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Abstract: The power generation capability of an electromagnetic vibration energy harvester aug-
mented with an additional coil was investigated and compared with that of a standard single coil
electromagnetic energy harvester. A single degree of freedom model and the corresponding equiva-
lent electric circuit were employed for the analysis of the standard and of the augmented harvesters.
The harvester model was validated by means of an accurate experimental characterization of a com-
mercial electromagnetic harvester, i.e., the model-D by ReVibe. The electric circuits for the standard
and for the augmented harvesters were implemented by electronic components and experimentally
tested to determine the maximum power they are able to generate in four test conditions. Results
from simulations and from experiments showed significant improvement of the power extraction
performance exhibited by the double coil energy harvester, particularly at frequencies lower than the
harvester mechanical resonance frequency.

Keywords: energy harvester; electronic optimization circuit; micro power generators; Internet of
Things device’s supply

1. Introduction

Internet of Things (IoT) devices are an effective, sustainable, and cheap solution for
implementing wireless sensor networks and for the monitoring of transportation vehicles,
of industrial implants (Industry 4.0), of the environment and of smart cities [1]. Such devices
are frequently employed in places or infrastructure where a wired energy supply is not
present, or its distribution is not economically convenient. In these cases, a solution for the
energy supply of IoT devices is represented by disposable batteries which, however, are
characterised by high maintenance costs, high environmental impact and low reliability.
An alternative solution is represented by energy harvesting systems [2,3] that are able
to convert into electricity otherwise wasted forms of energy, without suffering from the
problems of disposable batteries [4]. For this reason, energy harvesting systems have found
application in very different fields such as, for example, trains [5], backpacks [6], tiles [7],
logistics, construction, mining, aviation, military and industry 4.0 [8,9].

Among the energy harvesting systems, resonant vibration harvesters, which are able to
convert into electricity the mechanical energy from ambient vibrations, are particularly attrac-
tive due to the wide availability of vibrations into the environment. These harvesters usually
exploit a piezoelectric material or the electromagnetic effect [10,11]. Resonant electromagnetic
harvesters are able to generate higher power with respect to resonant piezoelectric harvesters
even if, like resonant piezoelectric harvesters, they are able to efficiently operate only when
the vibration frequency is near to their resonance frequency. Unfortunately, in most practical
cases, the ambient vibrations are frequency-varying or exhibit a random behavior with an
energy content that is distributed over a wide frequency spectrum [12].

For these reasons, many research efforts have been made to increase the energy
efficiency of resonant electromagnetic harvesters by resorting to harvester arrays [13,14],
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non-linear harvesters [15,16], and various electrical or mechanical tuning techniques [17].
Electrical tuning techniques aim to match the harvester with its optimal load impedance,
frequency by frequency, by using properly controlled active power electronic circuits
according to the maximum power transfer theorem [18,19]. Mechanical tuning techniques
attempt to regulate some mechanical parameters to adapt the resonance frequency to
the vibration frequency [20]. In particular, the resonance frequency of the device can be
adjusted by rotating a spring [21], or by exploiting a magnetorheological elastomer [22],
a magnetic force [23,24] or a suitable actuator [25,26]. Among the tuning techniques, the
idea presented in [27] and based on a double coil electromagnetic harvester seems very
attractive for its potential.

Thus, in this paper the performance of a resonant electromagnetic energy harvester
characterized by a double coil is investigated and the power extraction capabilities of
this harvester are compared with those of a standard single coil resonant electromagnetic
harvester. The latter device exploits the time-varying relative displacement between a
magnet and a coil caused by the ambient vibrations to generate electrical energy. On the
other hand, a double coil electromagnetic energy harvester is equipped with an additional
coil, which is electromagnetically coupled with the magnet and is in relative motion with
respect to both the magnet and the primary coil.

Here, the double coil electromagnetic harvester was modeled as a single degree of
freedom system and its equivalent electric circuit was exploited to predict by simulations
the maximum power that the harvester was able to generate. Moreover, experimental tests
were performed on a commercial single coil electromagnetic harvester, the model-D by
ReVibe, in order to characterize its behavior and to extract the parameters of its single
degree of freedom model. Such a model was used to implement the equivalent electric
circuits of both a single coil and of a double coil harvester, by using electronic components
mounted on a solder-less breadboard. Then, experimental tests were performed in order
to compare the power delivered to their optimal loads by the two types of harvester. Test
results showed that the double coil harvester was able to significantly increase the power
efficiency at frequencies lower than the mechanical resonance frequency.

