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Abstract: Particle Swarm Optimization is a metaheuristic optimization algorithm widely used across
a broad range of applications. The algorithm has certain primary advantages such as its ease
of implementation, high convergence accuracy, and fast convergence speed. Nevertheless, since
its origin in 1995, Particle swarm optimization still suffers from two primary shortcomings, i.e.,
premature convergence and easy trapping in local optima. Therefore, this study proposes modified
chaotic particle swarm optimization with uniform particle initialization to enhance the comprehensive
performance of standard particle swarm optimization by introducing three additional schemes. Firstly,
the initialized swarm is generated through a uniform approach. Secondly, replacing the linear inertia
weight by introducing the nonlinear chaotic inertia weight map. Thirdly, by applying a personal
learning strategy to enhance the global and local search to avoid trap in local optima. The proposed
algorithm is examined and compared with standard particle swarm optimization, two recent particle
swarm optimization variants, and a nature-inspired algorithm using three software effort estimation
methods as benchmark functions: Use case points, COCOMO, and Agile. Detailed investigations
prove that the proposed schemes work well to develop the proposed algorithm in an exploitative
manner, which is created by a uniform particle initialization and avoids being trapped on the local
optimum solution in an explorative manner and is generated by a personal learning strategy and
chaotic-based inertia weight.

Keywords: particle swarm optimization; software effort estimation; chaotic inertia weight; personal
learning strategy; uniform particle initialization

1. Introduction

Software effort estimation (SEE) is an early activity in the software life cycle. SEE
estimates the level of effort and the cost required to develop a new software system.
Estimating the required effort is essential because software organizations are obligated to
release software within a given time frame and within a certain cost. Unfortunately, most
software projects are delivered after the deadline and over budget. Time and cost overruns
have been common problems in software projects for many years [1]. Hence, the accuracy
of estimating effort and cost is an essential factor in SEE to successfully avoid the time
and budget overruns for overall software delivery [2,3]. To achieve this goal, during the
last decade, efforts to create an estimation method have been proposed using parametric,
expert judgement, learning oriented techniques, regression based methods, dynamic based
models, and composite methods [4].

In order to formulate a method to achieve an improvement in estimation of effort,
efforts are ongoing to produce more accurate and reliable models. Effort estimation is a
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complex problem, and the attribute relation is difficult to analyse. Therefore, the optimiza-
tion process plays a crucial role in this regard. Optimization can be directly utilized in the
effort estimation process, such as the optimization of attribute weighting in COCOMO, Use
Case Points, or Analogy Based Estimation (ABE).

Particle swarm optimization (PSO) is one of Swarm intelligence (SI) algorithms along-
side Galactic Swarm Optimization (GSO), the Firefly Algorithm (FA), Ant Lion Optimiza-
tion (ALO), Ant Colony Optimization ACO, Artificial Bee Colony algorithm (ABC), Whale
Optimization, Glowworm Swarm Optimization (GSO), and Cuckoo Search Algorithm
(CSA). Swarm intelligence has been widely used in hybrid approaches. For instance, the
genetic operators have been hybridized with PSO, such as a standard selection mechanism
from evolutionary computations [5], the employment of two different crossover operations
in order to breed promising exemplars [6], and an adaptive mutation strategy [7]. Similarly,
Ant Colony optimization [8], the differential evolution algorithm [9], tabu search [10],
Artificial Bee colony [11], Firefly Algorithm [12] and gravitational search algorithm [13]
have been incorporated into PSO to take full advantage of each algorithm’s strengths.

Particle Swarm Optimization (PSO) was introduced in 1995 by [14] and gained a high
level of interest since it has three advantages: ease of implementation, the requirement of
parameters that are simply tuned, and its effectiveness in identifying the global optimum
solution since it has a clearer particle direction [15]. Due to its benefit, PSO is widely
used in software effort estimation research [16]. However, it still has some shortcomings,
such as premature convergence and being trapped into local optima and a poor global
search ability [15]. Premature convergence and poor global search ability are influenced by
the inertia weight parameter and acceleration coefficient. Inertia weight (ω) can provide
particles with a dynamic adjustment ability in different environments, thus realizing the
balance between exploration and exploitation. Inertia weight plays an important role in
controlling the processes of exploration (global search) and exploitation (local search) by
maintaining a balance in their capabilities. From the perspective of statistical analysis, it is
believed that the overall performance of PSO is strongly affected by the inertia weight [17].

Researchers have provided various modified versions of PSO to overcome the flaws.
Generally speaking, there are six strategies to achieve these goals, such as tuning the
following control parameters: inertial weight (w) [18], cognitive acceleration coefficient
(c1) and social acceleration coefficient (c2) [19]; hybrid PSO [13]; changing topological
structure [20], eliminating the velocity formula [21]; changing the learning strategy [22];
and changing particle initialization strategy [23]. These variants have successfully improved
PSO performance.

Although numerous optimization algorithms have been successfully applied to the
parameter extraction of software effort estimation systems, it is still indispensable to
introduce a novel algorithm to achieve higher accuracy and consequently, improve the
total efficiency of different estimation methods. Accordingly, the main objective of this
study is to extract the parameters of the various effort estimation methods by exploiting the
importance of merging uniform initialization, chaotic mapping, and a personal learning
strategy with PSO algorithm.

