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Abstract: Functional methods usually allow for a flexible and accurate representation of joint kine-
matics and are increasingly implemented both for clinical and biomechanics research purposes. This
paper presents a quantitative comparison between two widely adopted methods for functional axis
estimation, that is, the helical axis theory and the symmetrical axis of rotation approach (SARA).
To this purpose, a multi-body model was developed to simulate the lower limb of a subject. This
model was designed to reproduce different motion patterns, that is, by selecting the active degrees
of freedom of the simulated ankle joint. Thanks to virtual markers attached to each segment, the
multi-body model was used to generate simulated motion capture data that were then analyzed
by instantaneous helical axes and SARA algorithms. To achieve a synthetic representation of joint
kinematics, a mean helical axis and an average SARA functional axis were estimated, along with
dispersion parameters and rms distance data that were used to quantitatively assess the performance
of each method. The sensitivity of each algorithm to different combinations of range and speed of
motion, scattering of marker clusters, sampling rate, and additive noise on markers’ trajectories, was
finally evaluated.

Keywords: joint axis; helical axis; symmetrical axis of rotation approach; SARA; multi-body model;
biomechanical modeling; human motion analysis; joint biomechanics; ankle joint kinematics; gait analysis

1. Introduction

Human motion analysis is particularly relevant nowadays both for clinical purposes
and for biomechanics research. For instance, loading conditions in human joints can be
investigated through musculoskeletal analyses, to evaluate the effects of a therapeutic
or surgical treatment, or to guide the clinician in the diagnosis of postural irregularities.
Although different systems are available today to perform the acquisition of the human
movement, such as inertial measurement units whose applications can be increasingly
observed in the recent literature [1], most of the analyses are still conducted, especially
at clinical level, through motion capture (stereo-photogrammetry) systems [2]. These
systems typically involve passive reflective markers that are fixed on the surface of body
segments (such as the trunk or a limb) and that are tracked by multiple cameras in a
controlled environment. The number and the positioning of the markers selected for each
body segment have an impact on the quality of the measurement and on the following
analyses [3,4]. In particular, the marker reference positions are often used to implement
biomechanical models that enable the estimation of the kinematics and dynamics related to
a single segment or, most likely, to a group of segments up to the whole body. Although
commercial motion capture systems can already implement the most accepted and widely
recognized marker positioning protocols and related biomechanical modeling [5–8], there
is still interest in the development of new techniques and models for the investigation of
human motion, especially when subject-specific analyses are required.
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Among the several aspects that can be investigated by full dynamic analyses of human
motion, or through a gait analysis, joint biomechanics still represents one of the most
relevant to focus on, since an improved understanding of the mechanisms behind the
functionality of a human joint enables more sophisticated clinical analyses to be developed,
in addition to a more detailed knowledge of the degrees of freedom (DoFs) of the motion
allowed by an articulation. In particular, such knowledge can be critical when a device that
directly interacts with a human joint is designed [9–13]. In those situations, the kinematic
or dynamic models already developed and implemented in commercial motion analysis
systems could not be sufficient to describe the joint behavior with such a detailed approach.
Since the actual anatomical segments are not rigid, nor is the fixation of the markers on
each segment due to skin sliding and soft tissue artifacts [14], the definition of traditional
biomechanical models, based on rigid body motion, is subjected to several sources of
errors that, in most cases, cannot be estimated and prevented appropriately. These errors
indirectly affect the estimation of joint centers and axes that are necessary for the related
kinematic and dynamic analyses [15,16]. For this reason, several techniques proposed in
the literature have tried to tackle those issues, which are certainly evident during in vivo
analyses [17–19].

Functional methodologies for joint kinematics estimation do not rely on regression
equations and on specific marker positioning protocols, unlike predictive techniques [20].
In such approaches, it is still necessary to track the motion of each segment, e.g., by fixing a
certain amount of markers on the body of the subject; however, the outcome of the analysis
mainly depends on the ability of the methodology to estimate the relative motion between
each couple of segments under investigation. Thanks to their formulations, functional
methods can enable the analysis of kinematic abnormalities and non-standard subjects
with deformities. Of course, any alteration to the positioning of each marker relative to
the underlying bone due to skin sliding still affects the quality and the accuracy of the
results [16]. This is due to the same approximation that considers each segment as rigid
and characterized by a specific marker cluster that should be, at the same time, rigid and
not subjected to any relative motion. Functional techniques do not require any a priori
definition of the joint center or rotation axis; therefore, they are quite effective in providing
information regarding the actual DoFs and motion patterns allowed by a specific human
joint [21,22].

This paper focuses on the application of functional techniques aimed at the estimation
of the axis of rotation (AoR) of a human joint. In particular, two of the most widely adopted
methodologies are considered, that is, the instantaneous helical axis (IHA) [23–25] and the
symmetrical axis of rotation approach (SARA) [26]. These techniques allow, starting from
a motion capture dataset, to calculate the functional joint axes that describe in detail the
kinematics under investigation [27–30]. Similarly, the symmetrical center of rotation es-
timation (SCoRe) algorithm [31] deals with the estimation of the joint center of rotation,
which can be useful for several applications as the improvement of the accuracy of biome-
chanical dynamic models [32,33]. However, it was not considered in the current work
due to the latter being focused on AoR estimation. Helical axis and SARA approaches
have different performance and mathematical formulations; however, several similarities
in the definitions of both algorithms have been already discussed in the literature [34].
Both methodologies have already been used for in vitro and in vivo analyses [27–30,34–36];
however, an extensive discussion and comparison of their performance with respect to
diverse motion configurations and experimentation parameters have not been already
performed to the best of our knowledge. To ease the testing of both algorithms in multiple
scenarios, as well as to achieve an objective estimation of their accuracy, a modeling rather
than an experimental approach was chosen. Actual experimentation can surely provide the
most realistic results regarding the study of natural joint kinematics; however, it does not
enable the easy and full customization of aspects that affect the accuracy of the analysis,
such as measurement noise, range of motion, DoFs, sampling rate, and so on, that have to
be investigated to assess the reliability of each algorithm. Moreover, real in vivo experimen-
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tation could be not appropriate to fulfill the objective of this work. Indeed, to quantitatively
assess the accuracy in the determining of the AoR, expensive and/or invasive techniques
could be required to assess the true functional axis in vivo. For this reason, a multi-body
model, resembling a lower limb (only the shank–foot complex), was developed. Due to the
model formulation, most of the discussion is focused on the ankle joint. However, similar
considerations can be done for any other human or artificial joint.

Based on the modeling approach, the aim of this paper is to objectively evaluate
the performance of IHA and SARA algorithms in such a controlled environment so as
to provide an indication for other researchers in the selection of one methodology rather
than the other, depending on different conditions that could be manipulated through
simulations.

2. Materials and Methods
2.1. The Multi-Body Model

The core of this work is represented by the definition of a multi-body model, used as a
generator for noisy marker trajectories resembling an actual motion capture acquisition of a
gait analysis. The physical characteristics implemented in the model, as well as the range of
motion and many other features that will be discussed, were selected to be comparable with
the conditions of real biomechanical analyses to avoid misinterpretation of the results due
to non-realistic joint configurations. Moreover, simulation parameters such as the sampling
rate and measurement noise were defined to match the conditions of real experimental trials
and to achieve a realistic representation of human motion but in a controlled environment.
The model was developed in Simscape™ (The MathWorks, Natick, MA, USA), version 5.2
(R2021b).

2.1.1. Definition of Shank and Foot Segments

The model consists of two rigid links, that is, the shank and the foot, whose dimensions
were selected from average data. Although the geometry does not actually contribute to
the calculations in the model, due to the rigid-body approximation, a prismatic solid body
was associated with each segment, with the dimensions presented in Table 1. The center
of mass of each link was coincident with the centroid of each prismatic solid body. The
geometry was necessary to help in the selection of four points of interest for each segment
that corresponds to four reflective markers located on the skin of a subject. The location
of the markers was defined arbitrarily on the frontal surface of the shank and on the top
surface of the foot, as shown in Figure 1a. Those positions defined a default configuration
of each marker set (or cluster). In this configuration, the longitudinal distance between
proximal and distal markers was set equal to half the length of the corresponding segment,
whereas the lateral distance between each couple of lateral and medial markers was set
equal to the total width of the corresponding segment. Medial and lateral positions refer
to a right lower limb. The markers’ positioning followed a similar configuration used by
the authors in a previous study, in which rigid plastic shells were used to limit rigid and
non-rigid cluster deformation during in vivo analyses [19].

Table 1. Shank and foot segment dimensions.

Dimension Value (cm)

Shank length 40
Foot length 24

Shank width * 10
Foot width 9

Foot thickness 6
* Cross-section of the modeled shank segment is square.
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Figure 1. The methodology for the generation of noisy marker trajectories: (a) two views of the 
multi-body model, with markers on the shank (red) and foot (blue) highlighted, as well as the joint 
reference frame at the ankle (cyan); (b) the angular motion of the knee and ankle joints; (c) the linear 
motion of the ankle AoR; (d) downsampled and noisy marker trajectories in the global coordinate 
system. The plots refer to a generic tri-planar (6 DoFs) motion configuration. 

