimate the actual battery capacity using the BA-ELM model.

5. Results and Discussion
5.1. Results

To analyze the optimization effect of the BA, we drew the evaluation function, impulse
loudness, and impulse emission rate diagrams, as shown in Figures 12–14. The evaluation
function is f min, representing the bat with the smallest current fitness level, and it was
obtained using Equation (8). In this study, the bat’s velocity is a vector. Therefore, we
propose a new concept, i.e., the average velocity modulus length ‖v‖. We first calculated the
velocity modulus length of each bat, as shown in Equation (19), where D is the dimension of
the vector. Then, the current average velocity modulus length of all the bats was calculated,
as shown in Equation (20), where n is the number of bats. The relationship between the
average velocity modulus length and number of iterations is shown in Figure 15.

‖v‖ =

√√√√ D

∑
i=1

vi
2 (19)

‖v‖ = 1
n

n

∑
j=1
‖v‖j (20)

By analyzing Figure 12, we found that the value of the evaluation function dropped signif-
icantly. When the number of iterations was 1650, the evaluation function tended to converge,
indicating that the BA achieved the expected effect of optimization. In Figures 13 and 14,
we can find that the impulse loudness Ai decreased during the iteration and reached the
minimum at about 1100 iterations. The impulse emission rate ri increased and reached the
maximum at about 18 iterations. Figure 15 shows that the average velocity modulus length
of bats increased during the iteration. Combined with Figure 12, it can be concluded that
the smaller the evaluation function, the better the position of the bat, and the closer the
bat is to the position of the prey, the greater the bat’s velocity modulus. This is consistent
with the fact that the closer the hunter is to the prey, the faster the hunter’s reaction speed
is in nature. Figure 16 shows the test error result of the actual remaining capacity of the
battery. The estimated error of the actual remaining capacity estimated by BA-ELM is less
than 0.02 Ah, and the maximum error is less than 1%.
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5.2. Discussion

To further evaluate the estimation accuracy of the Caged of the BA-ELM model, we
constructed neural network models of ELM, BP, Elman, RBF, and GRNN. The estimated
error of the Caged, RMSE, mean absolute error (MAE), mean absolute percentage error
(MAPE), MAX error (MAX), and MIN error (MIN) were used to compare the estimated
accuracies of six models. The results are shown in Figures 17–19 and Tables 6 and 7.
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Figure 19. Comparison of MAX and MIN.

The RMSE and MAE of the BA-ELM model are 0.5354% and 0.4326%, respectively.
The RMSE of the other 5 models is between 2% and 4%, and the MAE is between 1%
and 4%. The MAPE of the BP model is the largest, reaching 4.06%, and the MAPEs of
BA-ELM, ELM, and GRNN are 0.44%, 0.20%, and 0.29%, respectively. The maximum error
of the SOH result estimated by RBF is 0.1913 Ah, and the maximum error of the SOH result
estimated by BA-ELM is only 0.017 Ah. The minimum error of the result of ELM estimation
is 0.1212 Ah, and the minimum error of the result of BA-ELM estimation is only 0.062 Ah.
Compared with the other five models, the results of the BA-ELM estimation show a smaller
RMSE, MAE, MAX, and MIN.

To further compare the performance of the six models on various error indicators, we
sorted them according to the pros and cons of each indicator. Furthermore, we assigned
6 points for ranking first, 5 points for ranking second, and so on, with 1 point assigned for
ranking sixth. The higher the score of a certain model on a certain error index, the better
the performance of the algorithm on this error index. The results are shown in Table 8. We
drew the radar chart of the 5 error indicators for the 6 models, and the results are shown
in Figure 20. The shadow area covered by the BA-ELM model is the largest while the
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shadow area covered by BP and RBF is smaller. According to the total score of the five error
indicators, the results of all models are as follows:

BA-ELM (28) > ELM (21) > Elman (15) = GRNN (15) > BP (13) > RBF (12).

Table 6. Comprehensive comparison table of RMSE, MAE, and MAPE.

Method RMSE MAE MAPE

BA-ELM 0.5354 0.4326 0.44
ELM 2.2713 1.3106 0.20
BP 3.5394 3.2429 4.06

Elman 3.0750 2.0936 1.60
RBF 3.8609 1.7217 1.82

GRNN 3.2439 2.2230 0.29

Table 7. Comprehensive comparison table of MAX and MIN.

Method MAX MIN

BA-ELM 0.0170 −0.0062
ELM 0.0409 −0.1212
BP 0.0619 −0.0086

Elman 0.0790 −0.0656
RBF 0.1913 −0.0434

GRNN 0.0780 −0.0980

Table 8. Scores of the six models.

