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Abstract: KxMnO2 materials with birnessite-type structure are synthetized by two different methods
which make it possible to obtain manganese oxides with different degrees of crystallinity. The XPS
results indicate that the sample obtained at high temperature (KMn8) exhibits a lower oxidation
state for manganese ions as well as a denser morphology. Both characteristics could explain the
lower capacity value obtained for this electrode. In contrast, the sample obtained at low temperature
(KMn4) or by hydrothermal method presents a manganese oxidation state close to 4 and a more
porous morphology. Indeed, in this case higher capacity values are obtained. At current density
of 30 mA g−1, the KMn8, KMn4, and HKMn samples display a capacity retention of 88, 82, and
68%, respectively. The higher capacity loss obtained for the HKMn compound could be explained
considering that the incorporation of Zn2+ in the structure gives rise to the stabilization of a ZnMn2O4

spinel-type phase. This compound is obtained in the discharge process but remains in the charge
stage. Thus, when this spinel-type phase is obtained the capacity loss increases. Moreover, the
stabilization of this phase is more favorable at low current rates where 100% of retention for all
samples, before 50 cycles, was observed.

Keywords: zinc-ion batteries (ZIBs); aqueous electrolyte; manganese oxide cathodes

1. Introduction

Today’s growing global demand for energy requires greener and more sustainable
storage technologies. In the field of energy conversion and storage, lithium-ion batteries
have successfully fulfilled a great proportion of global storage demand, but these devices
present important safety and environmental drawbacks [1]. The search for new low-cost
and environmentally friendly multivalent systems that offer high performance is thus a
current challenge. In this context, zinc-ion batteries (ZIBs) meet the requirements to be a
true alternative for various devices: high theoretical specific capacity, the use of aqueous
electrolytes, the natural abundance and safety of zinc [2]. In addition, ZIBs can be easily
fabricated in an open-air environment, which significantly reduces their overall production
cost [3]. Nevertheless, it is still necessary to overcome several fundamental and practical
problems for the extensive use of ZIBs to become the norm [4–6]. Aqueous ZIBs are
secondary Zn-based batteries, in which the storage and conversion of energy is realized
through the transfer of Zinc cations between the cathode and the anode. Thus, one of the
challenges is related to the increase in electrostatic interactions that inhibit the diffusion of
Zn2+ within the electrode structure, and hence, there is a shortage of electrode materials
capable of fast, reversible (de)intercalation of Zinc ions [7]. Moreover, intercalation of
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multivalent ions can also be impeded by hydrated cations which have to be desolvated
at the electrode–electrolyte interface. Another issue that has received a great attention
from the scientific community is the significant challenge of H+/Zn2+ co-intercalation in
aqueous media.

In this sense, our work focuses on various ZIBs built with non-expensive manganese
oxides with birnessite-type structure as cathodes, aqueous and innocuous electrolyte, and
Zn as anode. The electrolyte employed was a solution of 0.1 M Mn(II) nitrate and 2 M
Zn(II) nitrate. Thus, KxMnO2 materials employed as cathodes are prepared by straight-
forward, low cost and green methods in which tuned morphologies are obtained. Surface
modification of the manganese oxide electrode is considered a viable strategy to improve
electrochemical properties in aqueous zinc-ion batteries. Therefore, the paper aims to
analyse the influence of structural features and particle morphology in the electrochemical
performance of different birnessite-type manganese oxides.

2. Materials and Methods
2.1. Synthesis of Materials

Two methods are employed in the synthesis of manganese oxides to be used as
cathodes in ZIBs.

(1) Thermal reduction: KMnO4 (Sigma Aldrich, Madrid, Spain, 99%) is homogeneously
dispersed in a porcelain vessel and heated at temperatures of 400 and 800 ◦C for 6 h at
10 ◦C/min. After calcination, each material is washed with deionized water to remove
soluble salts (potassium manganates) formed during the process. These samples hereinafter
are called as KMn4 and KMn8, respectively.