The purpose of proposed PSO variant is to obtain good performance by addressing
the premature convergence and trap into local optima drawbacks. However, the challenges
of premature convergence and easy trapping in the local optimum solution still persist.
Therefore, in this research, a modified chaotic-based PSO with uniform particle initialization
(MUCPSO) is proposed to enhance the comprehensive performance of the standard PSO
algorithm. The MUCPSO balances the global and local search to enhance the diversity
of initial swarm by forming them dispersedly while avoiding premature convergence by
introducing three additional schemes. Firstly, initialized particle or swarm initialization
is generated by uniform approach. Secondly, the linear inertia weight is replaced by an
introduction of the nonlinear chaotic inertia weight map. Thirdly, a personal learning
strategy to enhance the global and local search to avoid trap in local optima. The MUCPSO
is finally examined and compared with standard PSO (SPSO) [14], and the following
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two latest PSO variants: chaotic based PSO (CPSO) [24], uniform chaotic initialized PSO
(UCPSO) [23], and one nature-inspired optimization, i.e., Genetic Algorithm (GA) [25]
by using three software effort estimation methods as the benchmark functions: Use Case
Points, Agile, and COCOMO.

One main contribution of this study is the improvement of the standard PSO by
introducing three parameters such as the uniform approach for the diversity of particle
initialization, nonlinear chaotic inertia weight map to balance between the exploration and
exploitation phase, and personal learning strategy to enhance the global and local search in
order to avoid trapping in local optima.

The remainder of this paper is arranged as follows: Section 2 present a related work;
Section 3 presents details of standard particle swarm optimization; Section 4 presents details
of MUCPSO as the proposed algorithm; Section 5 details materials and methods; Section 6
presents and discusses the experimental results and Section 7 discuss the conclusion and
recommends future works of this study.

2. Related Work

PSO results, especially in convergence speed and quality of a final solution heavily
depends on the quality of initial particles or particles initialization [26]. High quality
initialized particles are achieved when they are more dispersed and closer to the global
minimum. In many existing PSO variants, particles are initialized randomly. Initialization
is a critical factor in the PSO algorithm that significantly affects diversity and convergence.
Such an initialization has characteristics of slow convergence and become easily trapped
in local optima [27]. This drawback is due to the lack of diversity in initialized particles.
Hence, studies have been conducted to enhance the diversity of initialized particles. Tent
or Logistic chaotic mapping is introduced by [28–32] to initialize uniformly distributed
particles. This chaotic-based initialization achieved better results compared with random-
based initialization. Refs. [33,34] proposed an opposition-based population initialization
by employing a symmetric strategy. This strategy can prevent initial particles from being
distant from the global optimum. Opposition-based learning (OBL) is also employed
in the work of [26], combined with Logistic chaos mapping. The experiments validate
that this kind of initialization can recognize the search area better. Slightly different to
others, Rehman [35] uses semi-random initialization by dividing the entire search space.
The distribution of particles over a search space is performed in independents slots. The
Weibull probability sequence is used to generate numbers at random locations for swarm
initialization [36]. In the most recent study, Zhang [23] introduced uniform initialization (UI)
strategy. UI strategy initializes a particle randomly as the basic point and then generates
other initial particles based on this basic point. Hence, the initial particles are evenly
distributed in each dimension, and the positions of each particle in each dimension are
randomized. This mechanism can prevent the aggregation of initial particles. Ref. [37]
proposed a pseudo-random initialization strategy called WELL on population initialization.
This strategy imparted a significant effect on the importance of convergence and diversity.

Maintaining a balance between exploration and exploitation is very important for an
optimization algorithm. In this way, inertia weight plays a critical role to maintain this
balance. In standard PSO (SPSO), inertia weights are based on linear decreasing weight,
which lead to a poor result/balance. Therefore, several studies have been proposed to
tackle this problem. Refs. [38,39], proposed random-based inertia weights. This kind of
randomness improved the population diversity in the early search phase, while it affects
the local search ability in the later search phase, which reduces the convergence speed.
In contrast, Zhang [40] and Sedighizadeh [41] introduced a dynamic inertia weight to
replace the random inertia weight by controlling the convergence of the swarm towards
a solution. An adaptive inertia weight based on the binomial probability distribution is
proposed by [18], while [42] using the triangular probability density function to make the
inertia weight generally greater in the initial stage of evolution, which is suitable for global
search. Ref. [43] proposed an adaptive self-inertia weight with a gradient-based local search
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strategy. As stated by [44], for better performance, the inertia weight should be nonlinearly
and dynamically changed to achieve better dynamics of balance between global and local
search abilities. Recent studies proposed a chaotic-based inertia weight strategy. Ref. [45]
used Sine map [46], Gauss map, and [47] Logistic map to adjust and tune the inertia weight.

In SPSO, the velocity and position of each particle are updated using a learning
mechanism based on its personal and population best experience. This learning mechanism
is simple and easy to implement, but it suffers from some potential problems, such as
the phenomena of “oscillation” and “two steps forward, one step back” as coined by [48].
Thus, several studies proposed improvements such as the dimensional learning strategy
introduced by [48] by introducing a two-swarm learning PSO (TSLPSO) algorithm based on
different learning strategies. One of the subpopulations constructs the learning exemplars
by DLS to guide the local search of the particles, and the other subpopulation constructs
the learning exemplars by the comprehensive learning to guide the global search. The
dimension-based velocity updating equation proposed by [40] also divides the population
into two particle-based updating equations with the two approach, and the two are executed
alternately to form a novel social learning PSO. Unlike SPSO learning strategies, where the
particles are updated based on historical information, each particle in the Social learning
PSO [40] is able to learn from better particles in the same swarm. Dynamic learning strategy
is proposed by [49] by promoting information exchange among sub-swarms, ordinary
particles and communication particles. The ordinary particles focus on exploitation under
the guidance of the local best position in its sub-swarm, while the communication particles
have a dynamic ability and focus on exploration under the guidance of a united local best
position in a new search region to promote information exchange among sub-swarms. The
adaptive learning strategy proposed by [50] employed a self-learning based candidate
generation strategy to ensure the exploration ability, and a competitive learning (CL) based
prediction strategy to guarantee exploitation of the algorithm, while [51] used adaptive
mechanism for adjusting comprehensive learning probability and a cooperative archive
(CA) combined with standard PSO. Ref. [47] proposed a stochastic and mainstream learning
strategy to replace the personal and global learning strategies. Stochastic learning allows
particles to learn from other excellent particles in the population, making the movement
of particles more diverse. By enhancing the diversity of the population, the premature
convergence of SPSO is managed. Lately, Zhou [52] proposed local minimum early warning
to reflect the risk of being trapped in a local minimum. It determines the paradigm evolution
direction and adjusts the trajectory of particles in different risk environments. In order to
improve the ability to resist the temptation of local optima, the adaptive hierarchical update
method generates two-layer and three-layer update formulas for the global exploration
subpopulation and the local exploitation subpopulation, respectively.