Among each marker cluster, one of the markers was placed out of the plane including 
the other three markers to account for any variability in marker positioning that normally 
occurs during experimentation. Then, the scattering of the four markers belonging to each 
cluster was governed by a multiplicative factor (kS for the shank, kF for the foot) that was 
used to change the distance between each marker and the corresponding cluster centroid 
as compared to the default configuration (kS = kF = 1). These factors (or gains) respectively 
affected the location of each marker in the frontal plane of the shank or on the top surface 
of the foot. 

  

Figure 1. The methodology for the generation of noisy marker trajectories: (a) two views of the
multi-body model, with markers on the shank (red) and foot (blue) highlighted, as well as the joint
reference frame at the ankle (cyan); (b) the angular motion of the knee and ankle joints; (c) the linear
motion of the ankle AoR; (d) downsampled and noisy marker trajectories in the global coordinate
system. The plots refer to a generic tri-planar (6 DoFs) motion configuration.

Among each marker cluster, one of the markers was placed out of the plane including
the other three markers to account for any variability in marker positioning that normally
occurs during experimentation. Then, the scattering of the four markers belonging to each
cluster was governed by a multiplicative factor (kS for the shank, kF for the foot) that was
used to change the distance between each marker and the corresponding cluster centroid
as compared to the default configuration (kS = kF = 1). These factors (or gains) respectively
affected the location of each marker in the frontal plane of the shank or on the top surface
of the foot.
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2.1.2. Joint Kinematics Setup

Having defined the two segments, two joints were implemented to simulate the
knee and the ankle. Although the paper focuses on ankle joint motion, the knee was
introduced only to achieve a more realistic representation of markers’ trajectories in the
global coordinate system (GCS). Due to its minor role in the methodology here discussed,
the knee joint is approximated as a simple revolute, with a single rotational DoF acting
between two frames: the first one translates horizontally along the X-axis of the GCS at
constant speed, set equal to 1.4 m/s (average walking velocity); the second frame is integral
with the shank and located at the knee center of rotation. By model definition, the knee
AoR is parallel to the Z-axis of the GCS. As stated above, the translational DoF assigned to
the knee joint allowed to generate marker coordinates whose magnitude (in mm) could
result to be compatible with the actual trajectories recorded during a gait analysis in a
movement analysis laboratory.

As far as the ankle is concerned, the model allowed relative motion between a first
(base) frame integral with the shank and located at the distal end of the segment and
a second (follower) frame integral with the foot and located at the proximal end of the
corresponding segment. In this case, in order to achieve a more complex and detailed
description of the natural joint kinematics, a bushing joint (6 DoFs) was selected. Based on
this approach, the simulated ankle joint enables three independent translations and three
independent rotations along the base frame axes. Therefore, the model enables different
motion configurations, for instance, by selecting only a single active DoF or multiple DoFs
(up to 6).

In order to run the model and generate the markers’ trajectories, the complete joint
kinematics must be provided as an input; hence, the rotation angle, angular velocity, and
angular accelerations of each joint had to be defined in the first place. To this purpose, the
three ankle rotation angles were defined as piecewise-defined functions of the gait cycle,
by considering ranges of motion and curve trends respectful of natural joint kinematics.
The translational DoFs along the antero-posterior, longitudinal, and lateral directions were
defined with a similar approach; however, in this case, the ranges of motion were selected
arbitrarily due to the lack of specific information from the literature. However, to avoid
unrealistic joint configurations, the ranges of the translational DoFs were selected to achieve
AoR translations coherent with the linear dispersion of helical axes observed on cadaver
specimens [27]. Each ankle DoF signal could be easily varied in terms of magnitude and
duration, hence enabling the possibility to test the model for different ranges of motion
and speed. Figure 1b,c show the patterns of ankle and knee motion for a general tri-planar
motion configuration, which considers 6 active DoFs at the ankle joint. Unlike the ankle
joint, the knee, modeled as a simple revolute joint, only requires the definition of the
flexion/extension DoF to run the model. The same pattern of knee motion shown in
Figure 1b was considered for all the simulations, which always included three full gait
cycles. As highlighted in Figure 1b,c, all the DoFs were smoothed by a low-pass filter
(Butterworth, 4th order) before they were provided as input to the model to remove the
effect of undesired spikes in the velocity and acceleration signals.

To summarize, the setup of joint kinematics in the model allows for customizing:

1. The number of active DoFs allowed by the ankle joint (modeled as a bushing);
2. The range of motion of each active DoF;
3. The duration of each gait cycle, hence the speed of the motion patterns.

2.1.3. Generation of the Markers’ Coordinates

In order to collect the coordinates in the GCS, a transform sensor was included in
the model for each marker. This component measures time-dependent relationships, as
the position, between two frames. For each marker, the respective sensor measures the
position of the marker frame relative to the GCS frame, which is fixed. In this way, the
global coordinates of each marker could be assessed, similarly to what is performed during
a common motion capture acquisition.
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A fixed step size equal to 1 ms was selected to run the model, corresponding to a native
sampling frequency of marker’s data equal to 1000 Hz. All the input for the model (DoFs
signals) was provided at the same sampling frequency to ensure consistency. Commercial
motion capture systems typically work at much lower sampling rate due to limitations
in cameras’ refresh rate or simply to limit the amount of data collected for long-lasting
observations. Therefore, to achieve a realistic representation of the dataset, the original
marker’s coordinates produced by the model were downsampled. The default target
frequency f s was set to 100 Hz, even though the model enables any arbitrary selection of
this parameter.

Finally, to simulate the effect of measurement noise from the instrumentation, as well
as the artifacts produced by skin sliding and soft tissue, the downsampled coordinates were
altered by additive white Gaussian noise. The simplified approach considered was the same
adopted by Ehrig et al. [26], which consists of two different sources for the noise signals
that can be added to each marker trajectory. In particular, white Gaussian noise is primarily
added to each coordinate to simulate random accuracy errors related to the instrumentation
and to marker cluster non-rigid deformation. Then, a single white Gaussian noise signal is
generated and added to all the markers included in the same cluster. This second source of
(common) noise simulates those accuracy errors related to skin sliding that should affect the
positioning of each marker within the cluster in the same way (rigid transformations, [15]).
This approach is rather a simplified one, since soft tissue artifacts, in particular, have quite
different dynamics and depend on the motor task considered [14,16]. However, this method
can be considered sufficient to achieve a more realistic representation of the dataset. To
define the magnitude of marker noise, the signal-to-noise ratios (SNRs) for the common
(SNRcmn) and the random (SNRrnd) sources were included as configurable parameters
in the model and can be selected arbitrarily. By default, they are both set at 100 dB. An
example of the corresponding noise signals is presented in Figure 2. Figure 1d shows
an example of noisy trajectories of shank and foot markers in the GCS, at the end of the
generation process.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 26 
 

 
Figure 2. Random (red) and common (black) noise signals for different signal-to-noise ratios. 

2.2. AoR Estimation 
In this section, the methodologies considered for the estimation of the AoR are pre-

sented. For each method, a brief description of the algorithm is reported, and references 
are provided. Moreover, a discussion about the averaging and the assessment of the dis-
persion and accuracy of the results is given. 

2.2.1. Instantaneous and Mean Helical Axis 
The algorithm for IHA estimation used is based on the original work of Woltring et 

al. [23], and it has been already outlined in previous works from the authors [10,19]. It 
considers a screw-like helical motion assumption. Firstly, this procedure requires the 
transformation of shank and foot markers’ global trajectories in the local coordinate sys-
tem (LCS) of one of the segments considered, that is, the shank. A representation of the 
shank LCS used to evaluate IHAs is presented in Figure 3a, whose elements are as follows: 
4. OS, the origin located at the mid-point of the SDistMed–SDistLat segment; 
5. v, medio-lateral axis oriented from SDistLat to SDistMed; 
6. u, axis orthogonal to the plane including SDistMed, SDistLat, and SProxLat, oriented 

forward; 
7. w, axis orthogonal to the plane (u,v). 

Then, a rigid body fitting algorithm based on singular value decomposition (SVD) is 
run to calculate an equivalent rigid body model of the foot. The latter is needed to estimate 
the six DoFs (three translational, three rotational) of the foot relative to the shank LCS that 
are then filtered through a self-tuning, 0-phase-shift, 2nd-order Butterworth digital filter 

Figure 2. Random (red) and common (black) noise signals for different signal-to-noise ratios.



Appl. Sci. 2022, 12, 1274 7 of 25

2.2. AoR Estimation

In this section, the methodologies considered for the estimation of the AoR are pre-
sented. For each method, a brief description of the algorithm is reported, and references are
provided. Moreover, a discussion about the averaging and the assessment of the dispersion
and accuracy of the results is given.