2. Double Coil Electromagnetic Harvester

In order to predict the maximum power that can be extracted by a standard single coil
harvester and by a double coil electromagnetic harvester, the single degree of freedom mod-
els of both harvesters are presented here. Firstly, the single coil electromagnetic harvester is
studied and then the double coil harvester is analyzed.

A standard single coil electromagnetic harvester is made up of a vibrating case which
houses a permanent magnet linked to a spring system and a coil fixed to the housing and
connected to the electrical load, as shown in Figure 1. When a vibration is applied to the
case, the spring system makes the permanent magnet moving out of phase with respect
to the coil and the relative displacement between the magnet and the coil leads to the
conversion of mechanical energy into electrical energy.

During its movement, the permanent magnet is subject to the viscous damping force
of the medium, to the elastic force of the spring and to the electromagnetic (Lorentz) force
due to the interaction between the current flowing into the coil and the induction field of
the magnet. If a single degree of freedom model is employed for the sake of simplicity,
Newton’s second law can be written as [28]

m
..
x(t) + c

.
x(t) + ks x(t) + θ iLOAD(t) = −m

..
y(t) (1)

where
..
y(t) denotes the acceleration of the case, x(t) the relative displacement between

the magnet and the coil, m the magnet mass, c the viscous damping coefficient, ks the
equivalent stiffness of the spring system, and iLOAD(t) the electrical current flowing into
the coil. θ is the electromechanical coupling coefficient of the coil that takes into account its



Appl. Sci. 2022, 12, 1166 3 of 17

geometrical properties, its number of turns and the magnetic field strength, as shown in
detail in [28]. This current is due to the electromotive force (e.m.f.) induced in the coil:

ε(t) = θ
.
x(t) (2)

and flows through the coil resistance and inductance as well as through the electrical load
connected to the coil. Equations (1) and (2) can be represented by the equivalent electric
circuit shown in Figure 2, where k = m/θ, Rm = θ2/c, Lm = θ2/ks, Cm = m/θ2, being RC
and LC the resistance and the inductance of the coil, respectively [17].
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Figure 1. Schematic representation of a standard single coil resonant electromagnetic vibration
energy harvester.
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Figure 2. Equivalent circuit of a standard single coil resonant electromagnetic vibration
energy harvester.

When the single coil electromagnetic harvester is driven by a sinusoidal vibration at
frequency ωVIB = 2 π fVIB, i.e.,

..
y(t) = AVIB sin(2 π fVIB t), the average power that can

be delivered to the load can be predicted by applying the phasor method to the equivalent
circuit in Figure 2, i.e.,

PLOAD =

∣∣ILOAD
∣∣2

2
·RLOAD (3)

where ILOAD is the phasor of the load current iLOAD(t) and RLOAD is the resistive part
of the load. According to the maximum power transfer theorem, the maximum average
power is delivered to the load when its impedance is equal to the complex conjugate of the
source impedance, i.e.,

.
ZLOAD =

.
ZOPT = ROPT + j·XOPT where,

ROPT(ωVIB) =
θ2·ω2

VIB·c(
ks −m·ω2

VIB
)2

+ (ωVIB·c)2
+ Rc (4)
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XOPT(ωVIB) =
θ2·ωVIB·

(
m·ω2

VIB − ks
)(

ks −m·ω2
VIB
)2

+ (ωVIB·c)2
− Xc(ωVIB) (5)

being Xc(ωVIB) = ωVIB LC. When the load is equal to that in (4) and (5), the extracted
power in (3) becomes:

POPT(ωVIB) = PLOAD(ROPT , XOPT , ωVIB)=
1
8
·

A2
VIB·m2·ω2

VIB·θ2

Rc·
[(

ks −m·ω2
VIB
)2

+ (ωVIB·c)2
]
+ c·(ωVIB·θ)2

(6)

Equation (6) shows that the harvester exhibits a resonant behavior, characterized by
the resonance frequency fRES and the angular frequency ωRES given by:

ωRES = 2 · π · fRES =

√
ks

m
(7)

At fRES the harvester supplies the maximum power PMAX to the optimal load

PMAX = POPT(ωRES) =
1
8
·

A2
VIB·m2·θ2

Rc·c2 + c·θ2 (8)

A typical trend of the average power delivered to the optimal load is shown in Figure 3.
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Figure 3. Typical trend of the maximum average power, POPT, as a function of the vibration frequency,
ωVIB, according to Equation (6), for a standard single coil electromagnetic harvester.