3. Standard Particle Swarm Optimization

Standard article swarm optimization (SPSO) is inspired by the behavior of bird flocking
and fish schooling to find a place with enough food [28]. Algorithm 1 describes the process
of SPSO. This algorithm starts by randomly generating the populations based on the swarm
size parameter. The population consists of N particles in which each particle i acts as the
representation of potential solutions to the given problem. A particle is represented by the
vector xi in the decision space. Each particle has its position (x) and velocity (v). Position
represents the flying direction, and velocity relates to the step of the particle.

The cooperation between particles achieves optimization. The particle closest to the
objective is called the success particle. The success particle will influence the behavior of
other particles. They will adjust their positions (xi) toward the global optimum. Two factors
affect the position of the particle. First, the best position visited by itself called personal
best (Pbesti), and second, the best position visited by the particles overall, known as the
global best (Gbesti).

After the population is successfully created, for the following iterations, each particle
will apply the following operations:
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First, update the velocity to define the amount of change applied to the particle as
formulated in Equation (1).

vi+1 = ωvi + C1R1 ∗ (Pbesti − xi) + C2R2 ∗ (Gbesti − xi) (1)

where vi+1 is a new velocity, and vi is current or initialized velocities. Initialized velocity
means that vi is assigned as a random number between 0 and 1 alongside the generation of
the population. C1 and C2 represent the constant variables that are well known as cognitive
learning factors and social learning factors. R1 and R2 are random variables in the range
of [0,1]. Pbesti is the best position visited by particle i. Gbesti is the best position visited
by overall particle. xi is the current position of particle, whereas ω is an inertia weight
(see Equation (2)), where ωt is inertia weight of current iteration t, ωmax is maximum
inertia value equal to 0.9, ωmin is minimum inertia value equal to 0.4, and Tmax is the
maximum iteration.

Inertia weight controls the momentum of the particle by weighting the contribution
of the previous velocity, controlling the extent to which the previous flight direction will
influence the new velocity. Inertia weight is critical in ensuring convergent behavior as
formulated in Equation (2).

ωt = ωmax +
(ωmax −ωmin) ∗ t

Tmax
(2)

Second, the position of the particle is updated as notated in Equation (3), where xi+1
is a new position of the particle, xi is the last position, and vi is the current velocity of
the particle.

xi+1 = xi + vi (3)

Each particle will update their personal best solution if xi < Pbesti then Pbesti = xi
and the global best will be updated if xi < Gbesti, then Gbesti = xi.

Algorithm 1. Standard Particle Swarm Optimization algorithm (SPSO).

(1) Input: Dataset X, Parameters settings in Table 4
(2) Output: Optimized solutions
(3) for each project in X do
(4) generate initial population
(5) while (Gbest > stopping value) or (Tmax > 0) do
(6) for i = 1, 2, 3, . . . , Tmax do
(7) update velocity using Equation (1)
(8) update positions using Equation (3)
(9) calculate effort estimation
(10) updated particles
(11) end for
(12) Gbest←min(Pbests)
(13) if Gbest > stopping value then
(14) temps[]← Gbest
(15) else
(16) Gbest
(17) end if
(18) increment++
(19) end while
(20) if temps is not empty then
(21) Gbest←min(temps)
(22) end if
(23) end for
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4. A Modified Chaotic Based PSO with Uniform Initialization

Inspired by research on particle initialization, inertia weight, and learning strategy,
we proposed a new competitive PSO variant called MUCPSO. MUCPSO combines three
strategies, and their details are represented in the following sections.

4.1. Uniform Initialization

Random initialization, chaotic initialization, and opposition-based initialization experi-
ence challenges in avoiding the aggregation of initial particles. To solve this problem, a uni-
form initialization strategy [23] is employed. As shown in Algorithm 2, the first line of code
initializes a particle randomly as the base point, and X1 = [X11, X12, . . . , X1D] is the position
of the base point. Lines 2–4 generate a D ∗ (n− 1) random matrix R = [R1, R2, . . . , RD]
to ensure the randomness of the initial particles. Lines 5–12 divide the length of each
dimension by n to obtain the minimum distance between particles in the corresponding
dimension. Lines 5–12 distribute particles in each dimension uniformly and avoid the ag-
gregation of particles. If the position of a particles exceeds the allowed range of a dimension,
it will subtract the range of the corresponding dimension.

Uniform initialization ensures that the distance between particles is greater than a
certain value. It can avoid the aggregation of particles and distribute the initial particle
uniformly to recognize more areas at the beginning.

Algorithm 2. Uniform particle initialization algorithm.

