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Abstract: Anaerobic ammonium oxidation (anammox) is a biological nitrogen removal process with
attractive prospects, such as no carbon addition, less aeration, lower greenhouse gas generation, and
lower sludge production. However, it is difficult to maintain a stable anammox process since the
anammox bacteria have a slow growth rate and high sensitivity to many factors. Therefore, it is very
important to analyze and maintain the anammox activity as a process indicator for its successful
operation. The conventional method for measuring the concentration of nitrogen compounds, such
as ammonium, nitrite, or nitrogen gas is inconvenient during the reaction time for specific anammox
activity (SAA) analysis, which can result in an inaccurately determined SAA due to the substrate
loss and temperature change. In this study, a respirometer was utilized to analyze the SAA. The SAA
values from a respirometer (rSAA) showed a similar pattern to the SAA values (mSAA) from the
conventional method. All of the SAA analyses showed the highest value at 35 ◦C with a granule size
of <1 mm. Statistical analysis showed no significant differences regardless of the analysis method,
since the p-values for the t-test and Wilcoxon rank-sum test were >0.05. Therefore, the respirometer
can be used as a simple and efficient tool for SAA analysis. Moreover, the operating maintenance and
management of the anammox process can be improved due to the simple SAA analysis in the field.

Keywords: anammox; granule; respirometer; SAA analysis; statistical analysis

1. Introduction

The anaerobic ammonium oxidation (anammox) process has several advantages over
the conventional nitrification–denitrification process, such as no carbon addition require-
ments, less aeration, lower greenhouse gas generation, and lower sludge production [1,2].
However, a stable performance is difficult to maintain since the anammox bacteria have a
slow growth rate and are highly sensitive to environmental conditions, such as substrate
concentration, granule size, organic matter, temperature, etc. [1,3]. Therefore, it is essential
to maintain a sufficient amount of anammox biomass in the reactors for successful opera-
tion. As a result, measurements of the anammox activity can indicate the parameters of
the stable process operation since they identify the inhibitory effects on anammox bacteria
from various factors.

In general, the anammox activity is expressed as a specific anammox activity (SAA).
It can be determined based on the amount of ammonium (gNH4

+/gVSS/day) and nitrite
(gNO2

−/gVSS/day) consumed or the amount of nitrogen gas produced (gN2/gVSS/day)
per biomass concentration over the reaction time, as shown in the following stoichiometry
relationship (Equation (1)) [4]. Numerous studies analyzed the SAA to examine the effects
of various environmental factors, such as zinc [5], sludge type [6], temperature, and pH [5]
or salt [7] on the anammox process. However, measuring the concentrations of nitrogen
compounds, such as ammonium, nitrite or nitrogen gas is inconvenient during the reaction
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time for the SAA analysis, which can result in an inaccurately determined SAA due to the
substrate loss and temperature change.

NH4
+ + 1.32NO2

− + 0.066HCO3
− + 0.13H+ → 1.02N2 + 0.26NO3

− + 0.066CH2O0.5N0.15 + 2.03H2O (1)

The respirometer is a device that analyzes the microbial activity simply and rapidly by
in situ measurements of the gas consumed or produced from the respiration of microbes [8].
Numerous studies have made use of respirometers to evaluate the activity of iron-and
sulfide-oxidizing bacteria [9,10], sulfur-oxidizing bacteria [11], thermophilic bioleaching
archaea [12], hydrogen-producing bacteria [13], soil bacteria [14], activated sludge [15,16],
anaerobic sludge [17], marine bacteria [18], and sediment [19]. These results can be used for
wastewater treatment operation and management [20]. In addition, SAA can be measured
using a respirometer since anammox bacteria produce nitrogen gas from ammonium and
nitrite. However, to the best of our knowledge, there are little reports of SAA analysis using
a respirometer.

This study evaluated a simple method for the determination of SAA using a respirom-
eter and applied it to investigate the effects of granule size and temperature on the SAA.
These results were compared with the SAA results of conventional analysis methods, pro-
viding readers with comprehensive and useful reference information for SAA analysis
using a respirometer.

2. Materials and Methods
2.1. Anammox Granules

Anammox granules of the laboratory-scale anammox cultivation reactor (working
volume 36 L), which has been operating with 200 mgNH4

+-N and 200 mgNO2
−-N/L

were used in this study. This reactor was operated in a continuous stirred mode under
8–10 h of HRT. A nitrogen removal efficiency of approximately 85% and nitrogen removal
rate of 0.82–1.02 kg/m3/day were achieved. Moreover, the granules were enriched with
uncultured anammox bacterium (68.1%), Ca. Brocadia (8.6%), Ca. Jettenia (1.9%), and Ca.
Kuenenia (2.6%).