2.2.1. Instantaneous and Mean Helical Axis

The algorithm for IHA estimation used is based on the original work of Woltring
et al. [23], and it has been already outlined in previous works from the authors [10,19].
It considers a screw-like helical motion assumption. Firstly, this procedure requires the
transformation of shank and foot markers’ global trajectories in the local coordinate system
(LCS) of one of the segments considered, that is, the shank. A representation of the shank
LCS used to evaluate IHAs is presented in Figure 3a, whose elements are as follows:

4. OS, the origin located at the mid-point of the SDistMed–SDistLat segment;
5. v, medio-lateral axis oriented from SDistLat to SDistMed;
6. u, axis orthogonal to the plane including SDistMed, SDistLat, and SProxLat, oriented

forward;
7. w, axis orthogonal to the plane (u,v).

Then, a rigid body fitting algorithm based on singular value decomposition (SVD) is
run to calculate an equivalent rigid body model of the foot. The latter is needed to estimate
the six DoFs (three translational, three rotational) of the foot relative to the shank LCS
that are then filtered through a self-tuning, 0-phase-shift, 2nd-order Butterworth digital
filter [37]. The filtered DoFs and their time derivatives are finally used to calculate the axis
parameters ni and si that are the direction vector and the position vector representative of
the IHA at the i-th time frame. It is well known that the calculation of the axis parameters
is affected by the magnitude of the angular velocity ωi. It can be evaluated starting from an
estimate of the attitude vector ϑi, used to define the rotational DoFs, and its time derivative.
Since low ωi values compromise the calculation of the IHA, a threshold of 0.25 rad/s is
often considered to filter out the time frames that may lead to ill-posed estimation of the
helical axis.
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Given the full representation of the joint kinematics provided by a set of IHAs, a mean
helical axis (MHA) can be calculated by a weighted least squares algorithm as detailed in
the literature [10,38,39]. According to Ehrig et al. [34], the most appropriate choice of the
weight is:

wi = sin2(ϑi/2), (1)
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with ϑi as the angle of rotation corresponding to the rotational DoFs for the i-th time frame.
Other formulations consider different weighting factors [23,32,34], as follows:

wi = 1 (2)

wi = sin(ϑi/2) (3)

To evaluate the effect of the different weights, the MHA estimation was performed
considering all the three solutions presented in Equations (1)–(3).

2.2.2. Symmetrical Axis of Rotation Approach (SARA)

The SARA algorithm used in this work is based on the original work of Ehrig et al. [26]
and considers two marker sets that are simultaneously moving relative to the GCS. To run
the algorithm, an LCS is assigned to each marker cluster, that is, to each segment. The same
shank LCS used to run the IHA algorithm was used, whereas the foot LCS was defined as
shown in Figure 3b and includes:

1. OF, the origin located at the centroid of the foot marker cluster;
2. a, antero-posterior axis oriented from FProxLat to FDistLat;
3. b, medio-lateral axis orthogonal to a axis, oriented toward FDistMed;
4. c, axis orthogonal to the plane (a,b).

By mathematical formulation, SARA considers that the estimated AoR, used to repre-
sent the relative motion between each LCS and the GCS, remains stationary with respect
to the corresponding segment. Rigid body transformations are performed to evaluate the
rotation matrices and translation vectors associated with each segment, which relate the
“fixed” reference marker set represented in each LCS to the corresponding time-varying
configuration in the GCS. This means that, for the shank segment, a rotation matrix Ri and
a translation vector Ti must be estimated, whereas, for the foot segment, separate matrix Si
and vector Di are considered. Each matrix and vector are evaluated for any time, similarly
to the IHA parameters. As detailed in the literature [26,40], this calculation is performed
by minimization of an objective function. This problem, which is equivalent to a linear
least squares one, is solved via SVD and yields the functional axis parameters for each LCS,
that is, a position vector c, which defines a reference point on the axis, and an orientation
vector v. These parameters, due to the nature of the algorithm, are time-independent;
therefore, two couples of constant vectors (cshank, vshank) and (cfoot, vfoot) are obtained as
a consequence of the SVD. Each couple identifies the position and the orientation of the
functional axis in the corresponding LCS. Due to measurement noise, when transformed in
the GCS by means of the (Ri, Si) matrices and the (Ti, Di) vectors, the axes identified by
each couple do not coincide, and therefore an average is performed for each time frame.

To ease the comparison between SARA and IHA approaches, the axes calculated by
both methods were represented in the shank LCS. Unlike the IHA approach, which is
subjected to an angular velocity threshold to avoid ill-posed estimation, SARA is able to
perform the AoR evaluation for all the time frames available.

2.2.3. Assessment of Functional Axes’ Dispersion and Accuracy

Compared to the SARA approach, given the different mathematical formulation,
the IHA methodology yields the estimation of generally quite scattered set of axes that
require some averaging, as already discussed regarding the MHA definition. However,
it is interesting to assess how much the axes are dispersed around an average position
and orientation. For this reason, linear (deff) and angular (χeff) dispersion parameters were
calculated as a measurement of the rms distance and orientation between the MHA and
the IHAs of the corresponding dataset [38].

Although it does not retain the same physical meaning, due to the different formula-
tion, the same methodology was applied to the SARA dataset so as to evaluate an average
AoR estimated by SARA algorithm. Indeed, due to the matrices (Ri, Si) and vectors (Ti,
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Di) being time-dependent, variability in the positioning and direction of the AoR must be
expected for the SARA method too.

While dispersion parameters allow one to assess the variability in joint kinematics,
they do not provide a measurement of the AoR estimation accuracy by themselves. Indeed,
the axes might result to be quite low scattered but with a significant bias error in the
orientation or position relative to the real AoR. For this reason, a measurement of the
distance between the exact AoR, imposed by joint kinematics setup in the multi-body
model, and the estimated AoR (both with helical axis and SARA algorithms) was performed,
similarly to previous works in the literature [26]. To do so, the intersections between the
estimated AoR and two quasi-sagittal planes perpendicular to the v axis of the LCS (see
Figure 3a) and located at a distance of ±50 mm from the origin were evaluated. Similarly,
the intersections of the exact AoR with the two planes were also calculated. Then, the
distance between each couple of intersection points was computed in both quasi-sagittal
planes (dLat for the lateral and dMed for the medial side), yielding the final value of:

∆ =

√
dLat

2 + dMed
2

2
, (4)

where ∆ is the rms distance between exact and estimated AoRs, representing an overall
descriptor of the AoR estimation accuracy. The large distance (100 mm) selected between
the two quasi-sagittal planes was chosen to stress any misalignment between the exact AoR
and the estimated one. Moreover, the two planes have also an anatomical interpretation
since they could approximately represent two lateral and medial sagittal planes enclosing
the ankle complex and, in particular, the malleoli, which are relevant anatomical references
in the determining of the ankle joint rotation axis.

2.3. Motion Configurations Tested and Design of the Simulations
2.3.1. General Concepts

In this section, the design of the simulations performed on the multi-body model is
presented. While each of the following subsections refers to a certain set of simulations
(S1, S2, S3, and S4), based on a specific combination of parameters that will be discussed,
four common motion configurations were considered throughout the whole analysis. As
stated in Section 2.1.2, the same knee flexion/extension pattern was chosen for all the
simulations, and therefore the expression “motion configuration” refers only to the ankle
joint. In particular, the configurations tested are the following:

1. A: 1 DoF, flexion/extension about a fixed axis, parallel to the v axis;
2. B: 2 DoFs, flexion/extension about a moving axis, parallel to the v axis and translating

horizontally in the antero-posterior direction (directed backward);
3. C: 2 DoFs, screw-like helical motion, realized by means of flexion/extension occurring

about an axis parallel to the v axis, combined with a translation (directed laterally)
along the same axis;

4. D: 6 DoFs, tri-planar motion, flexion/extension occurs about an axis that has 3 transla-
tional DoFs, same trends as the ones selected for B and C configurations, and has an
average inclination in the frontal plane of 10 deg (the medial tip lower than the lateral
one). To simulate the limited contributions of the two remaining rotational DoFs, a
small oscillation of ±1 deg about the average axis position was introduced, with the
same curve trend of the flexion/extension DoF.

Not all the simulations presented in the following were repeated for each motion
configuration for the sake of clarity and conciseness. In particular, A e D configurations
were always considered since they represent, in our belief, the two most significant motion
conditions among the ones tested. The performance of the algorithms for the other con-
figurations (B and C) were discussed in the first set of simulations (S1), which is still the
most extended among the ones presented in this paper, to allow some discussion about
those specific patterns of motion. On the other hand, configuration A is the most simplistic
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one, and it allows for proving the performance of each algorithm in the most restrained
environment. Configuration D, although with some approximations, allows for testing the
algorithms in a more realistic environment, in which the joint under investigation has full
tri-planar motion. Such configuration is the one depicted in Figure 1. Translational and
rotational motion patterns for the other configurations (A, B, and C) were derived from
the 6-DoFs tri-planar motion by “turning off” the unnecessary DoFs. In all the motion
configurations tested, three full gait cycles were considered.

The noisy marker coordinates generated by the model, for each motion configuration
and simulation parameter selected, were then elaborated through the AoR estimation
algorithms shown in Sections 2.2.1 and 2.2.2. In particular, the helical axis estimation
was performed for the three different weighting factors shown in Equations (1)–(3) and
summarized in Table 2. Therefore, a total of four estimation algorithms were run for each
multi-body simulation considered. For each repetition, dispersion parameters (deff, χeff)
and rms distance ∆ were evaluated, as detailed in Section 2.2.3.