(1) Initialize X1 in the search area randomly
(2) for d = 1 to D do
(3) randomly rearrange [1, 2, . . . , (n−1)] to get Rd = [R1d, R2d, . . . , R(n−1)d]
(4) end
(5) for i = 1 to n do
(6) for d = 1 to D do
(7) Xid = X1d + R(i−1)d ÷ n * (Xdmax − Xdmin)
(8) if Xid > Xdmax then
(9) Xid = Xid − (Xdmax − Xdmin)
(10) end
(11) end
(12) end for

4.2. Chaotic Inertia Weight, R1, and R2 Parameters

In the SPSO algorithm, there are two parameters that control the trade-off between
exploration and exploitation, R1 and R2. R1 and R2, that regulate the movement of particles
towards the personal previous bests and global best positions. Consequently, if these two
parameters have large values, they supervise or drive the particles to augment the current
solution by moving towards the best and global positions, respectively. In contrast, if
these parameters raise the small values, they supervise/drive the particles capabilities
in exploration. R1 and R2 values are assigned by random value between 0 and 1. In our
proposed method, we replaced the random value between 0 and 1 by using a chaotic
number between 0 and 1, as formulated in Equation (4). The chaotic maps are able to adapt
between the exploitation and exploration phases.

ω(t) = r(t).ωmin +
(ωmax −ωmin) ∗ t

Tmax
, r(0) = 0.7 (4)

where r(t) is a random number generated by the selected chaotic map function. r(0) is
defined as 0.7 due to the robust result [46].

There are eight well-known randomness non-linear chaotic maps, as described in
Table 1.
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Table 1. Eight well-known chaotic maps.

Map Function Range

Gauss xk+1 =


0, xk = 0

1
xk

mod 1, xk 6= 0, x0 = 0.7
(0,1)

Singer xk+1 = 1.07
(
7.86xk − 23.3x2

k + 28.75x3
k − 13.3x4

k
)

(0,1)

Logistic xk+1 = 4xk(1− xk), x0 /∈ (0.0, 0.25, 0.5, 0.75, 1.0) (0,1)

Circle
xk+1 = xk + b−

( a
2π

)
sin(2πxk)mod(1)

xk+1 = xk + b− (a− 2π) sin(2πxk)mod(1)
where a = 0.5, b = 0.2, and the chaotic generate sequence is in (0, 1)

(0,1)

Sine xk+1 = a
4 sin(πxk), 0 < a ≤ 4 (0,1)

Sinusoidal
xk+1 = ax2

k sin(πxk)
where a = 2.3, and x0 = 0.7. It has the following simplified form:

xk+1 = sin(πxk)

(0,1)

Chebyshev xk+1 = cos
(
k cos−1(xk)

)
(−1,1)

Bernoulli shift xk+1 =

{ xk
1−λ , 0 < xk ≤ 1− λ

xk−(1−λ)
λ , 1− λ < xk < 1

where λ = 1/2 as treated in [20].
(0,1)

For visualization purposes, Figure 1 provides the chaotic value distribution of 100 it-
erations for all eight maps with random initial values. The vertical (x) axis denotes the
iteration number, and the horizontal (y) axis denoted the inertia weight. For a robust result,
0.7 is assigned as the x0 value for all chaotic map functions [46].

4.3. Personal Learning Strategy

Alongside social learning (R1) and cognitive learning (R2), velocity updating is also
affected by personal and global learning strategies. In practice, the particles learn from
their personal best (Pbest) and global best (Gbest) positions. The advantage of this learning
strategy means PSO has certain benefits such as fast convergence, high reliability and strong
global exploration ability. However, behind the fast convergence remains one drawback,
which is premature convergence. To overcome this drawback, we utilized the stochastic
personal best (SPbest) as proposed by [47]. SPbest allows the particles to learn from
other excellent individuals in the population and makes the movement of particles more
heterogeneous. By enhancing the heterogeneity of the population, we are able to overcome
the premature convergence in the PSO algorithm. SPbest is, however, contradictive with
standard Pbest, for which particles learn only from their own best personal best. The overall
three combination strategies proposed in this study are described in Algorithm 3.

Equations (5) and (6) express the SPbest technique. SPbest works as follows: first, from
the population, two mutually different personal best (Pbest) particles in each iteration are
randomly selected. Second, based on their fitness value, these selected Pbest are compared
to determine the candidate personal best solution (CPbest). Second, the better CPbest is
compared with the current personal best (Pbesti) (see Equation (6)). As formulated in
Equation (6), if CPbest is less than Pbesti, then Spbest is equal to Cpbest, and Spbest is equal
to Pbesti, otherwise.

CPbest(t) = argmin{ f it(Pbesta(t)), f it(Pbestb(t))},
a 6= b ∈ {1, 2, . . . , N} (5)

where CPbest(t) is the candidate personal best solution, f it(Pbesta) is fitness value of Pbesta,
f it(Pbestb) is fitness value of Pbestb, N is number of particles.
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Figure 1. Chaotic value distributions during 100 iterations.
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Algorithm 3. A modified chaotic particle swarm optimization with uniform Initialization algorithm.

(1) Input: Dataset X, Parameter settings in Table 4
(2) Output: Optimized solutions
(3) for each project in X do
(4) generate uniform initial population using Algorithm 2
(5) while Gbest(min(SPbest)) > Stopping value OR (Tmax > 0)
(6) do
(7) rt, R1, R2 = selected chaotic map
(8) ω = inertia weight by Equation (4)
(9) for i = 1, 2, 3, . . . , Tmax do
(10) Update velocity by Equation (8)
(11) Update positions by Equation (9)
(12) Calculate effort estimation
(13) Updated particles
(14) end
(15) CPbest by Equation (5)
(16) SPbest(CPbest, Pbest) by Equations (6) and (7)
(17) Gbest(min(Pbest))
(18) if Gbest > Stopping value then
(19) temps[]← Gbest
(20) else
(21) Gbest
(22) end
(23) increment++
(24) end
(25) if temps is not empty then
(26) Gbest(min(temps))
(27) end
(28) end

SPbesti(t) =

{
CPbest(t) f it(CPbest) < f it(Pbesti)

Pbesti(t)otherwise
(6)

Pbesti(t) = argmin{ f it(Xi(1)), f it(Xi(2)), . . . , f it(Xi(t))} (7)

Based on this recognition, the standard velocity updating in Equation (1) is replaced
by Equation (8) where ξ1 and ξ2 are the chaotic map values.

