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Abstract: In this paper, informational (Shannon) measures of symmetry are introduced and analyzed
for patterns built of 1D and 2D shapes. The informational measure of symmetry Hsym(G) character-
izes the averaged uncertainty in the presence of symmetry elements from group G in a given pattern,
whereas the Shannon-like measure of symmetry Ωsym(G) quantifies the averaged uncertainty of the
appearance of shapes possessing a total of n elements of symmetry belonging to group G in a given
pattern. Hsym(G1) = Ωsym(G1) = 0 for the patterns built of irregular, non-symmetric shapes, where
G1 is the identity element of the symmetry group. Both informational measures of symmetry are
intensive parameters of the pattern and do not depend on the number of shapes, their size, and the
entire area of the pattern. They are also insensitive to the long-range order (translational symmetry)
inherent for the pattern. Additionally, informational measures of symmetry of fractal patterns are
addressed, the mixed patterns including curves and shapes are considered, the time evolution of
Shannon measures of symmetry are examined, the close-packed and dispersed 2D patterns are
analyzed, and an application of the suggested measures of symmetry for the analysis of the chemical
reaction is demonstrated.

Keywords: informational measure of symmetry; 1D shapes; 2D shapes; fractal patterns; time evolu-
tion; symmetry; pattern

1. Introduction

The notion of symmetry, which emerged from the Greek word συµµετρίαmeaning
agreement in dimensions and arrangement, plays a crucial and instructive role in math-
ematics and natural sciences [1–5], generating conservation laws [6] and being crtitically
important in materials science [7]; physics [2,5,6]; quantum theory [8]; quantum chemistry
and spectroscopy [9]; and of course, crystallography [10,11]. Ideas, methods, and tech-
niques arising from spatial symmetry are of fundamental importance in the philosophy
and psychology of aesthetics [12–15].

Our paper is devoted to the quantification of symmetry. Symmetry is conventionally
described in a contrariety, binary manner, implying that the system is either completely
symmetric or completely asymmetric. Fang et al. used the group theoretical approach to
overcome this dichotomous problem and introduced the degree of symmetry as a non-
negative continuous number ranging from zero to unity [16]. It was demonstrated that cross
correlation sums are efficient for studying symmetries of strange attractors [17]. The method
of so-called “detectives”, based on the based on group-theoretic approach, was successfully
implemented for the study of the symmetries of attractors in Refs. [18–20]. This deviation
from the perfect geometric symmetry was quantified with as a “continuous measure
of symmetry”, introduced by Avnir, Zabrodsky, and co-workers in Refs. [21–25]. The
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continuous measure of symmetry in 1D shapes (lines) was defined as the minimal average
square displacement of the points that a shape must undergo to attain the prescribed
symmetry [21–25].

On the other hand, ordering in 2D patterns is usually quantified with Voronoi entropy,
given by the following:

Svor = −∑i PilnPi, (1)

where Pi is the portion of the polygons possessing n edges in a given Voronoi diagram
(also called the coordination number of the polygon) and i is the total number of polygon
types with a different number of edges [26–28]. In our recent papers, we demonstrated
that the continuous measure of symmetry introduced in Refs. [24,25] and the Voronoi
entropy of the given 2D pattern are not necessarily correlated [29,30]. Our previous paper is
devoted to the alternative quantification of symmetry with the Shannon-like informational
measure of symmetry, which was first introduced in Ref. [31], in which it was applied to the
quantitative analysis of Voronoi diagrams arising from the Penrose tiling. In our present
paper, we generalize and develop the notion of the informational measure of symmetry. An
interpretation of the notion of the informational measure of symmetry follows the approach
suggested in Ref. [32], namely, it is understood as an averaged uncertainty in the presence
of symmetry elements from the group G in the given pattern [31,32]. We demonstrate
that different approaches to the calculation of the informational measure of symmetry are
possible.