Table 2. Helical axis weighting and corresponding nomenclature used in the simulations.

Nomenclature Weight wi References

IHA (w.1) 1 [38]
IHA (w.2) sin(ϑi/2) [23,32]
IHA (w.3) sin2(ϑi/2) [34]

2.3.2. First Set, S1: Range and Speed of Motion Patterns

In the S1 set, different ranges of motion (ROMs) were defined for each configuration,
as follows:

1. A: ROM1 = (+10, −15) deg, ROM2 = (+20, −30) deg, ROM3 = (+30, −50) deg;
2. B: ROM1 = 0 mm, ROM2 = 2 mm, ROM3 = 4 mm;
3. C: ROM1 = 0 mm, ROM2 = 2 mm, ROM3 = 4 mm;
4. D: ROM1 = (+10, −15) deg, ROM2 = (+20, −30) deg, ROM3 = (+30, −50) deg.

In particular, the range of motion for configuration A only refers to the flexion/extension
angle, being the only DoF available. For configurations B and C (2 DoFs), the default
range (+20, −30) deg was selected for the flexion/extension, whereas different ROMs were
chosen for the translational DoF (horizontal displacement for B, lateral displacement for C
configuration). The range of motion of flexion/extension for configuration D was varied
similarly to configuration A, whereas the ROMs of the three translational DoFs were set as
constants and equal to 2 mm. For all the configurations, positive flexion/extension angles
refer to dorsiflexion, negative angles to plantarflexion.

The speed of each motion pattern was defined indirectly by tuning of the gait cycle
duration tcyc. Three values of cycle duration were considered, equal to 1.6 s, 1.2 s, and 0.8 s,
that correspond to increasing speed values labeled as V1, V2, and V3.

2.3.3. Second Set, S2: Scattering of the Markers within Each Cluster

In the S2 set, the scattering of the markers in each cluster was changed by tuning of
the gains kS and kF, as detailed in Section 2.1.1. Three values of each gain were selected,
equal to 0.75, 1, and 1.25. The 9 combinations of the gains were tested for configurations A
and D, with the default range of motion of flexion/extension equal to (+20, −30) deg. A
default cycle duration equal to 1.2 s was considered.

2.3.4. Third Set, S3: Speed of Motion Patterns and Sampling Frequency

Since the number of time frames obtained for each cycle can affect the performance of
the AoR estimation algorithms, due to different time discretization of a kinematic pattern,
several sampling frequencies f s were tested in the S3 set. These frequencies correspond to the
target frequency of the downsampling applied to the original trajectory data produced by
the model, which ran at 1000 Hz. The four values selected were equal to 100, 250, 500, and
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1000 Hz. For a fixed sampling frequency, the discretization of joint motion also depends on
its speed. For this reason, as considered in the S1 set, the speed of each motion pattern was
varied by tuning of the gait cycle duration tcyc, yielding the same three increasing values of
speed labeled as V1, V2, and V3. The simulations were performed for A and D configurations,
with the default range of motion of flexion/extension equal to (+20, −30) deg.

2.3.5. Fourth Set, S4: Common and Random Sources of Additive Noise on Markers’
Trajectories

In the S4 set, the effect of the different sources of accuracy errors was observed by
tuning of the values SNRcmn and SNRrnd to evaluate the sensitivity of the AoR estima-
tion algorithms to common (rigid) and random (non-rigid) additive noise on marker’s
trajectories. Four values were tested for each gain, that is, 100, 90, 80, and 70 dB. The
simulations were performed for A and D configurations, with the default range of motion
of flexion/extension equal to (+20, −30) deg. A default cycle duration equal to 1.2 s was
considered.

3. Results

The results of the simulations detailed in Sections 2.3.2–2.3.5 are here presented. Each
subsection refers to a specific set of simulations. For each set of simulations, the angular
and linear dispersion parameters, as well as the rms distance values between the exact and
estimated AoRs, were calculated. This process was repeated for each algorithm tested, that
is, the IHA, with three different weighting factors (Table 2), and SARA. In the following, the
main results of these analyses are presented, while the complete sets of results are reported
in Appendix A for the sake of conciseness.

3.1. Results of S1 Set: Range and Speed of Motion Patterns

Figure 4 shows an example of IHA sets resulting from the analyses, along with the
resulting dispersion parameters and MHA, when a constant weighting factor is selected.
The same calculation was performed for all the ROM/speed combinations and weighting
factors, and then the results were compared to the outcomes of the SARA approach. Figure 5
shows a direct comparison between the MHAs obtained with the different weighting factors
and the functional axes calculated with the SARA algorithm for motion configuration A.
The exact AoR is also shown to ease the interpretation of the results. The same comparison,
performed for configuration D, is shown in Figure 6, in two different views. All the plots
refer to the shank LCS. The full set of the dispersion parameters and the rms distance
resulting from the analysis is reported in Appendix A, Table A1. The number of frames
(Nf) considered by each algorithm is also presented.
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Given the constant sampling rate equal to 100 Hz, an increase in motion speed corre-
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performing on the lowest number of samples, the IHA algorithm exhibits a relevant de-
crease in the general performance, even in configuration A, as signaled by the increase in 
the linear dispersion. Especially for configurations A and B, this effect seems even clearer 
when the largest ROMs are considered, with the linear dispersion increasing up to 16.7 
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Figure 4. IHA (yellow lines) and MHA (black dashed line) estimation for different motion config-
urations: (a) 1 DoF, flexion/extension; (b) 2 DoFs, flexion/extension + horizontal displacement;
(c) 2 DoFs, helical motion; (d) 6 DoFs, tri-planar motion. Linear (in mm) and angular (in deg) disper-
sion parameters are reported in each plot. Lateral and medial tips of the exact AoR are represented
in red and blue colors, green points are the intersection of the IHAs with two quasi-sagittal planes
orthogonal to v axis and located at ±50 mm from the origin of the shank LCS.
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Figure 5. AoRs calculated with MHA, by choosing different weighting factors, and SARA, for motion
configuration A. Each row and column correspond to a particular range of motion (ROM) and speed
(V) selected, using the same nomenclature detailed in Section 2.3.2. The exact AoR imposed by joint
kinematics setup is highlighted in dashed black line. All axes units are in mm.

Given the constant sampling rate equal to 100 Hz, an increase in motion speed cor-
responds to a reduction in the number of frames available to represent each gait cycle.
When performing on the lowest number of samples, the IHA algorithm exhibits a relevant
decrease in the general performance, even in configuration A, as signaled by the increase in
the linear dispersion. Especially for configurations A and B, this effect seems even clearer
when the largest ROMs are considered, with the linear dispersion increasing up to 16.7 mm
(conf. A) and 27.8 mm (conf. B). Curiously, the linear dispersion of the IHA set observed
for configuration B is orthogonal to the horizontal displacement of the exact AoR imposed
by the model, as shown in Figure 4b. Regarding the helical motion configuration (C), the
IHA algorithm performs similarly for any of the ROMs considered; however, the linear dis-
persion is still increased and exceeds 10 mm at the highest speed. For the tri-planar motion
configuration (D), the IHA algorithm shows similar results in terms of linear dispersion
when the narrower ROMs are selected, regardless of the speed selected. However, for the
widest ROM, a similar increase in linear dispersion is obtained at highest speed. As far as
the rms distance ∆ is concerned, the same dependency with the ROM/speed combinations
shown for the linear dispersion parameters is observed.
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Figure 6. AoRs calculated with MHA, by choosing different weighting factors, and SARA, for motion
configuration D. The axes are represented in two views: (a) transverse (horizontal) plane; (b) frontal
plane. Each row and column correspond to a particular range of motion (ROM) and speed (V)
selected, using the same nomenclature detailed in Section 2.3.2. The exact AoR imposed by joint
kinematics setup is highlighted in dashed black line. All axes units are in mm.

As regards the angular dispersion of the IHA sets, the results do not show a significant
correlation with the ROM/speed combination selected. In particular, the angular dispersion
is always lower than 1.4 deg for configuration A, 0.8 deg for configuration B, 1.1 deg
for configuration C, and 7 deg for configuration D. The increase in angular dispersion
in tri-planar motion is expected due to the increased variability of the exact AoR in that
configuration. Those values refer to the worst scenario, whereas, in the average ROM/speed
combination, the angular dispersion is lower than 0.6 deg for configurations A and B, 0.8 deg
for configuration C, and 3.5 deg for configuration D. The largest dispersion values are
always obtained when a constant weighting factor is selected. The use of the other different
weighting factors definitely reduces the angular dispersion of the IHA sets; however, it also
has a negative impact on the estimation of the MHA location, as signaled by the increased
rms distance. This effect is observed in most of the ROM/speed combinations selected;
however, it is far more evident in A and C configurations.