In a double coil electromagnetic harvester, shown in Figure 4a, an additional second coil,
which is rigidly connected to the fixed reference frame of the first coil, is added to a standard
single coil electromagnetic harvester. The additional second coil is electrically connected to
an additional electrical load. In practical applications, both the load of the first coil and the
load of the second coil are implemented through ac/dc converters to transform the ac output
voltage into a dc voltage used to supply a storage system, which can be a rechargeable battery
or a supercapacitor. Note that for a double coil electromagnetic harvester, the storage system
is the same for the two loads, so that the effective power extracted by the harvester is the
sum of the power extracted by the first coil and of the power extracted by the second coil.
An example of a possible installation of the double coil harvester on a freight wagon, which
as known does not have a power supply from the locomotive or from the overhead power
line, is shown in Figure 4b. The first coil (positioned at the bottom of Figure 4a) is rigidly
connected to the vibrating chassis of the bogie (positioned at the top of Figure 4b) and the
second coil (positioned at the top of Figure 4a) is rigidly connected to the frame of the wheel
axles (positioned at the bottom of Figure 4b).
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In the double coil electromagnetic harvester, the permanent magnet is subject to an
additional electromagnetic force due to the second coil. Thus, Newton’s second law in
Equation (1) can be now written as

m
..
xD(t) + c

.
xD(t) + ks xD(t) + θ1 iLOAD_1(t) + θ2 iLOAD_2(t) = −m

..
y(t) (9)

where xD(t) is the relative displacement between the magnet and the first coil in the double
coil harvester, iLOAD_1(t) and iLOAD_2(t) are the electrical currents flowing into the first
and the second coil, respectively. θ1 and θ2 are the electromechanical coupling coefficients
of the first and of the second coil respectively, which depend on their geometric properties,
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their number of turns and the magnetic field strength [28]. Note that, in the double coil
harvester, the relative displacement between the magnet and the second coil is xD(t) + y(t).
Therefore, the electromotive forces (e.m.f.) induced in the two coils can be written as:

ε1(t) = θ1
.
xD(t) (10)

ε2(t) = θ2
[ .
xD(t) +

.
y(t)

]
=

θ2

θ1
ε1(t) + θ2

.
y(t) (11)

If, without any loss of generality, a second additional coil with the same parameters as
the first coil (same coil resistance Rc2 = Rc1, same coil inductance Lc2 = Lc1 and same elec-
tromechanical coupling coefficient θ2 = θ1 = θ) is considered, according to Equations (9)–(11)
the double coil electromagnetic harvester can be modeled by the equivalent electric circuit in
Figure 5. By exploiting the equivalent circuit in Figure 5, it is possible to calculate the average
power delivered to the load connected to the first coil, PLOAD_1, and the power delivered to
the load connected to the second coil, PLOAD_2. These two powers depend on both the loads
connected to the first and to the second coil, and their maximum values, which depend on the
vibration frequency, will be called in the following POPT_1 and POPT_2.
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whose second additional coil has the same parameters of the first coil (Rc2 = Rc1, Lc2 = Lc1 and
θ2 = θ1 = θ.

It is interesting to observe that the presence of the voltage generator θ2
.
y(t) is the

key difference between the standard single coil electromagnetic harvester and the con-
sidered double coil electromagnetic harvester. Thanks to the presence of such a voltage
generator θ2

.
y(t), the sum of the maximum average powers delivered to the two loads,

POPT_1 + POPT_2, can exceed the power delivered to the load of a single coil electromag-
netic harvester, POPT . Therefore, it is possible to define the power gain due to the ad-
ditional coil as a function of the frequency displacement from the resonance frequency
∆ f = ( fVIB − fRES)/ fRES as:

ηP(∆ f ) =
POPT_1(∆ f ) + POPT_2(∆ f )

POPT(∆ f )
(12)

Simulation and experimental results reported in Section 4 show that the power gain
can be significantly greater than 1.
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3. Commercial Harvester Characterization

A commercial single coil electromagnetic energy harvester was characterized to obtain
the parameters of its equivalent circuit, which will be used in the next Section to perform
simulations and experimental tests.