2. Results and Discussion
2.1. Alternative Definitions of the Informational Measure of Symmetry

Consider a 2D pattern built of 1D and/or 2D shapes or lines, demonstrating a number
of symmetry elements (rotational symmetry, centers of symmetry, axes of symmetry, etc.),
denoted as Gi, i = 1, 2 . . . k, where k is a number of non-identical symmetry operations.
Pattern is understood as a 2D arrangement made from repeated lines or shapes on a
surface. Element Gi forms the symmetry group of the shape G (which should be clearly
distinguished from the symmetry group of the entire pattern). Thus, the informational
measure of symmetry of the pattern (abbreviated to IMS) is defined in a Shannon-like form
as follows:

Hsym(G) = −∑k
i=1 Pi(Gi)lnPi(Gi), (2)

where Pi(Gi) is the probability of appearance of the symmetry operation Gi within the
shapes (lines) constituting the pattern, defined as follows:

Pi(Gi) =
m(Gi)

NG
≤ 1, (3)

where NG = ∑k
i=1 m(Gi) is the total number of symmetry elements (operations) appearing

in the 1D or 2D shapes, recognized in a given pattern, and m(Gi) is the number of the
same symmetry elements (operations) Gi, calculated for a given pattern. The normalization
condition given by Equation (4) takes place:

∑k
i=1 Pi(Gi) = 1. (4)

Let us explain in detail the meaning of the introduced Shannon measure of symmetry
Hsym(G). Suppose that we have a pattern demonstrating k distinguishable elements of
symmetry with probability distribution P1(G1) . . . Pk(Gk). If, say, Pi(Gi) = 1, we are certain
that an element of symmetry Gi is recognized within the shapes constituting the pattern;
in other words, element Gi necessarily appears within all of the shapes constituting the
pattern, and we are certain that it is present in the shapes. For any other value of Pi(Gi),
we are less certain about the occurrence of the symmetry element labeled i. Less certainty
can be translated into more uncertainty [32]. Therefore, the larger the value of −lnPi(Gi),
the larger the extent of uncertainty about the presence of element Gi within the pattern [32].
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Multiplying−lnPi(Gi) by Pi(Gi), and summing over all i, we obtain an average uncertainty
about the presence of symmetry elements Gi within the given pattern. When Pi(Gi) = 0, we
are certain that element Gi is not met within the pattern (numerous examples of calculation
of Hsym(G) are supplied below).

Alternatively, the symmetry of the pattern may be quantified with the parameter
Ωsym(G), defined according to Equation (5):

Ωsym(G) = −∑l
n=1 Pn(n(G))lnPn(n(G)), (5)

where n denotes the total number of elements of symmetry recognized in a shape; n
changes from unity to the maximal number of elements of symmetry inherent for the
shapes appearing in the pattern and denoted “l”. Pn(n(G)) is the probability of finding the
shape possessing n elements of symmetry in total belonging to group G within the pattern,
defined as follows:

Pn(n(G)) =
r(n(G))

NS
, (6)

where r(n(G)) is the number of shapes possessing n elements of symmetry in total and NS
is the total number of shapes in the given pattern. The normalization condition given by
Equation (7) takes place:

∑l
n=1 Pn(n(G)) = 1 (7)

The Shannon-shaped measure Ωsym(G) is interpreted, in turn, as an average across
the pattern uncertainty of finding the shape possessing in total n elements of symmetry
within a given pattern [27,28]. The definition of the Shannon measure of symmetry Ωsym(G)
provided by Equations (5)–(7) resembles the definition of the Voronoi entropy, provided
by Equation (1) with the following difference: instead of the number of polygon edges
appearing in the definition of the Voronoi entropy, in our definition, we exploit the number
of elements of symmetry n in the shape; thus, we label this measure as the Voronoi–Shannon
measure of symmetry (VSMS). The definition of VSMS provided by Equations (5)–(7)
latently implies that a more symmetrical shape is characterized by the larger number
of symmetry elements. We illustrate the difference between the information-theoretic
measure of symmetry (IMS) and the Voronoi–Shannon measure of symmetry with several
examples. The paper is organized as follows: the measures of symmetry introduced by
Equations (2)–(7) are calculated for the patterns built of (i) 1D shapes (curves); (ii) 2D
shapes, namely triangles and ellipses; and (iii) mixed patterns comprised of 1D and 2D
shapes.