Compared to the helical axis method, the SARA algorithm shows far more stable
results for most of the ROM/speed combinations selected, as expected. This result is partic-
ularly evident in A, B, and C configurations, both by considering the linear and angular
dispersion values. The linear dispersion reaches 0.04 mm for the A and C configurations,
both of which consider a stationary AoR along the u and w axes of the shank LCS, whereas
it increases up to 0.52 mm and 2.54 mm for B and D configurations, respectively. Similar
results are obtained as far as the angular dispersion is concerned, achieving values lower
than 0.3 deg for all the ROM/speed combinations and motion configurations tested. How-
ever, the most significant improvement shown by the SARA methodology is related to
the estimation accuracy of the AoR, as signaled by the low rms distance. For most of the
ROM/speed combinations, the rms distance ∆ measured between the SARA-estimated
and the exact AoRs is lower than the one calculated by considering the MHA. This result
is particularly evident for A (see Figure 5) and C configurations (∆ lower than 0.04 mm);
however, it is confirmed for most of the trials performed by choosing the B configuration.
Interestingly, the results obtained for the tri-planar motion configuration (D, see Figure 6)
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are comparable with the ones yielded by the helical axis methodology, with the latter
performing even better in a few ROM/speed combinations. In particular, the IHA algo-
rithm shows a limited improvement in the AoR estimation accuracy for the narrowest and
average ROMs, regardless of the speed selected.

3.2. Results of S2 Set: Scattering of the Markers within Each Cluster

The dispersion parameters and the rms distance resulting from the analysis, for the
different gains kS and kF tested, are reported in Appendix A, Table A2.

As far as the linear and angular dispersion parameters are concerned, no significant
dependency with the different scattering is observed. In any of the combinations selected,
the linear dispersion is lower than 2.5 mm when a simple 1-DoF motion configuration (A)
is considered, and it increases up to about 11.3 mm when tri-planar motion (D) is imposed.
Similarly, angular dispersion is always lower than 0.75 deg in configuration A and lower
than 3.5 deg in configuration D.

As far as the rms distance is concerned, the SARA outperforms the helical axis for
all the combinations tested in configuration A, whereas the helical axis algorithm shows
better estimation accuracy for four out of nine trials performed in configuration D. Unlike
the dispersion parameters, an increased variability in the estimation accuracy depending
on the different scattering combinations is observed for the 1-DoF configuration. For
kS = 0.75, the least-accurate results are obtained when the largest scattering of the foot
cluster is selected. In the other conditions (kS = 1 or kS = 1.25), the least-accurate estimation
is obtained when the lowest and average scattering of the markers in the foot cluster is
considered. However, the absolute differences between the rms distance values resulting
from each trial are quite limited and do not signal a particular trend. In configuration D,
the ∆ values obtained are almost constant and do not seem to be correlated to the several
scattering combinations tested.

3.3. Results of S3 Set: Speed of Motion Patterns and Sampling Frequency

The dispersion parameters and the rms distance values resulting from the analysis, for
the different speed and sampling frequency values selected, are presented in Appendix A,
Table A3. The number of frames (Nf) considered by each algorithm is also presented.

When the lowest (V1) and average (V2) speed are considered, a limited improvement
in the estimation of AoR positioning is observed by rising the sampling frequency for
configuration A, whereas no significant improvement is shown for configuration D. In
particular, for the 1-DoF motion configuration, the linear dispersion and rms distance are
halved at 1000 Hz (about 1 mm), while the angular dispersion falls below 0.3 deg (starting
from 0.9–1.64 deg at 100 Hz).

At highest speed (V3), the improvement in linear dispersion and rms distance obtained
at a high sampling rate is evident for both motion configurations, although it is very clear
especially for configuration A. The linear dispersion obtained at 100 Hz (10.6 mm) is
reduced to 2.46 mm at 250 Hz, and it falls below 2 mm at higher frequencies. Similarly, the
angular dispersion is generally reduced and achieves a very low magnitude (below 0.1 deg)
at maximum frequency. The same behavior is observed for configuration D; however, the
improvement in estimation accuracy is less significant.

The AoR estimation based on the SARA method shows an almost constant level of
accuracy for most of the trials analyzed, which is generally higher than the one observed
for the IHA approach. Figure 7 shows the estimation of the angular velocity performed by
the IHA algorithm and its comparison with the angular velocity set as input of the multi-
body model, by choosing motion configuration A. As shown in Figure 7a, the evaluation
accuracy of the angular velocity at low speed (V1) is very high, as the AoR estimation.
Figure 7b shows the same signals when a higher speed (V3) is selected. In this condition,
by assuming a constant sampling rate, the angular velocity is predicted with less accuracy
as compared to the result shown in Figure 7a. This outcome affects the accuracy of AoR
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estimation performed by means of the helical axis approach, whereas it has no impact on
SARA methodology.
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Figure 7. The absolute value of the angular velocity signal, as imposed by the model (ωAnkle, dashed
line) in motion configuration A, and as estimated by the IHA algorithm (ωIHA). The two plots were
obtained by considering the same sampling frequency (f S = 100 Hz) and different motion speed:
(a) lowest speed, V1; (b) highest speed, V3. Dispersion parameters are reported in each plot.

3.4. Results of S4 Set: Common and Random Sources of Additive Noise on Markers’ Trajectories

In Appendix A, Table A4, the dispersion parameters and the rms distance resulting
from the analysis are collected for different combinations of common and random noise
signals added to the markers’ trajectories provided by the multi-body model. Figures 8
and 9 show a direct comparison between the MHAs obtained with the different weighting
factors and the functional axes calculated with the SARA algorithm, respectively, for motion
configurations A and D. The exact AoR is also shown to ease the interpretation of the results.
All the plots refer to the shank LCS.

The results highlight the significant impact of marker noise on the accuracy of AoR
estimated by helical axis methodology. This effect seems to be particularly highlighted
in the transition between SNRcmn = 100 dB and SNRcmn = 90 dB, and it increases at low
SNRrnd values. For SNRcmn values lower than 90 dB, the addition of a random noise signal
does not seem to increase the linear dispersion of the IHA sets in a significant way. The
same behavior is highlighted both in A and D motion configurations. On the other hand,
the angular dispersion is generally increased by lowering the SNRs of both source signals,
and this effect is even more relevant for configuration A. Surprisingly, although linear and
angular dispersion parameters show a significant increase even at relatively low levels of
noise, the accuracy of AoR estimation by means of the MHA is generally not compromised
for SNRcmn higher than 80 dB, regardless of the SNRrnd values selected. This effect is more
evident for configuration A as compared to the tri-planar motion configuration (D).
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Figure 8. AoRs calculated with MHA, by choosing different weighting factors, and SARA, for motion
configuration A. Each row and column correspond to a particular level of common and random
noise signals, in terms of signal-to-noise ratios. The exact AoR imposed by joint kinematics setup is
highlighted in dashed black line. All axes units are in mm.
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Figure 9. AoRs calculated with MHA, by choosing different weighting factors, and SARA, for motion
configuration D. Each row and column correspond to a particular level of common and random
noise signals, in terms of signal-to-noise ratios. The exact AoR imposed by joint kinematics setup is
highlighted in dashed black line. All axes units are in mm.
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By comparing the results presented so far with the outcomes of the SARA approach,
the latter clearly outperforms the helical axis methodology for all the noise conditions tested
(see Figures 8 and 9). In particular, the rms distance between the exact and estimated AoRs
remains at very low values (below 5 mm) for almost all the trials, whereas it reaches about
20 mm (in the worst scenario) when the helical axis method is used. Figure 10 shows the
estimation of the angular velocity performed by the IHA algorithm and its comparison with
the angular velocity set as input of the multi-body model by choosing motion configuration
A and different SNRcmn values. A progressively worse evaluation of the angular velocity is
obtained by increasing the SNR of the common noise signal, affecting the accuracy of the
estimation algorithm.
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Figure 10. The absolute value of the angular velocity signal, as imposed by the model (ωAnkle, dashed
line) in motion configuration A, and as estimated by the IHA algorithm (ωIHA). The plots were
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100 dB; (b) SNRcmn = 90 dB; (c) SNRcmn = 80 dB; (d) SNRcmn = 70 dB.

4. Discussion

This paper proposed a comparison between the helical axis and SARA approaches
for the estimation of functional joint axes, starting from simulated motion capture data
provided by the multi-body modeling approach. Compared to similar studies from the
literature that considered simulated motion data [26], the multi-body model provided
additional flexibility to the configuration of the motion patterns, thus allowing an extended
comparison between the performance of the two methodologies considered. In particular,
this work provided a quantitative analysis in terms of dispersion and estimation accuracy of
the functional joint axes estimated by the two algorithms that can improve the knowledge
of the algorithms themselves, in support to other studies that compared the methods by a
mathematical perspective [34]. Moreover, the effect of the different weighting factors in
MHA estimation has not really been discussed by objective evaluation of the results, as
presented in the current work. Reichl et al. [40] presented a comparison between finite
helical axis and SARA on simulated motion data; however, they focused on a simpler
knee joint model based on a compound hinge joint with 2 DoFs and did not provide any
discussion about marker positioning, speed of motion patterns, and sampling rate. A
similar analysis was conducted by the authors on experimental data [35]; however, this
approach lacks the possibility to change the conditions of the trials with the same flexibility
shown in the current paper.