The photo and the block diagram of the experimental setup employed for the harvester
characterization are shown in Figure 6a,b, respectively. In particular, the electromagnetic
harvester model-D by ReVibe, the photo of which is shown in Figure 6c and the technical
parameters reported in Figure 6d, is mounted on the shaker Sentek VT-500. The driving
current of the shaker is generated by the LA-800 Power Amplifier and the driving signal of
the power amplifier is provided by the controller Spider-81 by Crystal Instruments that
implements the closed loop vibration control by measuring the acceleration of the vibration
generated by the shaker.
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To test the open circuit behavior of the considered electromagnetic harvester, a sinu-
soidal vibration having a constant acceleration equal to AVIB = 1 g and a varying frequency
was applied to the harvester with open output terminals. The measured amplitude of the
open-circuit voltage vOC(t) is reported in Figure 7a.

Moreover, to test the behavior of the harvester feeding different resistive loads, a sinu-
soidal vibration with a constant acceleration equal to AVIB = 1 g and a varying frequency
was applied to the harvester with the output terminals connected to different load resistors,
i.e., RLOAD = 1200 Ω, RLOAD = 1000 Ω and RLOAD = 820 Ω. The measured voltage ampli-
tudes and the measured average powers delivered to the loads are reported in Figure 7b,c,
respectively, and are in line with data declared by the harvester manufacturer [8].

The above measurements allowed us to deduce that the mechanical resonance frequency,
i.e., the frequency at which the open-circuit voltage reaches the maximum amplitude value,
is equal to fRES = 98.5 Hz. Moreover, they allowed us to determine the amplitude of the
open-circuit voltage at the resonance frequency, VOC_MAX(1 g) = 19.9 V, the open-circuit 3-dB
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bandwidth, B3dB = 2.6 Hz and the optimal load resistance, RLOAD_MAX = 1000 Ω, which is
the resistance that allows the maximum average power extraction at the resonance frequency.
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Figure 7. Measurements carried out on the commercial harvester model-D by ReVibe. (a) Open-circuit
voltage amplitude; (b) output voltage amplitude for different loads; (c) extracted average power for
different loads.

The resistance and the inductance of the coil of the considered electromagnetic har-
vester were measured by using the LCR Meter U1733C by Keysight Technologies. It resulted
as RC = 300 Ω and LC = 135 mH.

By exploiting the above measurements, the parameters of the equivalent circuit of the
single coil electromagnetic harvester model-D by ReVibe were deduced. In detail, from
the analytical expression of the optimal load resistance obtained by the maximum power
transfer theorem,

RLOAD_MAX =

√
(Rm + Rc)

2 + (2π fRES·Lc)
2 (13)
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it was possible to calculate Rm = 700 Ω. From the expression of the maximum open-circuit
voltage amplitude at the resonance frequency under 1 g acceleration,

VOC_MAX = k·AVIB·Rm (14)

it was deduced that k = 28 mA/g. From the open-circuit 3 dB bandwidth,

B3dB =
1

Rm·Cm
(15)

the capacitance value Cm = 87.5 µF was obtained. Finally, from the expression of the
resonance frequency fRES

fRES =
1

2·π·
√

Lm·Cm
(16)

it was calculated that Lm = 29.9 mH. All the parameters of the equivalent circuit of the
considered electromagnetic harvester are summarized in Table 1.

Table 1. Parameters of the equivalent circuit of the tested commercial electromagnetic harvester.

Parameter Value

k 28 mA/g
Rm 700 Ω
Lm 29.9 mH
Cm 87.5 µF
Rc 300 Ω
Lc 135 mH

To validate the accuracy of the equivalent circuit in emulating the behavior of the
considered commercial harvester, the equivalent circuit was implemented by using elec-
tronic components mounted on a solderless breadboard, in the Thevenin alternative
form shown in Figure 8 that is equivalent to that in Figure 2. The inductance Lm was
implemented through an active circuit based on operational amplifiers, i.e., the An-
toniou inductance-simulation circuit. By using the automatic measurement option of
the oscilloscope DSOX1204G-D1200BW1A by Keysight Technology the transfer function
GCIRCUIT( fVIB) = VP/VG was obtained for RLOAD = 1000 Ω, as shown in Figure 9a. VP
and VG are the voltages with respect to ground of points P and G, respectively (Figure 8).
GCIRCUIT( fVIB) can be expressed as a function of the complex quantities VOC and VLOAD,
previously measured on the commercial harvester (Figure 7):

GCIRCUIT( fVIB) =
VP
VG

=
VOC −VLOAD

VOC
= 1− VLOAD

VOC
(17)
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Figure 8. Alternative Thevenin form of the equivalent circuit of a single coil resonant electromagnetic
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Figure 9. Comparison of measurements performed on the considered commercial harvester and
on its equivalent circuit. (a) Oscilloscope screenshot of the gain and phase of the transfer function
GCIRCUIT of the equivalent circuit. (b) Transfer functions GCIRCUIT measured on the commercial
harvester and on the implemented equivalent circuit.