2.2. Information-Theoretic Measures of Symmetry of the Patterns Built of 1D Objects

First, consider the IMS and the VSMS of the patterns comprising only 1D objects (lines)
lying on a plane. It should be noted that the symmetry group of an object depends not only
on the object itself but also on the space in which we view it. For example, the symmetry
group of a line segment in R1 is of order 2, the symmetry group of a line segment considered
as a set of points in R2 is of order 4, and the symmetry group of a line segments viewed
as a set of points in R3 is of infinite order. Hereinafter, we assume that the considered
objects (lines) are treated as sets of points in R2 space. Let us start from the pattern built of
p irregular lines, such as depicted in Figure 1. The analysis should necessarily start from
the establishment of the symmetry group of the pattern. In this case, we recognize that the
single element of symmetry for the shapes constituting the pattern is the onefold rotational
symmetry, reduced to the rotation of the lines by the angle ϕ1 = k 2π

1 = 2π, denoted G1,
which is an identity element of the symmetry group.
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means an average uncertainty for finding the shape demonstrating the single element of 
symmetry is zero within the pattern; indeed, every shape in the pattern has only one 
element of symmetry, namely 𝐺  (see Ref. [28]). It should be emphasized that neither 
Voronoi entropy nor continuous measure of symmetry could be defined and calculated 
for the patterns presented in Figure 1a,b. 

Now, consider the patterns composed of straight line segments, shown in Figure 2a,b, 
and seen as sets of points in R2 space. The symmetry group of the straight line segments 
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Figure 1. Pattern built of the 1D irregular (non-symmetrical) lines. (a) Random pattern; (b) regular
pattern demonstrating the translational symmetry.

Let us first calculate Hsym for the pattern, shown in Figure 1a. In this case, NG = p; thus,
P(G1) = 1, and consequently, we calculate Hsym(G1) = −P(G1)lnP(G1) = −1× ln1 = 0.
Now, we establish Ωsym(G) = −∑l

n=1 Pn(n(G))lnPn(n(G)). It is easily seen that, for
the irregular shapes possessing a single element of symmetry, Pn(n = 1) = 1; hence,
Ωsym(G1) = 0. The same conclusion, i.e., Hsym(G1) = Ωsym(G1) = 0, holds for the pattern
built from non-identical, irregular, non-symmetrical lines. It should be emphasized that the
same conclusion., i.e., Hsym(G1) = Ωsym(G1) = 0, is true for the regular pattern, compris-
ing irregular, non-symmetrical lines, such as the pattern shown in Figure 1b, demonstrating
a pattern characterized by the translational symmetry. Thus, we concluded that both of
the introduced measures of symmetry are insensitive to the long-range order. How should
the obtained result be interpreted? Hsym(G1) = 0 means that an averaged uncertainty
to reveal symmetry operation G1 within the pattern is zero; indeed, all of the 1D shapes
depicted in Figure 1 possess this element of symmetry; in turn, Ωsym(G1) = 0 means an
average uncertainty for finding the shape demonstrating the single element of symmetry
is zero within the pattern; indeed, every shape in the pattern has only one element of
symmetry, namely G1 (see Ref. [28]). It should be emphasized that neither Voronoi entropy
nor continuous measure of symmetry could be defined and calculated for the patterns
presented in Figure 1a,b.