4.1. AoR Estimation by Means of Helical Axis Is Significantly Affected by Time Discretization

As reported in Section 3.1, by varying the range and speed of motion patterns, a sig-
nificant dependency between estimation accuracy and the number of time frames available
was observed for the IHA algorithm. In particular, this phenomenon was highlighted when
high speed and range of motion are considered. Indeed, given the constant sampling rate of
the simulated motion capture data, those conditions correspond to the worst time discretiza-
tion of the trajectories used to reconstruct joint motion. As confirmed by the simulations
presented in Section 3.3, the improvement in IHA estimation accuracy, when higher than
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100 Hz sampling frequencies are selected, is obvious, as signaled by the low values of linear
dispersion deff and rms distance ∆ achieved (Table A3). Of course, high sampling frequency
values such as 1000 Hz are not desirable during real experimentation due to the limitations
of the instrumentation and data acquisition systems, though significant improvements in
estimation accuracy are shown even for more feasible solutions, such as 250 and 500 Hz.
Moreover, high discretization would result in a large number of time frames that can affect
the efficiency of the algorithms in applications where the computational time is relevant. As
shown in Section 3.3, the SARA approach does not seem to be significantly influenced by
the number of time frames, regardless of the speed selected. This result is quite interesting
and widens the field of application of this methodology to fast and wide motion patterns,
even for relatively low sampling frequency. The dependency between AoR estimation
accuracy, in terms of linear dispersion, and time discretization of the motion patterns is
highlighted by the results shown in Figures 11a and 12a for representative conditions.
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sampling rate. Results are shown for IHA (w.1) and SARA algorithms.

The results presented in Section 3.1 show that, when the linear dispersion of the IHA
set is high, mainly due to large ROMs and speed, the rms distance is also increased (see
Figures 11b and 12b). This result signals that, in general, an increase in the linear dispersion
has an impact on the estimation accuracy of the MHA position, regardless of the weighting
factor chosen. As far as the angular dispersion χeff is concerned, it seems to be independent
of the several ROM/speed combinations tested, but it is affected far more significantly by
the weight selected for MHA estimation. In particular, the correction proposed by Ehrig
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et al. [34] shows the most limited angular dispersion among the several solutions, but it has
an impact on the accuracy of AoR estimation in terms of its positioning (see Table A1, IHA
(w.3) columns). The corresponding increase in rms distance was highlighted especially
for motion configurations A (1 DoF, flexion/extension) and C (2 DoFs, helical motion),
whereas it was quite negligible for the other configurations that share linear translation
DoF of the AoR along the antero-posterior direction. The presence of translational motion
occurring in the sagittal plane might mix up the analysis and should be investigated in
the future. However, the results obtained by choosing the different weighting factors do
not clearly support the use of one weight rather than the other. In general, the corrections
help in achieving a more confined set of helical axes; however, they may compromise the
identification of the correct location of the AoR.

4.2. SARA Generally Provides Better Estimation Accuracy Due to Its Intrinsic Stability

Compared to the helical axis approach, SARA highlighted the best performance
in terms of rms distance between the estimated AoR and the exact one, which is the
parameter used to assess the accuracy of the AoR estimation. In particular, this result
was confirmed for A, B, and C configurations for all the conditions tested, whereas both
algorithms performed in a similar way for the tri-planar motion configuration (D, as
shown in Figures 11b and 12b). As far as the linear and angular dispersion parameters are
concerned, SARA showed the lowest values in most of the conditions observed; however,
this result was expected since it is directly connected to its formulation being quite different
than the IHA’s. As presented in Section 2.2.2, SARA initially considers two separate LCSs,
respectively integral with the shank and foot, to evaluate the relative motion between each
segment and the fixed GCS. In this calculation, each AoR is considered stationary with
respect to the corresponding segment. Then, the functional axis obtained at the end of the
procedure is estimated as the average of the AoRs calculated for each segment. Compared
to the SARA approach, the helical axis does not consider any of those hypotheses for
determining the relative motion between two rigid segments, yet the additional freedom
of this methodology plays a key role in the “stability” of the results. For this reason, the
variability in the IHA sets is expected to be more pronounced than the one observed as
the outcome of the SARA algorithm. This aspect must be taken into account when the
two methods are compared. For tri-planar motion (see Table A1), the angular dispersion
obtained for the IHA approach is quite a good approximation of the actual orientation
variability of the joint AoR imposed by the model; however, this is not confirmed for all
the ROM/speed tested. On the contrary, linear dispersion is always an overestimation of
the actual linear variability of the joint AoR. This confirms the weakness of the helical axis
approach in determining the correct positioning of the AoR, already highlighted in the
literature [34].

4.3. SARA Is More Suitable Than IHA for Kinematic Analyses Based on Noisy Markers’
Trajectories

As pointed out in the literature [40], the intrinsic variability of the helical axis approach
also affects its sensitivity to noise. As confirmed by the results presented in Section 3.4, in
which different levels of additive noise were considered to alter the markers’ trajectories as
provided by the multi-body model, the performance of the IHA algorithm considerably
worsen when SNRcmn values lower than 80 dB are selected. In particular, the AoR esti-
mation accuracy seems to be mainly affected by the source of the common noise signal,
which is used to simulate non-rigid deformations of the marker clusters such as the one
related to the soft tissue artifact. Oddly, the rms distance measured at the maximum level
of the common noise signal decreases while lowering SNRrnd. This result might be due
to the high level of random noise, which could contribute to the overall noise signal by
subtracting to the common one. The SARA algorithm, on the other hand, can benefit from
the lack of numerical differentiation and filtering that IHA methodology requires [34,37];
therefore, it might be more suitable for any application based on position-based rather than



Appl. Sci. 2022, 12, 1274 20 of 25

velocity-based datasets, such as those provided by motion capture analysis. Numerical dif-
ferentiation can indeed intensify the effect of noise on marker coordinates and compromise
the reconstruction of joint kinematics. In addition, unlike the IHA methodology, the SARA
algorithm does not require the calculation of the foot DoFs relative to the shank LCS, thus
removing the impact of the errors associated with coordinate transformations. In support
of these considerations, the AoR estimation performed by the SARA algorithm was always
more accurate than the one obtained by application of the IHA methodology, even for high
levels of noise.

4.4. Different Scattering of the Marker Clusters Has a Limited Impact on AoR Estimation Accuracy

Finally, the simulations presented in Section 3.2, which considered different scatter-
ing of the marker clusters on the surface of each segment, showed that no significant
dependency between dispersion parameters and marker disposition was observed for both
algorithms. The larger variability in estimation accuracy was obtained for the 1-DoF motion
configuration (A); however, it was not possible to derive a correlation with the marker
scattering in each cluster. This aspect should be taken into account during experimentation
since marker positioning has an impact on bone pose estimation, which could not be
investigated with the modeling approach considered in this study.

4.5. Limitations

The main limitations of this work are represented by the approximations in the ankle
joint motion patterns that were provided as input for the multi-body model. In partic-
ular, the three rotational DoFs of the bushing joint do not accurately match the actual
physiological ones. Unlike the anatomical interpretation of joint axes (antero-posterior,
longitudinal, medio-lateral), the modeling of the joint in the multi-body approach considers
three mutually orthogonal axes. Moreover, the DoFs associated with any joint axes are
independent by mathematical formulation of the bushing. This feature leads to a simplified
representation of the joint DoFs, which result to be decoupled in the model, whereas they
cannot be isolated in the real scenario. For these reasons, the simulated flexion/extension,
adduction/abduction, and inversion/eversion motion patterns can only approximate the
real joint DoFs and have limited meaning from the anatomical/physiological point of view.
However, this approximation was considered reasonable for the aim of the current work,
which focused on the objective evaluation of the helical axis and SARA techniques in a
realistic scenario, rather than on the accurate representation of ankle joint motion through
multi-body modeling. Moreover, this simplification greatly facilitates the formulation of
the model.

5. Conclusions

This paper showed a comparison between different approaches for the estimation of
functional joint axes. The work was conducted at a simulation level by developing a multi-
body model resembling the lower limb of a subject, which was used to generate simulated
motion capture data. The helical axis and SARA approaches were used to estimate the AoR
of the simulated ankle joint for several motion patterns and testing conditions. The main
conclusions are reported in the following:

1. For the 1-DoF and 2-DoFs configurations, the SARA proves to be more accurate than
the helical axis methodology, regardless of the different conditions considered;

2. For the 6-DoFs configuration, the SARA outperforms the helical axis approach when
a high level of noise is considered or when the number of samples used to discretize
the gait cycle is limited;

3. The IHA methodology allows a description of joint kinematics that is intrinsically less
constrained than the one enabled by the SARA. This could be useful when a more
detailed, time-dependent representation of joint kinematics is necessary.
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Appendix A

This section includes the dispersion parameters and rms distance values obtained for
each set of simulations (S1 . . . S4) and for the several algorithms tested.