Vi(t + 1) = ω(t)Vi(t) + C1ξ1 ∗ (SPbesti(t)− Xi(t)) + C2ξ2 ∗ (Gbesti(t)− Xi(t)) (8)

Xi(t + 1) = Xi(t) + Vi(t + 1) (9)

5. Materials and Methods

This section presents the dataset used, along with brief descriptions of the software
effort estimation methods as the benchmark function.

5.1. Datasets

The characteristics of the chosen datasets highly affect the software effort estimation
evaluation. In this study, we used three real datasets: Silhavy [53] for UCP, NASA93 for
COCOMO [54], and Agile [55] datasets for Agile software effort estimation, respectively.

5.1.1. Use Case Points

The original UCP framework proposed by Karner [56] consists of seven steps. First,
a calculation of the unadjusted actor weighting (UAW) is performed by classifying the
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actors into three levels of complexity and assigning a weight for each actor based on its
complexity as notated in Equation (10).

UAW =

3

∑
i=1

Wi ∗ Ai (10)

where Wi is weight factor classified as simple for 1, the average for 2, and complex actor
for 3. Ai is a number of actors in the use case diagrams based on the same classification as
Wi. Second, the unadjusted use case weighting (UUCW) is calculated by classifying the
use case into three levels of complexity and assigning a weight for each actor based on its
complexity level as formulated in Equation (11).

UUCW =

3

∑
i=1

Wi ∗UCi (11)

where Wi is a weight factor which classified as simple (5), average (10), and complex (15)
use case, respectively. UCi is number of transactions counted in use-case specification
diagrams based on the same classification as Wi. Alongside the original weight level,
Table 2 presents the complexity weight level derived by [57,58].

Table 2. The original and modified use case complexity weight level.

Number of Use Case Transactions Original Weight Level Modified Weight Level

1–2 5 5.00
3 5 6.45
4 10 7.50
5 10 8.55
6 10 10.00
7 10 11.40
8 15 12.50
9 15 13.60

>10 15 15.00

Third, the unadjusted use case points (UUCP) are calculated as notated in Equation (12).
UAW in Equation (10) is used alongside the UUCW in Equation (11) to obtain UUCP.

UUCP = UAW + UUCW (12)

Fourth, technical complexity factors (TCF) are calculated. TCF is formulated in
Equation (13) by grading (Gi) the thirteen weight factors (Wi) using a score of 0 to 5.

TCF = 0.6 +

0.01 ∗
13

∑
i=1

Wi ∗ Gi

 (13)

Fifth, the environmental complexity factors (ECF) are calculated as notated in Equation (14)
by grading (Gi) the eight factors (Wi) using a score of 0 to 5.

ECF = 1.4 +

−0.03 ∗
8

∑
i=1

Wi ∗ Gi

 (14)
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Sixth, the use case points (UCP) are calculated as formulated in Equation (15). UCP
is obtained by multiply UUCP in Equation (12) by TCF in Equation (13) and ECF in
Equation (14).

UCP = UUCP ∗ TCF ∗ ECF (15)

Seventh, the estimated effort is calculated as formulated in Equation (16). Estimated
effort is obtained by multiply the UCP in Equation (15) with Productivity Factors (PF).

Effort = UCP ∗ PF (16)

PF is the productivity factor, and it can be set equal to 20 person-hours/UCP, 8.2 person-
hours/UCP [59,60], or using the learning productivity ratio as proposed by [61].

5.1.2. COCOMO II

The first version of COCOMO was proposed in 1981 by Boehm [62]. COCOMO
separates the cost driver into three facets such as Effort Multiplier (EM), Line of Code (LoC),
and Scale Factors (SF). The cost drivers are calculated by an equation to calculate the effort
in person month (PM).

E f f ort (PM) = A ∗ SizeE ∗
17

∏
i=1

EMi (17)

E = B + 0.01 ∗∑5

j=1
SFj (18)

As formulated in Equations (17) and (18), the amount of effort in person months,
where A and B are the multiplicative and exponential constants, is at a value of 2.9 and
0.91, respectively. Size is measured in Kilo Source Lines of Code (KLOC). While E defines
the scaling exponent for effort. EM is the Effort Multipliers where i = 1 to 17 and SFj is the
Scale Factor where j = 1 to 5.

5.1.3. Agile Estimation

The Agile estimation assigns work to an entire team, not an individual. In this section
we describe a detailed Agile estimation as referenced in [55]. First, we calculate the effort
of a particular User Story as defined in Equation (19).

ESi = Complexity ∗ Story Size (19)

where complexity is the relative scale of the requirement of the Story or its technical com-
plexity, and story size is an estimate of the relative scale of the work in terms of actual
development effort. Second, the sum of effort of all individual user stories for the complete
project as formulated is calculated using Equation (20)

E f f ort =
n

∑
i=1

ESi (20)

where effort is the estimated effort in person-month, and ESi is the effort of a current User
Story. Third, the agile velocity is calculated by Equation (21).

Velocity = Distance ∗ Time (21)
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where Distance is a unit of completed effort and Time is the length of our sprint. Fourth, the
Initial or Raw Velocity is calculated in Equation (22).