(2) Hydrothermal method: the manganese oxides with birnessite structure are pre-
pared from 20 mL of 0.3 M KMnO4 (Sigma Aldrich, Madrid, Spain, 99%). This solution
is transferred to an autoclave and kept at 180 ◦C for 10 h. Once room environmental
temperature was reached, the powder obtained was filtered and dried on a stove at 80 ◦C
for 12 h. This sample is hereinafter referred to as HKMn.

2.2. Characterization Techniques

X-ray powder diffraction (XRD) patterns were registered at room temperature with a
PANanalytical X’PERT POWDER diffractometer using Cu (Kα) radiation with λ = 1.5406 Å.
Data were collected in the range 5◦ ≤ 2θ ≤ 120◦ range with a step of 0.0167◦ and analysed
by the Rietveld profile method [8] using the WinPLOTR/Fullprof suite program [9].

High resolution transmission electron microscopy (HRTEM) was performed in a JEOL
300FEG. The composition of the obtained materials was established by semi-quantitative
chemical analysis using energy dispersive X-ray spectroscopy (EDXS). The samples were
prepared by crushing the powders under n-butanol and dispersing it over copper grids
covered with a porous carbon film. Scanning electron microscope (SEM) images and cor-
responding EDXS spectra were obtained with a JEOL JSM 6335F microscope. Samples
were mounted on SEM stubs using carbon adhesive and sputter-coated gold. Thermo-
gravimetric analyses (TGA) were carried out under nitrogen by a Pyris thermogravimeter
(PerkinElmer, Waltham, MA, USA). The analyses were carried out at a heating/cooling rate
of 10 ◦C min−1.

XPS studies were performed on a PHI Versa Probe II spectrometer (Physical Electronics,
Minneapolis, MN, USA) with monochromatic X-ray Al Kα radiation (100 µm, 100 W,
20 kV, 1486.6 eV) and a dual-beam charge neutralizer. The instrument work function
of the spectrometer was calibrated using Cu 2p3/2 (932.7 eV), Ag 3d5/2 (368.2 eV) and
Au 4f 7/2 (84.0 eV) photoelectron lines. The collected XPS spectra were analysed using
PHI SmartSoft software (version 9.6.0, PHI, Minneapolis, MN, USA) and processed with
MultiPak 9.1. Charge referencing was done against the adventitious carbon C 1s signal
(284.8 eV). Recorded spectra were fitted using Gauss–Lorentz curves.

The electrochemical tests of half cells were performed in Swagelok-type cells, using
graphite paper as current collector (for both anode and cathode electrodes), Zn disk as
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the anode and Whatman GF/D borosilicate glass fibre sheets impregnated with solutions
of 2 M ZnSO4·7H2O and 0.1 M MnSO4·H2O (Sigma-Aldrich, St. Louis, MO, USA). The
synthesized samples were mixed with carbon SP (from Imerys Graphite & Carbon, Bironico,
Switzerland) and sodium alginate in deionized water with mass proportions 80:10:10,
respectively. The resultant slurry was coated on to the graphite paper and dried in the air
overnight. The resulting electrodes had an active material loading of about 1–3 mg.

Electrochemical testing was done using a Biologic 815 potentiostat. Cyclic voltammetry
(CV) and galvanostatic charge and discharge (GCD) tests were conducted in a potential
window between 0.8 and 1.8 V. Different scan rates were applied for CV testing, as well as
several different applied specific currents were used for GCD testing. The applied current
densities were normalized to the mass of manganese oxide on the electrode.