Table A1. Dispersion parameters (deff, in mm, and χeff, in deg) and rms distance (∆, in mm) between
exact and estimated AoRs, for different ROMs and speeds tested. Results are given for A–D motion
configurations; the corresponding ranges (ROM1 . . . ROM3) and speeds (V1 . . . V3) are detailed in
Section 2.3.2. For each algorithm, the resulting number of time frames Nf is reported.

Conf. Trial IHA (w.1) IHA (w.2) IHA (w.3) SARA

ROM V Nf deff χeff ∆ Nf deff χeff ∆ Nf deff χeff ∆ Nf deff χeff ∆

A

ROM1 V1 410 2.12 1.35 0.25 410 2.13 0.28 0.40 410 2.15 0.07 0.57 480 0.04 0.02 0.03
ROM1 V2 349 3.08 0.77 0.03 349 3.08 0.17 0.17 349 3.10 0.05 0.28 360 0.03 0.02 0.04
ROM1 V3 234 6.27 0.31 0.39 234 6.29 0.06 0.52 234 6.32 0.02 0.52 240 0.03 0.02 0.02
ROM2 V1 463 1.66 0.43 0.10 463 1.67 0.12 0.17 463 1.68 0.04 0.28 480 0.04 0.02 0.02
ROM2 V2 354 1.99 0.50 0.03 354 2.00 0.15 0.12 354 2.01 0.05 0.25 360 0.03 0.02 0.01
ROM2 V3 240 11.1 0.23 0.52 240 11.1 0.08 0.54 240 11.3 0.03 1.60 240 0.03 0.02 0.01
ROM3 V1 470 1.48 0.56 0.05 470 1.48 0.21 0.11 470 1.49 0.09 0.21 480 0.04 0.02 0.01
ROM3 V2 360 1.79 1.22 0.07 360 1.80 0.50 0.16 360 1.82 0.25 0.32 360 0.03 0.02 0.01
ROM3 V3 240 16.7 0.23 0.45 240 16.8 0.09 2.28 240 17.6 0.04 5.69 240 0.03 0.02 0.01

B

ROM1 V1 463 1.85 0.47 0.05 463 1.86 0.13 0.08 463 1.86 0.04 0.15 480 0.04 0.02 0.01
ROM1 V2 354 2.07 0.44 0.14 354 2.07 0.11 0.18 354 2.08 0.03 0.24 360 0.03 0.02 0.01
ROM1 V3 240 11.2 0.04 0.47 240 11.2 0.01 0.26 240 11.4 0.01 1.43 240 0.03 0.02 0.01
ROM2 V1 463 8.77 0.36 0.37 463 8.78 0.10 0.48 463 8.77 0.04 0.12 480 0.26 0.02 0.26
ROM2 V2 354 8.81 0.46 0.22 354 8.82 0.13 0.33 354 8.82 0.04 0.15 360 0.23 0.02 0.24
ROM2 V3 240 13.2 0.43 0.65 240 13.2 0.14 0.59 240 13.3 0.06 1.27 240 0.23 0.01 0.24
ROM3 V1 463 17.4 0.25 0.41 463 17.4 0.07 0.83 463 17.4 0.02 0.25 480 0.52 0.02 0.51
ROM3 V2 354 17.3 0.75 0.47 354 17.4 0.22 0.77 354 17.4 0.08 0.15 360 0.46 0.02 0.49
ROM3 V3 240 27.8 0.29 0.74 240 27.9 0.12 2.18 240 28.0 0.05 3.46 240 0.46 0.02 0.48

C

ROM1 V1 463 1.62 0.33 0.02 463 1.63 0.09 0.11 463 1.66 0.03 0.24 480 0.04 0.02 0.02
ROM1 V2 354 1.86 0.25 0.06 354 1.87 0.07 0.15 354 1.88 0.02 0.24 360 0.03 0.02 0.01
ROM1 V3 240 11.1 0.09 0.52 240 11.1 0.03 0.51 240 11.3 0.01 1.51 240 0.03 0.01 0.01
ROM2 V1 463 2.20 0.33 0.10 463 2.21 0.09 0.06 463 2.22 0.04 0.14 480 0.03 0.02 0.02
ROM2 V2 354 2.07 0.78 0.11 354 2.07 0.24 0.09 354 2.08 0.09 0.12 360 0.03 0.02 0.02
ROM2 V3 240 11.5 0.14 0.54 240 11.6 0.05 0.48 240 11.9 0.02 1.54 240 0.03 0.02 0.01
ROM3 V1 463 1.70 0.23 0.09 463 1.72 0.07 0.11 463 1.75 0.03 0.20 480 0.03 0.02 0.02
ROM3 V2 354 1.96 1.04 0.11 354 1.96 0.29 0.11 354 1.97 0.10 0.20 360 0.03 0.02 0.01
ROM3 V3 240 10.9 0.11 0.49 240 10.9 0.04 0.40 240 11.1 0.01 1.45 240 0.03 0.02 0.01

D

ROM1 V1 429 22.7 6.31 3.91 429 22.7 2.10 3.78 429 22.7 0.71 3.66 480 0.29 0.25 4.59
ROM1 V2 349 23.3 5.93 4.27 349 23.3 1.97 4.23 349 23.3 0.66 4.20 360 0.50 0.24 4.70
ROM1 V3 234 23.7 6.05 4.43 234 23.7 2.02 4.46 234 23.7 0.68 4.51 240 0.45 0.24 4.63
ROM2 V1 463 11.1 3.34 2.32 463 11.1 1.32 2.31 463 11.1 0.54 2.41 480 0.31 0.27 6.55
ROM2 V2 354 11.3 3.30 2.33 354 11.3 1.29 2.32 354 11.3 0.52 2.40 360 2.54 0.26 2.84
ROM2 V3 240 14.2 4.50 2.70 240 14.2 1.96 2.93 240 14.3 0.88 3.51 240 2.44 0.26 2.97
ROM3 V1 470 7.12 2.32 1.64 470 7.12 1.12 1.61 470 7.13 0.57 1.72 480 0.30 0.28 1.57
ROM3 V2 360 7.13 2.62 1.61 360 7.13 1.31 1.63 360 7.14 0.69 1.88 360 0.28 0.27 1.54
ROM3 V3 240 16.9 3.31 1.91 240 17.1 1.74 2.83 240 17.9 0.96 5.37 240 0.29 0.27 1.54
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Table A2. Dispersion parameters (deff, in mm, and χeff, in deg) and rms distance (∆, in mm) between
exact and estimated AoRs for different levels of marker scattering in each cluster. kS refers to the
shank, kF to the foot (details in Section 2.1.1). Results are given for A and D motion configurations.

Conf. Trial IHA (w.1) IHA (w.2) IHA (w.3) SARA

kS kF deff χeff ∆ deff χeff ∆ deff χeff ∆ deff χeff ∆

A

0.75 0.75 2.30 0.23 0.10 2.31 0.06 0.07 2.32 0.02 0.17 0.03 0.02 0.02
0.75 1 2.01 0.70 0.09 2.02 0.21 0.07 2.04 0.07 0.11 0.03 0.02 0.01
0.75 1.25 2.18 0.33 0.15 2.19 0.09 0.20 2.26 0.03 0.28 0.03 0.02 0.04

1 0.75 2.05 0.37 0.08 2.06 0.11 0.15 2.07 0.04 0.26 0.03 0.02 0.01
1 1 1.91 0.26 0.13 1.92 0.07 0.24 1.93 0.02 0.36 0.03 0.01 0.01
1 1.25 1.88 0.44 0.06 1.88 0.12 0.08 1.89 0.04 0.16 0.03 0.01 0.01

1.25 0.75 1.89 0.37 0.04 1.89 0.10 0.15 1.91 0.03 0.28 0.03 0.02 0.01
1.25 1 1.95 0.23 0.17 1.95 0.06 0.27 1.97 0.02 0.38 0.03 0.01 0.02
1.25 1.25 1.93 0.74 0.05 1.93 0.22 0.05 1.94 0.09 0.12 0.03 0.01 0.01

D

0.75 0.75 11.4 3.31 2.32 11.4 1.30 2.28 11.4 0.53 2.33 0.30 0.27 2.43
0.75 1 11.2 3.26 2.29 11.2 1.29 2.25 11.2 0.52 2.28 3.85 0.27 2.43
0.75 1.25 11.2 3.27 2.34 11.3 1.29 2.29 11.2 0.52 2.29 0.30 0.27 2.49

1 0.75 11.2 3.24 2.33 11.2 1.28 2.34 11.2 0.51 2.46 0.31 0.27 3.54
1 1 11.2 3.25 2.33 11.2 1.28 2.30 11.2 0.52 2.37 0.31 0.27 2.80
1 1.25 11.3 3.26 2.34 11.3 1.28 2.31 11.3 0.52 2.35 0.46 0.27 3.99

1.25 0.75 11.2 3.25 2.29 11.2 1.29 2.28 11.2 0.52 2.41 0.32 0.27 4.08
1.25 1 11.2 3.24 2.32 11.1 1.28 2.29 11.2 0.52 2.37 0.30 0.27 2.60
1.25 1.25 11.3 3.26 2.34 11.3 1.28 2.32 11.3 0.52 2.39 0.30 0.27 2.42

Table A3. Dispersion parameters (deff, in mm, and χeff, in deg) and rms distance (∆, in mm) between
exact and estimated AoRs for different speeds and sampling frequency, in Hz, tested. Results are
given for A and D motion configurations; the selected speed values (V1 . . . V3) are detailed in
Section 2.3.4. For each algorithm, the resulting number of time frames Nf is reported.