Now, consider the patterns composed of straight line segments, shown in Figure 2a,b,
and seen as sets of points in R2 space. The symmetry group of the straight line segments is
built of four elements, namely the unity element, which is the onefold rotational symmetry,
which is the rotation by the angle ϕ1 = k 2π

1 = 2π (denoted G1); the twofold rotational
symmetry by the angle ϕ1 = k 2π

2 = π, denoted G2; and the mirror axes, denoted G3 and G4.
Let us calculate Hsym. For the pattern, built of the p segments, we obtain P(G1) = P(G2) =

P(G3) = P(G4) =
p

4p = 1
4 ; thus, Hsym = −4 1

4 ln 1
4 = 1.39.
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Figure 2. Patterns built of shapes possessing two elements of symmetry: (a) random straight line
segments, (b) ordered straight line segments, (c) random arcs of a circle, (d) ordered arcs of a circle,
(e) random symmetrical segments of a cubic parabola, and (f) ordered symmetrical segments of a
cubic parabola. The center of symmetry is shown by the blue circle.

Now, let us establish Ωsym(G) = −∑l
n=1 Pn(n(G)))lnPn(n(G)). In Figure 2a,b, all

of the shapes in the patterns have four aforementioned elements of symmetry. Thus,
P4(n = 4) = 1, and hence, Ωsym = 0. Again, all of the measures of symmetry introduced
coincide for the patterns presented in Figure 2a,b, and they are insensitive to the long-range
order (translational symmetry) of segments, shown in Figure 2b.

Consider the patterns built of the p arcs of a circle (or, perhaps, the symmetric segments
of the parabola y = αx2, α = const, shown in Figure 2c,d. The symmetry group of the
shapes depicted in Figure 2c,d is built of two elements, namely the unity element, which
is the onefold rotational symmetry (denoted G1), and the mirror axis, denoted G2. For
this kind of pattern, we obtain (G1) = P(G2) = p

2p = 1
2 ; thus, Hsym = −2 1

2 ln 1
2 = 0.69.

Consequently, in this case, Ωsym = 0 (due to P2(n = 2) = 1 and lnP2 = 0); the long-
range order, shown in Figure 2d plays no role in the calculation of both measures of
symmetry. Now, consider the patterns built of the p symmetric segments of a cubic parabola
y = αx3, α = const) shown in Figure 2e,f. The considerations akin to the aforementioned
ones immediately yield Hsym = 0.69, Ωsym = 0. Thus, we come to the conclusion that
the patterns depicted in Figure 2c–f are equivalent from the point of view of the Shannon
measures of symmetry introduced, namely, Hsym and Ωsym. Moreover, the VSMS of the
patterns depicted in Figures 1 and 2 is equal; however, the IMS of the patterns shown in
Figures 1 and 2 are different. It should be emphasized that both of the Shannon and the
Voronoi–Shannon information-theoretic measures of symmetry of the discussed patterns
are the intensive properties of the patterns and that they are independent of the area of the
pattern or the density and size of the shapes, and in this sense, they are different from the
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true thermodynamic entropy, which is an extensive parameter of the system. It should be
emphasized that the long-range order does not influence either of the information-theoretic
measures of symmetry.

Consider now the mixed patterns, comprising 1D objects (lines), depicted in Figure 3.
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Figure 3. Mixed patterns comprising 1D objects are depicted: (a) the pattern built from segments
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Let us start from the pattern comprising segments of a cubic parabola and arcs of a
circle, shown in Figure 3a. Both shapes are characterized by the symmetry group containing
two symmetry elements: the unity element, which is the onefold rotational symmetry and
the twofold rotational symmetry in the case of segments of a cubic parabola, and the
onefold rotational symmetry and the mirror axis in the case of arcs of a circle. Thus,
Hsym = 1.03. Both shapes have two elements of symmetry; hence, Ωsym = 0. Now,
consider the pattern built from p irregular, non-symmetrical curves and p arcs of a circle,
presented in Figure 3b. We recognize two elements of symmetry in this pattern, namely
the onefold rotational symmetry inherent for all of the shapes and denoted G1, and the
mirror axis labeled G2 inherent for the arcs only. Thus, the entire number of the symmetry
elements in the pattern is NG = 3p (see Equation (3)); consequently, we easily calculate
P(G1) =

2p
3p = 2

3 ; P(G2) =
p

3p = 1
3 ; and finally, we obtain Hsym = −

(
2
3 ln 2

3 + 1
3 ln 1

3

)
= 0.54.