2.2. Batch Test

A batch test was performed with a working volume of 36 L and was conducted in two
steps. In step 1, the granules that were not classified by size were used. Additionally, gas
production was measured until all of the reactions were completed to determine the optimal
reaction time for SAA analysis using the respirometer (BRS-100, EETech Co., Chuncheon,
Korea) (Figure 1). In step 2, the experiments were conducted according to the granule size
(<1, 1–2, and >2 mm) and temperature (30, 35, and 40 ◦C). Moreover, the granules were
separated using a sieve for each size.

Herein, N2 gas production was calculated using two methods based on the actual mea-
sured gas (∆rN2) using a respirometer (Equation (2)). In addition, theoretical gas production
(∆mN2) was calculated from the actual consumed ammonium and nitrite concentrations
based on the following stoichiometry equation (Equations (3) and (4)):

∆r N2(molN2/min) =
P·∆N

R·T·∆t
(2)

∆mN2(molN2/min) =
1.02·(n∆A)·VL

M·∆t
at

the removed NO−2 − N
the removed NH+

4 − N
≥ 1.32 (3)

∆mN2(molN2/min) =
1.02·(n∆Ni)·VL

M·∆t
at

the removed NO−2 − N
the removed NH+

4 − N
< 1.32 (4)

where ∆N is the net increase in N2 gas volume (L) measured from a respirometer over the
reaction time; ∆t is the reaction time (min); R is the ideal gas coefficient (0.082 atm L/mol·K);
T is the temperature (K); ∆A is NH4

+-N removed (g/L) during the reaction time; P is
pressure (1 atm); ∆Ni is NO2

−-N removed (g/L) during the reaction time; P is pressure
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(1 atm); VL is the volume of liquid (0.1 L); M is the molecular weight of nitrogen gas
(28 g/mol); and n is the N2 gas modifying factor based on the stoichiometry equation
(Equation (1)), which is one when the ratio of removed NO2

−-N divided by the removed
NH4

+-N is ≥1.32, and 1.32 when the ratio of removed NO2
−-N divided by the removed

NH4
+-N is <1.32.
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Figure 1. Batch test for SAA analysis using a respirometer.

SAA was calculated from the N2 gas production rate divided by the biomass concen-
trations (gVSS/L) in the vial (Equations (5) and (6)):

rSAA (gN2/gVSS/day) =
∆rN2·M· f

XVL
(5)

mSAA (gN2/gVSS/day) =
∆mN2·M· f

XVL
(6)

where rSAA is the SAA calculated based on the N2 gas production rate using a respirometer;
mSAA is the SAA calculated based on the N2 gas production rate from the actual removed
ammonium and nitrite; X is the biomass concentration (gVSS/L); M is the molecular weight
of nitrogen gas (28 g/mol); f is the time modifying factor (1440 min/day); and VL is the
volume of liquid (0.1 L).

All of the batch experiments (3 gVSS/L) were performed in duplicate under a ther-
mostatic chamber maintained at 35 °C, except for step 2 (On-lab Co., Busan, Korea). The
reactors were carried out under a complete mixing condition using a stirrer at 120 rpm.
Before the experiments, each reactor was purged with argon gas for 10 min to remove the
oxygen and ensure anaerobic conditions in the reactor. The composition of the medium was
as follows: 100 mg/L NH4

+-N, 100 mg/L NO2
−-N, 1.010 g/L NaHCO3, 0.055 g/L KH2PO4,

0.005 g/L CaCl2·5H2O, 0.5 g/L MgSO4·7H2O, 0.010 g/L FeSO4·7H2O, 0.005 g/L EDTA.

2.3. Analysis

The biomass concentration (gVSS/L) was analyzed according to the standard method
(APHA, 2005). All of the liquid samples from each vial were filtered through 0.22 µm
disposable filters (RephiQuik Syringe Filter, RephiLe Bioscience Ltd., Shanghai, China)
and stored in microcentrifuge tubes prior to further analysis. Ammonium and nitrite were
analyzed using a kit (Humas Co. Ltd., Daejeon, Korea) according to the standard method
(APHA, 2005).
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Statistical analysis was performed using R [21]. The significance of the differences
between rSAA and mSAA was evaluated by comparing the p-values of the t-test and
Wilcoxon rank-sum test following the Shapiro–Wilk normality test (p-value < 0.05).

3. Results and Discussion
3.1. Changes in N2 Gas Production and rSAA According to the Reaction Time

An investigation of N2 gas production was conducted until the end of the reaction to
determine the saturation point for SAA using a respirometer for the measurement of N2
gas production (Figure 2). In this case, the accumulated N2 gas production increased until
360 min and remained unchanged until the end of the reaction (saturated point).
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Figure 2. Changes in nitrogen gas amount (bar) as a function of time (min) and accumulated nitrogen
gas amount (line) during the total reaction time. The grey area indicates the standard deviation for
accumulated N2 gas production.