Conf. Trial IHA (w.1) IHA (w.2) IHA (w.3) SARA

V f S Nf deff χeff ∆ Nf deff χeff ∆ Nf deff χeff ∆ Nf deff χeff ∆

A

V1 100 463 1.96 1.64 0.07 463 1.96 0.49 0.13 463 1.97 0.17 0.25 480 0.03 0.02 0.01
V1 250 1160 1.42 1.38 0.08 1160 1.42 0.42 0.07 1160 1.43 0.16 0.13 1200 0.04 0.02 0.01
V1 500 2318 1.10 0.15 0.02 2318 1.10 0.05 0.05 2318 1.10 0.02 0.11 2400 0.04 0.02 0.01
V1 1000 4633 0.80 0.12 0.02 4633 0.80 0.03 0.05 4633 0.80 0.01 0.08 4800 0.04 0.02 0.01
V2 100 354 1.96 0.94 0.01 354 1.96 0.27 0.11 354 1.97 0.10 0.24 360 0.04 0.02 0.01
V2 250 887 1.55 0.47 0.04 887 1.55 0.14 0.11 887 1.57 0.05 0.21 900 0.03 0.02 0.01
V2 500 1769 1.62 0.14 0.06 1769 1.62 0.03 0.08 1769 1.64 0.01 0.15 1800 0.03 0.02 0.01
V2 1000 3540 1.03 0.26 0.06 3540 1.03 0.07 0.06 3540 1.04 0.02 0.08 3600 0.03 0.02 0.01
V3 100 240 10.6 0.17 0.47 240 10.7 0.06 0.39 240 11.1 0.02 1.48 240 0.03 0.02 0.01
V3 250 591 2.46 0.46 0.28 591 2.50 0.16 0.62 591 2.67 0.07 1.14 600 0.03 0.02 0.01
V3 500 1194 1.95 0.30 0.08 1194 1.95 0.08 0.12 1194 1.96 0.03 0.17 1200 0.03 0.02 0.01
V3 1000 2383 1.35 0.02 0.02 2383 1.35 0.01 0.05 2383 1.36 0.00 0.12 2400 0.03 0.01 0.01

D

V1 100 463 11.1 3.60 2.34 463 11.1 1.42 2.32 463 11.1 0.58 2.41 480 0.30 0.27 2.35
V1 250 1162 11.1 3.27 2.31 1162 11.1 1.30 2.28 1162 11.1 0.53 2.34 1200 0.31 0.27 2.63
V1 500 2319 11.2 3.28 2.32 2319 11.2 1.31 2.30 2319 11.2 0.54 2.37 2400 0.30 0.27 2.51
V1 1000 4637 11.2 3.27 2.33 4637 11.2 1.31 2.32 4637 11.2 0.54 2.41 4800 0.30 0.27 2.35
V2 100 354 11.3 3.29 2.30 354 11.3 1.30 2.28 354 11.3 0.52 2.35 360 1.21 0.26 2.38
V2 250 887 11.2 3.35 2.33 887 11.2 1.35 2.30 887 11.2 0.56 2.37 900 0.29 0.27 2.34
V2 500 1771 11.3 3.31 2.32 1771 11.3 1.32 2.30 1771 11.3 0.54 2.39 1800 0.31 0.26 2.35
V2 1000 3541 11.3 3.35 2.32 3541 11.3 1.34 2.31 3541 11.3 0.55 2.39 3600 0.29 0.26 2.36
V3 100 240 14.7 4.42 2.70 240 14.7 1.92 2.92 240 14.8 0.86 3.46 240 0.29 0.25 2.35
V3 250 591 10.3 4.52 2.63 591 10.3 1.96 2.85 591 10.4 0.87 3.24 600 0.30 0.26 2.36
V3 500 1194 11.5 3.35 2.32 1194 11.5 1.34 2.29 1194 11.5 0.55 2.35 1200 2.67 0.26 3.04
V3 1000 2385 11.5 3.35 2.32 2385 11.5 1.35 2.30 2385 11.5 0.56 2.37 2400 0.28 0.26 2.35
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Table A4. Dispersion parameters (deff, in mm, and χeff, in deg) and rms distance (∆, in mm) between
exact and estimated AoRs for different common (SNRcmn) and random (SNRrnd) signal-to-noise
ratios (in dB) of the corresponding sources of noise signals. Results are given for A and D motion
configurations.

Conf. Trial IHA (w.1) IHA (w.2) IHA (w.3) SARA

SNRcmn SNRrnd deff χeff ∆ deff χeff ∆ deff χeff ∆ deff χeff ∆

A

100 100 1.91 1.30 0.10 1.91 0.35 0.06 1.95 0.11 0.14 0.02 0.01 0.01
100 90 3.87 3.71 0.24 3.88 0.98 0.20 3.89 0.32 0.33 0.07 0.05 0.02
100 80 8.04 10.0 1.37 8.06 2.76 0.83 8.10 0.97 0.55 0.21 0.16 0.08
100 70 14.5 7.69 0.88 14.5 2.11 0.83 14.6 0.77 1.11 0.62 0.49 0.55
90 100 14.7 7.69 0.83 14.7 2.11 0.67 14.7 0.77 0.98 0.62 0.49 0.55
90 90 19.4 25.0 6.10 19.4 7.57 5.29 19.5 2.92 3.92 0.63 0.49 0.52
90 80 25.6 29.2 15.1 25.6 8.88 15.8 25.7 3.41 15.9 0.66 0.53 0.54
90 70 30.1 10.8 3.52 30.1 3.52 3.77 30.1 1.43 3.36 0.89 0.71 1.08
80 100 32.7 10.8 3.78 32.7 3.52 4.10 32.8 1.43 3.83 0.90 0.71 1.07
80 90 31.9 10.8 3.56 31.9 3.50 4.00 31.9 1.43 3.81 0.93 0.71 1.01
80 80 32.2 26.6 22.4 32.2 8.14 22.6 32.2 3.14 23.5 0.98 0.72 1.10
80 70 32.5 37.4 21.8 32.6 11.1 19.5 32.7 4.23 18.7 1.19 0.86 1.71
70 100 53.1 37.4 21.9 53.1 11.1 20.3 53.1 4.23 20.1 1.32 0.86 1.74
70 90 31.7 37.5 23.9 31.8 11.1 22.3 31.9 4.26 22.1 1.45 0.85 1.74
70 80 35.7 36.1 22.0 35.8 10.9 21.1 36.5 4.15 21.1 1.59 0.86 1.59
70 70 32.3 35.3 12.7 32.4 10.8 14.3 32.9 4.15 15.9 1.82 0.98 2.16

D

100 100 11.1 3.32 2.36 11.1 1.30 2.33 11.1 0.52 2.40 0.30 0.27 2.40
100 90 11.4 3.56 2.31 11.4 1.38 2.25 11.4 0.55 2.26 0.31 0.27 2.42
100 80 14.6 8.32 2.83 14.6 3.11 2.74 14.6 1.21 2.65 0.38 0.31 2.60
100 70 24.9 15.0 4.73 24.9 5.56 4.32 25.0 2.18 3.83 0.77 0.55 2.36
90 100 25.1 15.8 5.69 25.1 5.84 5.17 25.1 2.28 4.54 0.77 0.55 2.38
90 90 24.9 15.6 5.40 24.9 5.77 4.91 25.0 2.26 4.30 0.82 0.55 7.01
90 80 24.9 12.7 2.92 24.9 4.66 2.67 25.0 1.79 2.40 0.81 0.58 2.40
90 70 23.6 28.9 7.67 23.6 10.5 6.95 23.7 4.15 6.27 1.07 0.73 2.51
80 100 26.0 28.9 10.2 26.0 10.5 9.36 26.1 4.15 8.62 1.06 0.73 2.49
80 90 24.1 28.6 8.23 24.1 10.3 7.47 24.2 4.06 6.67 1.07 0.73 2.15
80 80 23.8 29.1 8.32 23.8 10.5 7.67 23.9 4.14 6.95 1.12 0.75 2.17
80 70 28.1 31.7 11.7 28.1 11.3 11.0 28.3 4.43 10.0 1.28 0.85 2.15
70 100 32.6 31.7 19.3 32.6 11.3 17.6 33.0 4.43 14.9 1.42 0.85 2.29
70 90 29.0 31.6 9.52 29.0 11.3 9.04 29.1 4.40 8.52 1.53 0.86 2.19
70 80 30.2 31.2 8.86 30.2 11.2 8.45 30.3 4.37 8.04 1.64 0.87 2.18
70 70 35.3 13.7 2.94 35.3 5.01 3.63 35.3 1.94 4.49 1.89 1.00 2.48
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