Vi =
Units o f completed e f f ort

Sprint time
(22)

where Sprint time is the number of days in sprint. Fifth, the Friction (FR) as denoted is
calculated using Equation (23).

FR =

4

∏
i=1

FFi (23)

where FR is product of all four Friction Factors (FFi). Sixth, the Dynamic Force (DF) can be
calculated in Equation (24).

DF =

9

∏
i=1

VFi (24)

where DF (Dynamic Factor) is a product of all nine variable factors (VFi). Seventh, deceler-
ation (D) is calculated by the multiplication of FR and DF. Deceleration adjusts the velocity
against friction and dynamic forces as formulated in Equation (25).

D = FR ∗ DF (25)

Absolute error (AE) and mean absolute error (MAE) are the evaluation metrics used
in this study. As formulated in Equation (26), AE is the estimation or prediction error, yi is
the ith actual value of the variable being estimated, and ŷi is the ith estimated value.

AE = |yi − ŷi| (26)

Moreover, as notated in Equation (27), MAE is the mean value of absolute error.

MAE =
1
n∑n

i=1
AEi (27)

where n is the number of projects in the data set, and AEi is the ith absolute error value.

6. Results and Discussion

In this research, three software effort estimation methods and three data sets are
employed to investigate both the exploitation and exploration abilities of the proposed
MUCPSO algorithm. Table 3 illustrates the effort estimation methods with their name,
dimensions, and ranges.

6.1. Preliminary Observations

To assess the behaviors in optimizing the three estimation methods, we follow the
procedure of tuning the following two parameters of the MUCPSO algorithm: population
p and chaotic maps as described in [63]. Here, for each estimation method, 80 experiments
are performed using a combination of 10 values of p = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
and eight chaotic maps = Bernoulli, Chebyshev, Circle, Gauss, Logistic, Sine, Singer, and
Sinusoidal, which can be defined as pairs of (10, Bernoulli), (10, Chebyshev), . . . , (100,
Sinusoidal). To reduce the coincidence, 1000 runs were applied to each pair in experiment.
The common parameter value of p is finally selected as a fixed-optimum value for all the
estimation methods.
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Table 3. Three software effort estimation as benchmark methods.

Methods Weight Parameters Range Dimension

UCP
Simple [5, 7.49]

3Average [7.5, 12.49]
Complex [12.5, 15]

COCOMO
A [0, 10]

2B [0.3, 2]

Agile

Team position [0.91, 1]

13

Process [0.89, 1]
Environmental factors [0.96, 1]

Team dynamics [0.85, 1]
Expected team change [0.91, 1]

Introduction to new tools [0.96, 1]
Vendor defect [0.90, 1]

Team member responsibility [0.98, 1]
Personal issue [0.98, 1]
Expected delay [0.96, 1]

Expected ambiguity [0.95, 1]
Expected change [0.97, 1]

Expected relocation [0.98, 1]

Figure 2 illustrates the experimental results for the problem of searching a minimum
solution for the Use Case Points estimation method. The vertical axis shows all results
from eighty experiments. It can be seen that a small population p (10) means the MUCPSO
produces a good solution. In contrast, the bigger the p, the worse the solution. Hence,
the combination of small p and Chebyshev as the chaotic function is recommended. The
optimum combination is reached using p = 10 and chaotic = Chebyshev.

Figure 2. Parameter tuning for Use Case Points estimation model.

Next, Figure 3 illustrates the experimental results for the problem of searching for
a minimum solution in the Agile estimation method. The vertical axis shows all results
from eighty experiments. It can be seen that a small population p (10) means the MUCPSO
produces a good solution. In contrast, the bigger the p, the worse the solution. Hence,
the combination of small p and Sinusoidal as the chaotic function is recommended. The
optimum combination is reached using p = 10 and chaotic = Sinusoidal.
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Figure 3. Parameter tuning for Agile estimation model.

Finally, Figure 4 illustrates the experimental results for the problem of searching for
a minimum solution using the COCOMO estimation method. The vertical axis shows all
results from eighty experiments. It can be seen that a large population p (90) means the
MUCPSO produces a good solution. In contrast, the smaller the p, the worse the solution.
Hence, the combination of large p and Sinusoidal as the chaotic function is recommended.
The optimum combination is reached for p = 90 and chaotic = Sinusoidal.

Figure 4. Parameter tuning for COCOMO estimation model.

6.2. Parameter Settings

Based on previous research in [23,24,47,64], the best population size for each algorithm
has been defined. However, due to the difference of function between software effort
estimation methods, we conducted ten experiments with p = 10, 20, . . . , 100 to find the
optimum p for each algorithm based on the Friedman Mean Rank (FMR).

Figure 5 illustrates the experimental results for the COCOMO estimation method. The
behavior of p is quite similar for CPSO, MUCPSO, and GA. The larger the p, the better the
rank. The optimum value is reached using p = 100 for the three algorithms. Meanwhile,
p gives a different effect for SPSO and UCPSO that achieves the optimum value through
p = 60 and 70, respectively.
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Figure 5. Friedman mean rank calculated using 10 different population sizes p for each optimization
algorithms in COCOMO estimation method.

Next, Figure 6 illustrates the experiment results for the UCP estimation method. The
behavior of p is similar for SPSO, CPSO, and UCPSO. The larger the p, the better the rank.
The optimum value is reached on p = 100 for the three algorithms. Meanwhile, the behavior
of p provides a different effect for MUCPSO and GA that achieves the optimum value via
p = 10 and 90, respectively.