3. Results and Discussion
3.1. Materials Characterization

The XRD patterns of all samples are showed in Figure 1. Basal reflections at 12.5 and 25.1◦,
characteristic of the birnessite layered structure are observed for all samples. The reflec-
tions at higher 2θ-values exhibit some differences, indicative of structural dissimilarity
between the samples. Thus, the wide maxima at 2θ~36.8◦ (2.44 Å) and 2θ~66.3◦ (1.41 Å)
for KMn4 indicate a birnessite with turbostractic structure. In contrast, all reflections of
the KMn8 could indexed to a hexagonal unit cell with a = 2.864(3) and c = 14.274(2) Å.
On the other hand, HKMn maxima are coherent with a rhombohedral symmetry and cell
parameters a = 2.846(9), 21.751(6) Å.
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Figure 1. XRD patterns of (a) KMn4, (b) KMn8 and (c) HKMn. 

Table 1 gathers relevant crystallographic data obtained from Rietveld refinements of 
XRD data for KMn8 and HKMn. The corresponding profiles are shown in Figure 2. The 
structural models for both samples are also included (insets), evidencing the differences 
between them. Whereas the unit cell of KMn8 can be described as two-layer hexagonal 
(2H), the HKMn unit cell is three-layer hexagonal (3H). Thus, the close-packing notation 

Figure 1. XRD patterns of (a) KMn4, (b) KMn8 and (c) HKMn.

Table 1 gathers relevant crystallographic data obtained from Rietveld refinements of
XRD data for KMn8 and HKMn. The corresponding profiles are shown in Figure 2. The
structural models for both samples are also included (insets), evidencing the differences
between them. Whereas the unit cell of KMn8 can be described as two-layer hexagonal (2H),
the HKMn unit cell is three-layer hexagonal (3H). Thus, the close-packing notation for the
2H model is: AbC (water)-CbA (water)-AbC(water), and for the 3H model is: AbC(water)-
CaB(water)-BcA(water), where A, B, C represent the oxygen positions and a, b, c refer to
Mn positions [10,11]. The potassium ions and water molecules share the interlayer space as
shown in Figure 2.
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Table 1. Crystallographic data of KMn8 and HKMn.

Phase KMn8 HKMn

Space group P 63/mmc R -3m
a (Å) 2.864 (5) 2.846 (9)
c (Å) 14.274 (2) 21.751 (6)
Rp 19.3 15.3

Rwp 18.2 16.1
RB 9.1 4.7
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Figure 2. Calculated (line), experimental (dot) and difference (bottom line) Rietveld profiles for
(a) KMn8 and (b) HKMn.

Vertical bars indicate Bragg permitted reflections. Insets show corresponding struc-
tural models: layers of MnO6 octahedra are represented in pink; water molecules and
potassium cations are situated between layers.

EDX analysis indicated the presence of potassium in all the samples but in different
concentration. Thus, examination of a representative number of crystals in each case led to
mean different formulae. For KMn4 and KMn8, 0.3 K per formula was obtained. In the
case of the HKMn sample, mean composition K0.03MnO2 was obtained, though in some
crystals the obtained ratio was 0.3:1. Therefore, the samples prepared by different methods
seem to retain different amounts of K in the interlayer space.

In addition, the thermogravimetric analysis in the 50–600 ◦C temperature range
(Figure S1) displays three regions where decomposition takes place. The initial weight
loss up to 120 ◦C can be associated with evaporation of surface-adsorbed water, whereas
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the second region, up to 200 ◦C, can be attributed to the dehydration of the interlayer
water. Finally, the weight loss obtained when the material is heated above 250 ◦C, is usually
associated with oxygen loss [12]. Furthermore, when the material is heated up to 600 ◦C,
the HKMn is transformed into a 2 × 2 channel structure, as previously suggested [13].
Such changes are shown in the XRD diagram of the residue (Figure S1b,c). However, the
XRD profiles of the KMn4 and KMn8 residues indicated a mixture of phases in which
birnessite and a structure with 2 × 2 channel are present. Therefore, the amount of K
between octahedra layers seems to be key in the thermal stability of birnessite structure.
Therefore, in principle, hydrothermal method led to phases where the K amount is smaller
than the obtained by thermal treatment.