Therefore, the transfer function GCIRCUIT( fVIB) measured on the implemented equiv-
alent circuit and that calculated by using the measurements on the commercial harvester
were compared, as shown in Figure 9b. The comparison shows a very good agreement of
the electrical behaviors of the commercial harvester and of the equivalent circuit.

4. Simulation and Experimental Results

Simulations and experimental tests were performed to show that the double coil
electromagnetic harvester is able to deliver an amount of energy significantly greater than
that provided by a standard single coil electromagnetic harvester.

Firstly, numerical simulations of the circuit of the single coil harvester shown in
Figure 2 and of the circuit of the double coil harvester shown in Figure 5 were performed.
The parameters used for the single coil harvester are those obtained by the experimental
characterization of the commercial harvester reported in the previous section. The parame-
ters used for the double coil harvester are the same as for the single coil harvester with the
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addition of Rc2 = Rc1 = Rc, Lc2 = Lc1 = Lc and θ2 = θ1 = θ. For each value of the vibration
frequency, the load of the single coil harvester was varied to determine the optimal load that
allows the maximum power extraction POPT = max(PLOAD). Also, the values of the loads
of the double coil harvester were varied to determine the optimal loads that allow the maxi-
mization of the total extracted power POPT_D = max(PLOAD1 + PLOAD2) = POPT1 + POPT2.
Then, the performance improvement of the double coil harvester was calculated as the
power gain ηP(∆ f ) in (12).

The power gain obtained by numerical simulations and reported in Figure 10 shows
that an increase of the extracted power is obtained by using the double coil harvester for
any vibration frequency. Moreover, this increase is particularly significant for frequencies
lower and far from the resonance frequency.
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Experimental tests were performed on the electrical circuit of a single coil harvester
reported in Figure 8 and on the electrical circuit of a double coil harvester reported in
Figure 11a. These circuits were implemented by using electronic components mounted
on a solderless breadboard as shown in Figure 11b. It should be emphasized that the
experimental tests were performed on the equivalent circuits of the harvesters and not
on the harvesters themselves because a double coil harvester has never been built up.
Therefore, before constructing a double coil harvester, it seems useful to preliminarily
investigate its potential.

Tests were performed for four case studies, which differ for the vibration frequency
( fVIB = 0.9 fRES, fVIB = 0.8 fRES, fVIB = 0.7 fRES) and for the acceleration amplitude
(AVIB = 1 g, AVIB = 2 g), as detailed in Table 2.

For each of the four test cases, for the single coil harvester the values of the load
resistance RLOAD and of the load capacitance CLOAD were varied to determine the optimal
values, RLOAD_OPT and CLOAD_OPT , that ensure the maximum average power extraction,
POPT . It is worth noting that only ohmic-capacitive loads were considered since, at the
working frequency fVIB (lower than fRES), in all the considered test cases the equivalent
harvester impedance was always ohmic-inductive. The phase relationships of the voltages,
currents and power, measured in the first test case in the optimal condition, and reported in
Figure 12a,b, confirm the ohmic-capacitive nature of the optimal load. For all the four test
cases, the trends of the measured average load power of the single coil circuit are reported
in Figure 13 as a function of the load resistance RLOAD and of the load capacitance CLOAD.
The optimal values of RLOAD and CLOAD for each test case are summarized in Table 2,
together with the maximum extracted power POPT .
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Table 2. Experimental tests on the electrical circuits of single coil and double coil harvesters.