Figure 6. Friedman mean rank calculated using 10 different population sizes p for each optimization
algorithms in UCP estimation model.
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Finally, Figure 7 illustrates the experimental results for the Agile estimation method.
The behavior of p is similar for SPSO, CPSO, and GA. The larger the p, the better the
rank. The optimum value is reached using p = 100 for the three algorithms. Meanwhile,
the behavior of p also provides similar effect for UCPSO and MUCPSO that achieves the
optimum value through p = 10.

Figure 7. Friedman mean rank calculated using 10 different population sizes p for each optimization
algorithms in Agile estimation model.

The parameter settings for MUCPSO and other benchmark algorithms are listed in
Table 4. Parameters c1 and c2 are set to integer two since it, on average, sets the weights for
“social” and “cognition” to 1 [14,64]. The stochastic parameters r1 and r1 are two random
functions in the range [0,1] [64]. The parameters are introduced in SPSO, and UCPSO,
while CPSO and MUCPSO use the chaotic map function as their stochastic parameters.

Table 4. Parameter settings.

Algorithms Parameter Settings Ref.

SPSO ω : 0.9 ∼ 0.4, c1 = c2 = 2, r1 = r2 = rand [0, 1],
pagile = 100, pcocomo = 60, pUCP = 100 [64]

CPSO p = 40, ω : 0.9 ∼ 0.4, c1 = c2 = 1.5, r1 = Singer,
r2 = Sine, pagile = 100, pcocomo = 100, pUCP = 100 [24]

GA crossover rate : 0.8, mutation rate: 1/popSize, elitism selection,
pagile = 100, pcocomo = 100, pUCP = 90 [25]

UCPSO ω : 0.9 ∼ 0.4, c1 = c2 = 2, r1 = r2 = rand[0, 1],
pagile = 10, pcocomo = 70, pUCP = 100, cosine map [23]

MUCPSO ω : 0.9 ∼ 0.4, c1 = c2 = 2, r1 = r2 = chaotic,
pagile = 10, pcocomo = 100, pUCP = 10 Presented

6.3. Investigation on Three Estimation Methods

The proposed MUCPSO algorithm is examined and compared with four other al-
gorithms, as follows: SPSO, CPSO, GA, and UCPSO to search the optimum solutions
to the UCP, COCOMO, and Agile estimation method as formulated in Equation (10) to
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Equation (25). For each estimation method, the maximum particles size is set to 2500, with
30 runs to reduce the coincidence. The random seeds of the 30 initial populations (for each
estimation method) are the same to obtain fairness. The evolution is illustrated using the
step sizes of 40 to obtain fairness. Thus, all the algorithms show the same generations from
20 to 980. Table 5 illustrates the examination results based on the following four metrics:
best solution, worst solution, mean solution, and standard deviation (STD) as explained
further in the following passages.

Table 5. Comparison of SPSO, CPSO, GA, UCPSO, and MUCPSO for 3 software estimation methods.

Method Metric SPSO CPSO GA UCPSO MUCPSO

UCP Best 1009.26 1009.31 1071.29 1009.46 1009.14
Worst 1011.25 1011.51 1162.35 1010.16 1010.28
Mean 1010.21 1010.34 1123.26 1009.9 1009.81
STD 0.47 0.56 27.64 0.18 0.32

COCOMO Best 21.06 24.39 61.94 28.56 25.58
Worst 271.68 301.14 642.35 49.4 40.32
Mean 63.97 68.92 183.24 40.89 34.43
STD 53.7 60.27 144.22 5.32 3.18

Agile Best 13.466 13.466 16.597 13.463 13.461
Worst 13.587 13.570 24.883 13.537 13.493
Mean 13.498 13.49 21.643 13.488 13.475
STD 0.029 0.021 1.974 0.014 0.007
FMR 2.87 3.13 4.07 3.44 1.67
Rank 2 3 5 4 1

The best solution for UCP estimation is yielded by MUCPSO, whereas the highest
worst and mean solution metric is obtained using UCPSO, and MUCPSO, respectively. If
we compare the two lower standard deviation values between MUCPSO (0.32) and UCPSO
(0.18), we can observe that the deviation value is slightly different. Hence, we can conclude
that UCPSO and MUCPSO has the smallest and smaller amount of variation, respectively.
In other words, the mean for MUCPSO is less reliable than the mean for MUCPSO.

The lowest best and mean solution for COCOMO estimation is yielded by SPSO,
MUCPSO, respectively, whereas the highest worst solution is yielded by MUCPSO. Al-
though SPSO has the lowest best solution, however, due to the lowest mean and standard
deviation is yielded by MUCPSO compared with four other algorithms, we can conclude
that MUCPSO has the smallest amount of variation and most reliable for the mean value.

The lowest solution value for Agile estimation is yielded by MUCPSO in terms of
the best and mean solution. For the highest worst solution is also yielded by MUCPSO.
This result is supported by its lowest standard deviation value (0.007), indicating that
MUCPSO has the smallest amount of variation which means that the data points are most
concentrated around the reliable mean solution. Furthermore, based on the Friedman mean
rank (FMR), we can observe that MUCPSO yielded the first rank, followed by SPSO, CPSO,
UCPSO, and GA.

The Wilcoxon rank-sum test illustrated in Table 6 confirms that MUCPSO is signifi-
cantly better than all the competitor algorithms for the three estimation benchmark methods.
All the p-values are lower than the significance level of 0.05, except the UCP estimation
where MUCPSO is worse than UCPSO with a p-value of greater than 0.05. However, since
the proposed method has 11 better results (91.67%) out of 12 significant results, we can
conclude that the proposed method is better than most of the benchmark algorithms in
almost all the estimation methods.
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Table 6. The p-value of Wilcoxon rank sum test (WRST) for 3 estimation benchmark methods.