In order to know the Mn oxidation state, XPS experiments were carried out. The Mn
2p core-level spectra for all compositions are shown in Figure 3 and the corresponding BE
values are given in Table 2. The BEs of the Mn 2p1/2 and Mn 2p3/2 signals are given by the
positions of the maxima of the main peaks. The asymmetric Mn 2p3/2 main peak is located
at 642.3–642.6 eV with a (2p3/2–2p1/2) splitting of 11.8–11.9 eV. These values are closer to
the BE of Mn 2p3/2 peaks reported for MnO2 (642.2 eV) [13].
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Table 2. Binding energies (eV) for Mn 2p and Mn 3s core level components of XPS spectra of
the samples.

Sample Mn 2p Mn 3s

2p1/2 2p3/2 ∆(2p1/2–2p3/2) 3s(1) 3s(2) ∆(3s(1)–3s(2)) υMn
KMn4 654.2 642.4 11.8 89.4 84.7 4.7 3.8
KMn8 654.2 642.3 11.9 89.3 84.7 4.6 3.6
HKMn 654.4 642.6 11.8 89.6 84.9 4.7 3.8
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Analysis of the 3s region is more useful to assess the oxidation state of manganese,
due to mainly the exchange interaction between the 3s and 3d electrons [14,15]. The 3s
splitting (Table 2) suggests that the samples have a Mn3+ and Mn4+ mixture. The values of
Mn average oxidation state in KMn4, KMn8 and HKMn are gathered in Table 2 and were
obtained as suggested by Beyreuther at al. [16] taking into account the doublet separation
from Equation (1).

υMn = 9.67 − 1.27∆E3s/eV (1)

where υMn is the average oxidation state and ∆E3s splitting magnitude of 3s.
Therefore, taking into account the above results, the sample obtained at high tempera-

ture presents the highest amount of Mn(III). On the other hand, the sample prepared by
hydrothermal method probably contains oxygen vacancies. As previously stated, the K
amount in the formula of HKMn is considerably less than in the other samples [17].

The material morphology has a great influence on the electrochemical behaviour and
therefore was analyzed by SEM and HRTEM. Some representative images are depicted in
Figure 4. KMn8 (Figure 4c,d) consists predominantly of large micrometer-sized crystals
exhibiting well-defined crystallographic faces whereas KMn4 (Figure 4a,b) exhibits cloud-
like particles with diameters ranging between 175 and 260 nm. These large particles appear
as aggregates of smaller individual particles with diameter close to 20 nm. On the other
hand, HKMn (Figure 4e,f) present flower-like nanostructures, the individual nanoflowers
are micro-sized and comprise a large number of thin nanosheets with a thickness of
15 nm. Moreover, striations along [1] orientation are clearly seen with spacings of ~7 Å in
all samples.
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3.2. Electrochemical Behaviour

Figure 5 shows charge–discharge profiles of the three prepared samples at 30 mA g−1,
between 1.8 and 0.8 V. The observed behaviour of the different charge-discharge profiles
of the three samples, KMn4, KMn8, and HKMn, are similar to that reported previously
in the literature for Zn-manganese oxide batteries [18]. Figure 5b gathers the efficiency
and specific capacity values for all samples. It can be observed that at current density
values of 30 mA g−1, all electrodes achieve capacity values lower than the theoretical one
(308 mA h g−1). In the initial cycles, the following order in the capacity values is observed:
KMn8 < KMn4 < HKMn. This result agrees with the average oxidation state obtained by
XPS as well as the amount of K in the interlayer space commented above. Moreover, after
50 cycles, the specific capacity reached are 90, 105 and 110 mA h g−1, which mean capacity
losses of 12, 14, and 32% for KMn8, KMn4, and HKMn, respectively.
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Figure 6 shows the CV curves for assembled ZIBs using different currents for KMn8,
KMn4 and HKMn. Their general aspect is similar to that previously found in other Mn-
oxide ZIBs [19–21]. From the second cycle, two reduction peaks appear at 1.30 and 1.20 V.
An oxidation peak at 1.55 V and a small shoulder at 1.65 V are also observed at lower
speeds, i.e., 0.1–0.3 mV s−1. The voltage values of each peak are dependent on the scan
rate and the sample morphology. Thus, at higher rates (0.7 and 1.1 mV s−1) the CV curves
exhibit one strong cathodic peak located at 1.28 V and the other peak is now seen as a
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shoulder at 1.18 V and even disappear for the sample HKMn. In the same way the anodic
peak at 1.55 V disappears and the shoulder at 1.65 hexagonal (2H) increases in intensity.
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processes, as the CV rate increases the high-voltage peak remains present and even more
intense (due to H+ insertion), while the low-voltage peak gradually decays (related to
Zn2+ reaction).