Test Case n. 1 n. 2 n. 3 n. 4

Test conditions

∆ f −10% −20% −20% −30%

fVIB 0.9·fRES 0.8·fRES 0.8·fRES 0.7·fRES

AVIB 1 g 1 g 2 g 2 g

Single coil harvester

RLOAD_OPT 388 Ω 388 Ω 388 Ω 388 Ω

CLOAD_OPT 1 µ 1 µ 1 µ 1 µ

POPT 2.36 mW 0.56 mW 2.19 mW 0.84 mW

Double coil harvester

RLOAD_1_OPT 558 Ω 558 Ω 558 Ω 558 Ω

CLOAD_1_OPT 1 µ 1 µ 1 µ 1 µ

POPT_1 2.16 mW 0.53 mW 2.19 mW 0.79 mW

RLOAD_2_OPT 558 Ω 558 Ω 558 Ω 558 Ω

CLOAD_2_OPT 1 µ 1 µ 1 µ 1 µ

POPT_2 3.14 mW 1.19 mW 5.03 mW 3.33 mW

POPT_D =
POPT_1 + POPT_2

5.3 mW 1.72 mW 7.22 mW 4.12 mW

Power Gain
η = POPT_D/POPT

Experiments 224% 307% 330% 490%

Simulations 244% 342% 342% 515%
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Figure 12. Oscilloscope screenshots obtained in the optimal conditions for the first test case. Test
for the single coil circuit in Figure 8: (a), input voltage vOC(t) (yellow line) and instantaneous load
power pOPT(t) (blue line); (b) load voltage vLOAD(t) (yellow line) and load current iLOAD(t) (blue
line). Test for the double coil circuit in Figure 11a: (c) input voltage vOC(t) (yellow line), additional
voltage θ

.
y(t) (red line), instantaneous power on the first load pOPT_1(t) (blue line), and instantaneous

power on the second load pOPT_2(t) (green line); (d) first load voltage vLOAD_1(t) (yellow line), first
load current iLOAD_1(t) (blue line), second load voltage vLOAD_2(t) (red line), and second load curren
iLOAD_2(t) (green line).
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Moreover, for each of the four test cases, for the double coil harvester the values of the
first load resistance RLOAD_1, the first load capacitance CLOAD_1, the second load resistance
RLOAD_2, and the second load capacitance CLOAD_2 were varied to determine the optimal
values that ensure the maximum power extraction, POPT_D = max(PLOAD_1 + PLOAD_2).
For the first test case, oscilloscope screenshots of the voltages, currents and power measured
in the optimal condition of the double coil harvester are reported in Figure 12c,d. For all
the four test cases, the trends of the measured average load power of the double coil circuit
are reported in Figure 14 as a function of the load resistances and load capacitances. The
optimal values of the load resistances and capacitances for each test case are summarized
in Table 2, together with the maximum average extracted powers.

Starting from the maximum average powers extracted from the single coil harvester
and from the double coil harvester in each test case, it is possible to calculate the power
gain ηP = POPT_D/POPT , i.e., the performance improvement for the double coil harvester.
Experimental values for the power gain are reported in Table 2, together with the corre-
sponding values obtained by the simulations reported in Figure 10. Experimental tests
confirm the simulations’ results and validate the performance improvement that the double
coil harvester can provide.

Finally, note that an increase in the extracted power can also be obtained by increasing
the number of turns of the single coil standard harvester. In particular, if the number of
turns is doubled (e.g., by inserting the additional coil, equal to the first coil, in series with
it) the electromechanical coupling coefficient θ and the electrical equivalent resistance Rc of
the resulting coil are doubled. Therefore, according to Equation (6), the extracted power
PSERIES with the two series-connected coils is confined between once and twice that (POPT)
of the original standard harvester. In particular, for small values of Rc, PSERIES tends to
POPT ; for large values of Rc, PSERIES tends to twice POPT . On the other hand, the double coil
harvester investigated here is able to extract a power greater than twice POPT , as shown in
Table 2. In particular, the power gain can be about five times greater than that of a standard
single coil harvester.
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5. Conclusions

For the first time, the power extraction capability of a double coil electromagnetic
harvester was experimentally compared with that of a standard single coil electromagnetic
harvester. The validity of the single degree of freedom model used for the comparison was
verified by experimental tests on a commercial electromagnetic harvester. The comparison
was performed by simulations and by experiments on the electrical circuits modeling
the harvester’s behavior. The circuits were implemented through electronic components
mounted on a solderless breadboard. The experimental results showed that the double coil
electromagnetic harvester is able to increase the power delivered to the optimal load for
any vibration frequency, but the gain is particularly significant at frequencies lower than
the harvester resonance frequency.

The double coil electromagnetic harvester investigated in this paper is characterized
by significant advantages with respect to the other techniques proposed in the literature to
increase the energy efficiency of electromagnetic harvesters. In particular, the double coil
harvester is able to significantly improve the extracted power as in the case of harvester
arrays, non-linear harvesters and mechanical tuning techniques. However, its size is smaller
than harvester arrays, its complexity is less than that of non-linear harvesters, and it does
not need additional actuators as in the case of mechanical tuning techniques. Moreover,
the double coil harvester exploits the electrical load matching like the electrical tuning
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techniques, but it achieves higher performance than the standard application of an electrical
tuning technique.
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