Let us now calculate Ωsym for the mixed pattern, shown in Figure 3b. For this pattern, we
calculate (Ns = 2p): P1(n = 1) = p

2p = 1
2 ; P2(n = 2) = p

2p = 1
2 ; thus, Ωsym = 0.69. Again,

the Voronoi entropy could not be introduced for the patterns presented in Figure 3a,b.

2.3. Information-Theoretic Measures of Symmetry of Patterns Built of 2D Shapes

Next, we address the patterns composed of 2D shapes. Let us start from the completely
disordered pattern built of p irregular shapes depicted in Figure 4a. In this case, we
recognize for all of the non-symmetrical shapes constituting the pattern the single element of
symmetry, namely the rotation ϕ1 = k 2π

1 = 2π; thus, NG = p; P(G1) = 1; and consequently,
Hsym = −∑1

i=1 P(Gi)lnP(Gi) = −∑1
i=1 1ln(1) = 0. It is easily seen that Ωsym(G) = 0 takes

place for the same pattern. Let us analyze the 2D pattern comprising p identical equilateral
triangles depicted in Figure 4b. The symmetry group of the equilateral triangle is the
dihedral symmetry group, usually labeled D3. In the case of the equilateral triangles shown
in Figure 4b, we have Ng = 6p elements of symmetry, which are 3p symmetry axes and
3p rotations. The IMS calculated with Equation (2) equals Hsym(D3) = 1.792. On the other
hand, all of the shapes constituting the pattern shown in Figure 4b have the same number
of symmetry elements; thus, Ωsym(D3) = 0.
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Figure 4. (a) Pattern filled with different unsymmetrical polygons, demonstrating Hsym(G) = 0;
Ωsym(G) = 0. (b) Two-dimensional pattern comprising identical equilateral triangles, demonstrating
Hsym(G) = 1.792; Ωsym = 0. (c) Sierpinski gasket built of equilateral triangles. (d) Pattern composed
of the randomly dispersed equilateral triangles of various areas.

Consider the fractal Sierpinski gasket built of equilateral triangles, shown in
Figure 4c [33,34]. It is easily seen that Hsym(G) = 1.792; Ωsym = 0 for any scaling level
of its fractal structure. Thus, we conclude that informational measures of symmetry are
invariant with respect to the scaling of the Sierpinski gasket. Obviously, the conclusion
holds for the Sierpinski gasket built of squares. The general problem of the calculation of
the informational measures of symmetry of fractal structures deserves additional research.
The pattern characterized by the informational measures of symmetry should not be nec-
essarily close-packed, as shown in Figure 4d, representing a set of randomly dispersed
equilateral triangles of various areas. In this case, Hsym(D3) = 1.792, Ω(D3) = 0 takes
place. Again, the introduced informational measures of symmetry are insensitive to the
presence/absence of the long-range order in a given pattern.

It is noteworthy that a pattern should not necessarily be built of polygons; it may
comprise curvilinear shapes such as the ellipses, shown in Figure 5.
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Figure 5. Patterns built from the ellipses are shown: (a) a pattern built of the dispersed random
ellipses of various sizes; (b) a pattern built of dispersed ordered identical ellipses; (c) a pattern
comprising close-packed identical ellipses, and the area between forms curvilinear quadrangles; (d) a
pattern comprising close-packed identical ellipses, and the areas between form curvilinear triangles.

Let us start from the pattern depicted in Figure 5a comprising the dispersed random el-
lipses of various sizes. The group of symmetry of the ellipses includes four elements, namely
the onefold rotational symmetry denoted G1 , the twofold rotational symmetry denoted
G2 , and two distinguishable mirror axes denoted correspondingly as G3 and G4; in this
case, P(G1) = P(G2) = P(G3) = P(G4) =

1
4 . Thus, we calculate Hsym = −4 1

4 ln 1
4 = 1.39.