Method RMSE MAE MAPE MAX MIN

BA-ELM 6 6 4 6 6
ELM 5 4 6 5 1
BP 2 1 1 4 5

Elman 4 3 3 2 3
RBF 1 4 2 1 4

GRNN 3 2 5 3 2

1 
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Figure 20. Radar chart of the statistical error of each model.
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The predictive results of all models are illustrated in Figure 21a–f in the form of scatter
plots and determination coefficients. It can be seen from the scatter plots that the BA-ELM
provides less scattered estimates. Compared to other models, the fit line equation of BA-
ELM is closer to the exact line (y = x), with a higher determination coefficient. It is followed
by the ELM, BP, and Elman models. RBF and GRNN provide poor estimates while these
two models also have lower determination coefficients of 0.9819 and 0.9883, respectively.
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In Figure 22, from the violin diagrams, the BA-ELM model demonstrates its advan-
tage by having a distribution that is a more similar distribution to the actual capacity as
compared to other models. The data in the BA-ELM model is the most concentrated. A
small amount of data in the ELM and RBF models, respectively, is far from the actual
value. The median in the BP model is on the high side. A graphical comparison justifies the
results obtained using the statistical indicators presented in the previous tables. Based on
the above discussion, it can be concluded that compared with the other five models, the
BA-ELM model has a better performance and can accurately estimate the actual remaining
capacity and SOH of the battery.
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Figure 22. Violin diagram of six models.

6. Conclusions

This study creatively established the BA-ELM model, i.e., by simulating the echoloca-
tion hunting behavior of bats, searching for the global optimal solution, and optimizing
the output connection weight, input connection weight, and value of bias of the ELM. This
model was also used for the first time in the field of SOH estimation of lithium-ion batteries.
Six neural network models of ELM, BP, Elman, RBF, GRNN, and BA-ELM were constructed,
and the actual available capacity of the battery was estimated and compared through the
test set.

The following conclusions can be derived based on the results and application:

1. The relevant data of the battery can be analyzed by Pearson and Spearman correlation.
The training time of the neural network model can be reduced by removing input vari-
ables with a low absolute value of Pearson’s and Spearman’s correlation coefficient.

2. The value of the evaluation function dropped significantly using BA. The convergence
speed was fast. The BA achieved the expected effect of optimization. We proposed a
new concept, i.e., the average velocity modulus length. The bat’s velocity modulus
became larger during the iteration. This is consistent with the fact in nature.

3. The main advantages of the proposed BA-ELM model include a fast learning speed
and high SOH estimation accuracy. The BA-ELM provided less scattered estimates,
and its fit line equation was closer to the exact line (y = x) with a higher determination
coefficient compared to other models. The connection weight and threshold of ELM
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were randomly set, which may cause the battery SOH estimation to be inaccurate. A
globally optimized BA can be used to optimize the connection weights and bias of the
ELM neural network.

4. The RMSE of the BA-ELM model is 0.5354%, and the MAE is 0.4326%, which is
the smallest among the 6 models. The RMSE values of the other model is 2.27%,
3.53%, 3.07%, 3.86%, and 3.24%, respectively. The estimated error of the actual battery
capacity estimated using BA-ELM is less than 0.02 Ah, and the maximum error is less
than 1%. Compared with the other five models, the results of BA-ELM estimation
show a smaller RMSE, MAE, MAX, and MIN. It can be concluded that the estimation
of the actual remaining capacity of the battery through the BA-ELM model has high
accuracy and feasibility, which also makes the model have a good application prospect
in the field of battery SOH.

Although the BA-ELM model provided promising results for estimating SOH of
lithium-ion batteries, this study still has some limitations. The main limitations of this
study and possible recommendations based on these limitations are listed below:

1. In this study, the proposed model was only verified on a smaller dataset containing
165 cycles. Therefore, in the future, the performance of this model should be evaluated
on larger data samples.

2. The ELM model can be combined with other optimization algorithms to form a
new hybrid model. Therefore, in the future, BA-ELM can be further validated and
compared with other hybrid ELM models.

3. Recently, some other variants of the ELM model have been successfully exploited,
such as OSELM and OP-ELM. In the future, BA can be used with these advanced
variants of ELM models.

4. In this study, the impulse emission rate increased and reached the maximum at about
18 iterations. The change law of the loudness and pulse emission rate of the standard
BA did not completely fit the actual application. The rates of pulse emission and
loudness can be varied in a more sophisticated manner during the iteration. This also
needs to be further studied in the future.
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Nomenclature

SOH State of Health
ELM Extreme Learning Machine
BA Bat Algorithm
BA-ELM Bat algorithm-Extreme Learning Machine
BP Back Propagation
RBF Radial Basis Function
GRNN General Regression Neural Network
RMSE Root Mean Square Error
MAE Mean Absolute Error
SOC State of Charge
OCV Open-Circuit Voltage
EIS Electrochemical Impedance Spectroscopy
ECM Equivalent Circuit Model
SVM Support Vector Machine
MAPE Mean Absolute Percentage Error
MAX MAX error
MIN MIN error
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