In order to study the performance at high density current, the three samples were
cycled at a rate of 300 mA g−1. Corresponding galvanostatic curves as well as capacity and
efficiency versus cycle number are shown in Figure 7. In agreement with above statement,
in the discharge stage the second plateau at this high speed is hardly seen for the three
samples, which is related to Zn2+ insertion. It is only weakly appreciated in the HKMn
sample, in which Zn2+ can be accumulated in the hollows between the leaves of the flower-
like morphology. In addition, the capacity values obtained are in the same order than at low
current density, i.e., KMn8 < KMn4 < HKMn. However, a different tendency is observed
for capacity losses, which are practically negligible after 50 cycles.

The slight increase of capacity observed in Figures 5 and 7 can be due to the Mn2+

present in the electrolyte, that can be related to deposition of MnO2 during the cycle as has
been evidenced in the literature [23,24].

As has been suggested [25], the high voltage plateau in the discharging process (i.e.,
at 1.4 V) is due to a conversion reaction between MnO2 and H+ leading to MnOOH as
intermediate, which is dissolved in acid medium through a disproportion. Therefore, the
reductive reaction can be described as follows:

MnO2(s) + H+(aq) + 1e− →MnOOH(s) (2)

MnOOH(s) + H+(aq)→ 1
2

Mn2+(aq) +
1
2

MnO2(s) + H2O(l). (3)

In consequence, during the discharge process both dissolved Mn2+ and solid MnO2
will form.

Moreover, the H+ are consumed in this reaction. The above reaction (2) takes place
due to that Zn2+ (aq) provides the hydrogen ions needed as follows:

[Zn(H2O)x]2+ → [Zn(H2O)x−1(OH)]+ + H+(aq) (4)

At the same time, the precipitation of zinc hydroxide sulphate (ZHS) occurs.

4Zn2+(aq) + 6OH−(aq) + SO4
2−(aq) + 5H2O(l)→ Zn4(OH)6(SO4).5H2O(s) (5)
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XRD data was collected for KMn4 electrode after three cycles, and the XRD profiles of
the sample discharged and charged are shown in Figure 8. In the XRD diagram correspond-
ing to the discharged electrode, the peaks located at 12.3◦ and 24.8◦(2θ) are characteristic of
birnessite (PDF 1-080-1098). The other maxima that appear in the profile could be assigned
to Zn4(OH)6(SO4)·5H2O (PDF-044-0673) phase (ZHS). However, at 2θ = 36.4◦ a new maxi-
mum appears, which corresponds to the most intense maximum of the ZnMn2O4 spinel.
Therefore, the second plateau at 1.3 V can be related to the reaction between MnO2 and
Zn2+ giving rise to the spinel-type compound:

2MnO2 + Zn2+ + 2e− → ZnMn2O4 (6)

The XRD pattern of KMn4 electrode charged presents practically the same peaks
as those observed in the original diffraction profiles. A slight difference can only be
appreciated, the maximum at 2θ = 36.4◦ is slightly more intense, because of ZnMn2O4
phase which was obtained in the discharge process. Therefore, the second plateau at 1.3 V
is only partially reversible. As the number of cycles increases, the amount of spinel phase
increases, and this could explain the loss of capacity.
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Therefore, the global reaction can be formulated as follows:

3/2MnO2(s) + 2H+(aq) +
1
2

Zn2+(aq) + 2e− → 1
2

Mn2+(aq) +
1
2

ZnMn2O4(s) + H2O(l) (7)

Zn→ Zn2+ + 2 e− (8)

3/2MnO2(s) + 2H+(aq) + Zn(s)→ 1
2

Mn2+(aq) +
1
2

ZnMn2O4(s) + H2O(l) +
1
2

Zn2+(aq) (9)

On the contrary, in the charge process the reverse reaction takes place, i.e., the Mn2+ is ox-
idized to MnOOH, which in acid environment disproportionates leading to MnO2 birnessite:

Mn2+ + 2H2O→MnOOH + 3H+ + 1e− (10)

MnOOH + 1H+ → 1
2

MnO2 +
1
2

Mn2+ + H2O (11)

Zn2+ + 2 e− → Zn (12)

Mn2+(aq) + 2H2O + Zn2+(aq)→MnO2(s) + 4H+(aq) + Zn(s) (13)

Taking into account the mechanism indicated above, some conclusions could be
established. First, charge–discharge process leads to the ZnMn2O4 spinel, which is cre-
ated in the discharge process, but it is not reversibly transformed to MnO2 in the charge
process. Thus, ZnMn2O4 seems to be present in charge stage (Figure 8). Therefore, the irre-
versibility obtained in aqueous Zn-ion batteries is related to the ZnMn2O4 compound [26],
which is obtained in the second plateau, i.e., at low potential (1.3 V). At low density cur-
rent, 30 mA g−1, both plateaux appear and when the number of cycles grows up, the
second plateau becomes smaller. The order in the length of this plateau is as follows:
KMn8 < KMn4 < HKMn. The capacity loss for these materials goes on the same sequence.
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Finally, this plateau is hardly seen at high density current (300 mA g−1), then after 50 cycles
the loss capacity is practically negligible.

Moreover, this result has been supported by XRD data (Figure 9) of the HKMn elec-
trode cycled at 30 mA g−1 rate until the battery stopped working. All maxima that appear
were identified as the phase ZnMn2O4, neither maximum of ZHS or birnesite-type structure
was observed.
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4. Conclusions

Manganese oxides with birnessite-type structure have been synthetized by two differ-
ent methods: thermal treatment and hydrothermal method. Both syntheses were carried
out from a low-cost material (KMnO4). The thermal decomposition at temperatures of
400 and 800 ◦C made it possible to obtain KxMnO2 birnessite with different crystallinity de-
gree. Moreover, XPS data indicated that the sample obtained at higher temperature presents
on the surface a lower amount of Mn4+ that the other derivatives. In relation to structure
characterization obtained by powder X-ray diffraction, KMn4 presents a turbostractic
structure whereas KMn8 and HKMn have hexagonal and rhombohedral symmetries, re-
spectively. The morphologies obtained by SEM and HRTEM for KMn8, KMn4, and HKMn
samples shown well-defined crystals, cloud-like particles with aggregates and a flower-like
nanostructure, respectively.

The sample obtained at high temperature (KMn8) exhibits a lower oxidation state as
well as a denser morphology, both characteristics are related to the obtained low-capacity
value. The Zn2+ insertion is very small at low density current and negligible at high density
current, which seems to be a key factor of capacity retention. On the other hand, in the
samples obtained at low temperature (KMn4) or by means of hydrothermal method, Mn
cations have an oxidation state close to 4 and their morphologies allow Zinc ions to have
a better accessibility towards birnessite-type structure. The incorporation of Zn2+ in the
structure gives rise to the ZnMn2O4 spinel and this process implies that some links must
be broken, and at the same time others must be set up. When the spinel-like ZnMn2O4
structure is obtained capacity retention reduces, which is favorable at low speeds. In
consequence, the best result is obtained when the sample presents a great accessibility and
high density current where ZnMn2O4 compound would not have enough time to form.
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