All of the ellipses have in total four elements of symmetry; hence, Ωsym = 0. The same
is true for the dispersed identical long-range ordered ellipses, shown in Figure 5b. The
same conclusion holds for the close-packed ordered identical ellipses forming the patterns
shown in Figure 5c,d. Figure 5c,d illustrate the idea that the set of the shapes should be
clearly defined. Indeed, Hsym = 1.39; Ωsym = 0 holds for the patterns built of the ellipses
only. If we also consider the “interstitial” shapes emerging in the close-packed arranges
(which are curvilinear quadrangles in Figure 5c and curvilinear triangles in Figure 5d), the
informational measures of symmetry changes.

2.4. Information-Theoretic Measures of Symmetry of the Mixed Patterns Built of 2D and
1D Shapes

The suggested information measures of symmetry are easily generalized for the mixed
patterns containing 1D and 2D shapes such as the pattern shown in Figure 6, which includes
p irregular non-symmetric curves and p equilateral triangles.
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Let us quantify the symmetry of this pattern. The symmetry group of the equilateral
triangle is the dihedral symmetry group D3 containing 3p symmetry axes and 3p rotations
(including the 2π rotation, denoted G1). One more G1 operation comes from the irregular
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curves; thus, we have in total 7p symmetry operations in this pattern. The IMS is easily
calculated, according to Hsym = −

(
2
7 ln 2

7 + 5
7 ln 1

7

)
= 2.23. Now, we calculate VSMS of

the same pattern; the probability of finding the shape possessing 6 elements of symmetry
(triangles) in total within the pattern equals 1

2 , and the probability of finding the shape
possessing a single element of symmetry (curves) within the pattern also equals 1

2 ; thus, we
obtain Ωsym = −2× 1

2 ln 1
2 = 0.69. Again, the Voronoi entropy and continuous measure of

symmetry could not be reasonably introduced for the mixed pattern, depicted in Figure 6.

2.5. Information-Theoretic Measures of Symmetry as Dynamical Variables

Consider now N two-dimensional shapes (say ellipses and equilateral triangles shown
in Figure 7) moving in a plane.
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velocity of the i-th shape.

The shapes (2D bodies) may collide elastically or stop their motion. If the sym-
metry of the bodies is conserved, we immediately conclude that the conservation laws
Hsym = const; Ωsym = const take place. Thus, in this case, conservation of the informational
measures of symmetry also takes place. Consider now the less trivial situation depicted in
Figure 8, where the p rhombi shown in Figure 8a “dissociate” with time into 2p equilateral
triangles, shown in Figure 8b.
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The initial Shannon measures of the system of rhombi shown in Figure 8a coincide
with that of the ellipses already calculated in Section 2.2, namely Hsym = 1.39; Ωsym = 0.
After dissociation into equilateral triangles, we have Hsym(D3) = 1.792; Ωsym(D3) = 0 (see
Section 2.2). This means that the change in the shape of the objects constituting the pattern
is quite expectedly accompanied with a jump in the informational measure of symmetry
accompanying the change in the symmetry group of the shapes. Hence, the information
measure of symmetry introduced is well expected as useful for the characterization of
phase transitions.
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Last but not least, obviously the informational measures of symmetry could not be
defined for the 0D objects (points). However, the set of points may be converted into the
set of polygons with the use of the tessellation procedure prescribed (for example with the
Voronoi tessellation [26–30]), and at the next stage, the informational measures of symmetry
of the tessellations can be calculated.