The SAA varied depending on the reaction time, as shown in Table 1. The maximum
rSAA (0.449 gN2/gVSS/day) and minimum rSAA (0.111 gN2/gVSS/day) were observed at
60 min and the end of the reaction (600 min), respectively. At the saturation point (360 min),
rSAA (0.197 gN2/gVSS/day) was approximately 40% of the maximum rSAA.

Table 1. Changes in the rSAA value over the reaction time.

Time (min) SAA (gN2/gVSS/Day)

60 0.449 ± 0.133

120 0.384 ± 0.083

360 0.197 ± 0.033

600 0.111 ± 0.022

These results showed that the SAA value could be easily calculated from the amount of
biogas produced using a respirometer until the reaction was completed without analyzing
the nitrogen compounds.

3.2. Comparison of rSAA and mSAA According to Temperature and Granule Size

The reliability and accuracy of the SAA analysis method using a respirometer were
examined. The SAA was analyzed using two methods (rSAA and mSAA) according to
granule size and temperature.
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Herein, the two methods showed a similar trend according to granule size and tem-
perature. Both rSAA and mSAA showed the highest SAA values at 35 ◦C regardless of
the granule size, followed by 40 and 30 ◦C (Figure 3). The temperature range, in which
the presence and activity of anammox bacteria were detected, was very wide (−5~80 ◦C).
However, the optimal temperature for most of the anammox species used in the wastewater
treatment was between 30 and 40 ◦C [22]. Therefore, the optimal temperature for anammox
bacteria is 35 ◦C.
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The SAA decreased with the increasing granule size and showed a strong negative lin-
ear relationship, according to the granule size under each temperature condition (Figure 4).
A granular size of <1 mm showed the highest SAA regardless of the temperature, followed
by 1–2 and >2 mm. Anammox bacteria with a small granular sludge are highly active
due to the fact that the nutrients are quickly and actively supplied to the center of the
granules. However, a granular sludge larger than 2 mm had a low SAA. The larger granule
size causes extensive tunnels and empty spaces inside the granule, which lead to the low
activity and reduction of granule stability [23].
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The t-test and Wilcoxon rank-sum test were performed to determine if the SAA
values using the two methods are significantly different. Prior to this step, a Shapiro–Wilk
normality test was performed for the SAA value under each condition (Table 2). All of
the data appeared to follow a normal distribution since the p-values resulting from the
Shapiro–Wilk normality test were >0.05. All of the datasets showed a normal distribution.
However, the t-test and Wilcoxon rank-sum test were performed together since the number
of samples was too small (N = 6). At each condition, the p-values from the t-test and
Wilcoxon rank-sum test for rSAA and mSAA were <0.05, which indicates that the SAA
values using the two methods were similar. Therefore, a respirometer is well-suited for
SAA analysis. However, since there is a limit for the evaluation of the process state, it is
necessary to use this value as an indirect indicator, along with various factors that can
confirm the process state.

Table 2. p-values resulting from the Shapiro–Wilk normality, t-test, and Wilcoxon rank-sum test for
rSAA and mSAA.

Item rSAA30◦C mSAA30◦C rSAA35◦C mSAA35◦C rSAA40◦C mSAA40◦C

No. 1 6 6 6 6 6 6

N test 2 0.276 0.402 0.232 0.430 0.051 0.487

T test 0.711 0.223 0.591 0.394

W test 3 0.485 0.240

Item rSAA<1 mm mSAA<1 mm rSAA1–2 mm mSAA1–2 mm rSAA>2 mm mSAA>2 mm

No. 6 6 6 6 6 6

N test 0.066 0.401 0.267 0.337 0.249 0.189

T test 0.604 0.326 0.601 1.000

W test 0.485 0.589
1 No. of samples; 2 Shapiro–Wilk normality test; 3 Wilcoxon rank-sum test.



Appl. Sci. 2022, 12, 1121 7 of 8

4. Conclusions

In conclusion, the SAA values from a respirometer (rSAA) showed a similar pattern
to the SAA values (mSAA) from the conventional method, according to granule size and
temperature. The best SAA value was shown at 35 ◦C with a granule size of <1 mm.
Moreover, the statistical analysis showed no significant differences between rSAA and
mSAA. When measuring SAA using the respiratory, the fact that the anammox reaction
occurs predominantly should be sufficiently reviewed in advance, since the gas composition
cannot be confirmed. Our findings indicate that since the method using the respiratory
system can be simply and efficiently measured in the field, it will be a powerful way to
indirectly check the performance of the process easily with only the SAA result.
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