Method MUCPSO vs. SPSO MUCPSO vs. CPSO MUCPSO vs. GA MUCPSO vs. UCPSO

UCP 0.000716 0.000148 0.000002 0.271155
COCOMO 0.000241 0.000049 0.000002 0.000034

Agile 0.000097 0.000283 0.000002 0.000616

Furthermore, we discussed the detailed investigations of the convergence analysis
of MUCPSO and its competitors. For each estimation method benchmark, the maximum
number of particles is set to 2500 with 30 runs. Figure 8a illustrates the evolutionary
processes of four algorithms (SPSO, CPSO, UCPSO, and MUCPSO) until they converge
with the optimum solution for the UCP estimation method. Figure 8b illustrates the
evolutionary process of all of the algorithms until convergence with the optimum solution.
In this benchmark, MUCPSO converges to a much better solution than the other algorithms.
Impressively, MUCPSO evolves at the greatest speed in the initial generations and finally
provides the best mean solution of 1009.81.

Figure 8. Convergence analysis for UCP estimation (a) of four algorithms (SPSO, CPSO, UCPSO, and
MUCPSO); (b) of all algorithms including GA.

Next, the convergence analysis is provided for the COCOMO estimation method
benchmark. Figure 9 illustrates the evolutionary processes of all algorithms until conver-
gence with the optimum solution. In this benchmark, MUCPSO converges to a much better
solution than the SPSO, CPSO, GA, and UCPSO algorithm. MUCPSO demonstrates and
impressive convergence from the beginning to the end of generation.

Finally, Figure 10 illustrates the evolutionary processes of all algorithms until con-
vergence with the optimum solution for the Agile estimation method. In this benchmark,
MUCPSO converges stably to the better solution than the other algorithm. From the be-
ginning of generation, MUCPSO is able to compete with four other algorithms and finally
provides the best mean solution of 13.475.

Beside the convergence analysis, we further explore the diversity analysis of the best
solution for the benchmark algorithm using three effort estimation methods. Figure 11
depicts the diversity analysis for UCP estimation. Figure 11a depicts the diversity analysis
between four algorithms (SPSO, CPSO, UCPSO, and MUCPSO), excluding GA, to demon-
strate a clearer center and the spreads of each result. Based on Figure 11a, we can observe
that the median for MUCPSO is smaller compared with SPSO, CPSO and UCPSO. However,
the spread of MUCPSO is quite large compared with UCPSO. In Figure 11b, we compare all
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benchmark algorithms, including GA. We are able to observe that the difference between
GA and the aforementioned algorithms is quite large.

Figure 9. Convergence analysis for COCOMO.

Figure 10. Convergence analysis for Agile.
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Figure 11. Best solution diversity analysis for UCP (a) of four algorithms (SPSO, CPSO, UCPSO,
MUCPSO); (b) of all algorithms including GA.

Next, we analyze the diversity of COCOMO estimation. Figure 12 shows that the
median of SPSO, CPSO, UCPSO, and MUCPSO is quite similar. However, based on the
interquartile box, we can observe that MUCPSO has the smallest shape compared with
other algorithms. This shape indicates that MUCPSO has the lowest spread.

Figure 12. Best solution diversity analysis for COCOMO.

Finally, Figure 13 describe the diversity analysis of Agile estimation. Similar to
Figure 11, we split the results into two parts, presented as Figure 13a,b. Due to the large
difference observed when including GA in the group of boxplots, we provide clearer results
by excluding GA in Figure 13a. Based on the boxplots in Figure 13a we observe that
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MUCPSO has the lowest median, whereas the rest (SPSO, CPSO, and UCPSO) are quite
similar. Furthermore, the interquartile of MUCPSO shows the smallest shape, indicating
that the proposed method has the lowest spread. Almost identical with Figure 11b, when
GA is included, the difference of results is found to be very large, and a comparison of the
rest of the algorithms proves quite difficult.

Figure 13. Best solution diversity analysis for Agile of (a) four algorithms (SPSO, CPSO, UCPSO,
MUCPSO); (b) all algorithms including GA.

7. Conclusions and Future Work

Particle swarm optimization (PSO) is widely used for different applications in software
engineering domains such as in the next release problem, risk factor prioritization, and
software-effort estimation. There are numerous variants of the PSO algorithm proposed
to improve its performance. However, PSO still suffers from two primary shortcomings—
premature convergence and easy trap in local optima. This study proposes modified
chaotic particles swarm optimization with uniform initialized particles (MUCPSO). This
algorithm works well based on the following three schemes: uniform initialization, chaotic
inertia mapping, and a stochastic personal learning strategy. Uniform initialization is
applied to ensure the diversity of the initialized particle, while chaotic inertia weight
plays a role in maintaining the balance between the exploration and exploitation phases,
and personal learning strategy helps to enhance the global and local search to avoid trap
in local optima. The evaluation of three estimation method benchmarks shows that it
significantly outperforms all the competitors, including SPSO, CPSO, GA, and UCPSO,
where it reaches the Friedman mean rank of 1.67, with p-values of the Wilcoxon rank-sum
test of less than 0.05 for most of the benchmarks. Detailed investigations prove that all the
proposed schemes work well in their designed and mean MUCPSO can effectively control
the exploration and exploitation balance. The proposed schemes mean MUCPSO is able to
handle most of the various estimation method benchmark functions.

Several directions for future studies are suggested. First, due to the slightly worse
result yielded by MUCPSO compared with CPSO in the COCOMO estimation method
benchmark, in future, further studies will be conducted by increasing the generation
number. This scenario is important to provide more room to explore MUCPSO and the
probability of the best result that can be achieved. Second, the addition of further data and
another variants of the estimation method should be employed to enhance the performance
of the MUCPSO algorithm.
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