2.6. Information-Theoretic Measures of Information: How Do They Work? An Example
from Chemistry

Let us exemplify the information-theoretic measure information introduced with an
example taken from chemistry. Consider the benzene combustion reaction, represented by
Equation (8):

2C6H6 + 15O2 → 12CO2 + 6H2O (8)

Figure 9 depicts the reaction schematically and demonstrates the elements of sym-
metry for the molecules involved. All of these molecules possess planar molecular geom-
etry, which allows us to consider a reaction that takes place in R2 space. The molecule
of benzene in the R2 space is characterized by twelve elements of symmetry, namely:
π
3 , 2π

3 , π, 4π
3 , 5π

3 , 2π rotations, and six mirror axes. The molecules of oxygen and CO2
are linear ones and possess four elements of symmetry, namely π and 2π rotations, and
two mirror axes. The molecule of water in R2 space possesses two elements of symmetry:
2π-rotation and the mirror axis, as shown inFigure 9.
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Let us calculate how the chemical reaction changes the symmetry of the system.
Our calculation conducted according Equations (2) and (5) demonstrates that, before the
reaction, we obtain Hsym = 2.01; Ωsym = 0.36. Hsym = 2.01, which is due to the high
symmetric benzene molecule, is as relatively high value. On the other hand, the value
of Ωsym = 0.36 is relatively low. This means that a certain group of symmetry (namely
group with the symmetry involving a linear molecule of oxygen) dominates in the system
addressed before the reaction. This is easily understood; indeed, 15 molecules of oxygen
react with two molecules of benzene. After the reaction, the value of Hsym decreases
(Hsym = 1.37); this decrease is due to the diminished number of elements of symmetry
inherent for the reaction products, namely water and CO2 molecules. The value of Ωsym
is contrastingly increased, namely we established Ωsym = 0.64, which points to the more
homogeneous distribution of the symmetry elements among products of the reaction. Thus,
we conclude that the suggested measures of symmetry may be applied for quantification of
the symmetry change occurring under chemical reactions.

3. Conclusions

This paper addresses the fine structures appearing in 2D patterns during the quan-
tification of symmetry. The quantification of symmetry is a challenging task in biology
(including understanding the structure of proteins [25] and the characterization of biolog-
ical patterns [35]), physics (when applied for the characterization of attractors [18–20]),
chemistry [23], and image processing [22]. Symmetry and ordering are usually quantified
by the Voronoi entropy [26–30] and by the continuous measure of symmetry [21–25]. In
this paper, we introduced and calculated the informational measures of various patterns
built of 1D (curves) and 2D (shapes) objects. One of the Shannon-like measures of sym-
metry, labeled Hsym(G), represents an average across the pattern uncertainty to find a
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symmetry operation related to the symmetry group G within the given pattern. The other
Shannon-like measure of symmetry, Ωsym(G), is interpreted as an averaged across the pat-
tern uncertainty to find the shape possessing n elements of symmetry in total and forming
the group G, which resembles the well-known Voronoi entropy [22–26,36]. We illustrated
the measures of symmetry introduced with several patterns built of triangles, arcs, ellipses,
rhombi, and irregular curves, including “mixed” patterns composed of 1D and 2D objects.
The reported results strengthen the idea that the ordering and symmetry of a pattern can
hardly be quantified with a single numerical value. We also calculated Hsym and Ωsym
for the Sierpinski fractal gasket built from equilateral triangles/squares. Hsym and Ωsym
remain the same for all scaling levels of the Sierpinski gasket [33,34]. The Hsym and Ωsym
introduced are the intensive parameters of the given pattern, and they are insensitive to the
number of 1D/2D shapes, to their size, and to the area of the pattern. Both measures are
influenced by the groups of symmetry of the shapes constituting the pattern. The time evo-
lution of the Shannon measures of symmetry are considered. If the moving objects conserve
their symmetry groups, the informational measures of symmetry are time independent.
The time evolution of the Shannon measures of symmetry is illustrated with an example
in which rhombi dissociate into equilateral triangles, thus changing the symmetry group
of the pattern. A change in the suggested measures of symmetry under combustion of
benzene is demonstrated. It is expected that the introduced Shannon measures of symmetry
will be useful for the analysis of phase transitions. In future investigations, we plan to study
(i) the informational measures of symmetry (IMS and VSMS) of fractals; (ii) the change in
the informational measures of symmetry inherent in phase transitions; (iii) the IMS and
VSMS of time crystals [37]; and (iv) the 3D generalization of Shannon-shaped measures
introduced here.
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