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Abstract: The rising global incidence of chronic kidney disease necessitates the development of
image categorization of renal glomeruli. COVID-19 has been shown to enter the glomerulus, a tissue
structure in the kidney. This study observes the differences between focal-segmental, normal and
sclerotic renal glomerular tissue diseases. The splitting and combining of allied and multivariate
models was accomplished utilizing a combined technique using existing models. In this study, model
combinations are created by using a high-accuracy accuracy-based model to improve other models.
This research exhibits excellent accuracy and consistent classification results on the ResNet101V2
combination using a mix of transfer learning methods, with the combined model on ResNet101V2
showing an accuracy of up to 97 percent with an F1-score of 0.97, compared to other models. However,
this study discovered that the anticipated time required was higher than the model employed in
general, which was mitigated by the usage of high-performance computing in this study.

Keywords: combined classification model; deep transfer learning; focal-segmental; kidney disease;
kidney glomeruli; medical image; sclerosed glomeruli

1. Introduction

Acute kidney injury is a common and significant complication. And it has been
proven that one of the factors that cause the disease to occur frequently is the increase
in the widespread distribution of red blood cells and excessive inflammation. [1,2]. The
pathophysiological mechanisms that explain the association between increased RDW scores
and poorer prognosis remain unclear. According to current knowledge, an increase in RDW
is the cause of microcirculation disorders. Older erythrocytes gradually lose the ability
to damage cell membranes. This feature is especially important during the squeezing of
nucleated cells through small diameter vessels in organs, such as the kidneys. The stiff
and large erythrocytes observed in patients with high values of RDW could not enter
through the capillaries and thus impaired blood flow through the microcirculation, leading
to ischemia of the renal tissue [1].

Recently, kidney disease is increasingly being found in the spread of the coronavirus
during the current pandemic [3]. The identification of the host of the second angiotensin-
converting enzyme (ACE2) is the first step in the entry of viral infections into the body,
where this host leads to cell fusion and entry into host cells in the lungs. Other epithelial
cells, such as renal cells, have a high ACE2 expression [4]. As a result, several studies
have shown that the long-term consequences of COVID-19 infection may cause COVID-19
patients to develop chronic kidney disease. The antigen capture technique showed that
an increase in the SARS-CoV-2 protein in urine samples was detectable when compared
to patients before the epidemic. By considering this condition, kidney disease detection
needs some prerequisites to obtain the results quickly and accurately. Since COVID-
19 is implicated in kidney function, this study aims in identifing how the anatomy of
kidney disease is affected by COVID-19. Histopathology revealed that abnormalities in
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the kidney occur when the shape of the glomerulus in the kidney structure is different,
eventually leading to chronic kidney disease [5]. Understanding how the complex structure
of kidney tissue differs, requires the use of imaging technology to compare normal and
diseased kidneys.

Until recently, there were two types of glomerular tissue disorders: sclerosed and focal-
segmental sclerosed [6]. The difference between these two types may be seen in Bowman’s
capsule structure around the glomerular network. Bowman’s visible capsule surrounds
the glomerulus, suggesting that the glomerular tissue is undeniably normal, whereas
Bowman’s capsule that seems faint or even disappears indicates that the glomerular tissue
is unhealthy [7]. This explanation is supported by the morphological and Karpinski scores,
which indicated the presence of a difference between nucleus and capillary lumens, and
the number of areas (mesangial matrix) on the typical glomerular capillary lumens were
absent. Moreover, the Bowman’s capsule was filled by collagen in glomerular non-healthy
kidneys. Focal segmental sclerosis is a disease of the glomerulus that affects many people. A
difference in glomerular size, the degree of leg process elimination and the alteration do the
celial cells are all signs of this illness [6]. Figure 1 depicts the anatomy distinctions among
three types of glomeruli. Imaging technology is predicted to aid in the accurate detection
of individuals with renal disease, allowing for better medical performance. Furthermore,
the model’s ability to analyze data will be determined by how much time is allotted to
it. The transfer learning technique used in this study was taken from several machine
learning models after reviewing various methods by considering the procedures and work
results obtained. Bueno et al. [8] used UNet and SegNet to divide the glomerulus into three
groups based on segmentation pixels. The data processing findings demonstrate that data
prediction from the train data is accurate to 98.16 percent.
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As a result, the combination of these approaches is used as a benchmark for comparing
the proposed study with the EfficientNet method [9]. In the previous two years, this
technique has been enhanced by altering the model’s structure, combining the models and
employing the iterative model process. The ImageNet dataset, which comprises random
pixel data (non-medical picture), has recently been used in some studies to show that this
method’s accuracy rate approaches 99.70 percent [10]. This result is utilized as a proof-
of-concept that the EfficientNet technique can provide high accuracy when utilizing the
medical picture dataset. Therefore, the goal of this research is to demonstrate how this
approach may be used in medical imaging collections.

The majority of deep learning in the categorization of glomeruli comprises of normal,
sclerosed and non-glomerular classes, according to the prior studies. As a result, this study
proposes three possible classifications: normal, sclerosed and focal-segmental sclerosed.
Since focal-segmental sclerosed glomeruli [11] are a type of sclerosis that cause anomalies
in the glomerular tissue and affect a large number of people, it is critical to correctly detect
the focal-segmental anatomy of sclerosed glomeruli in kidney disease diagnosis.

The normal glomerulus, sclerosed glomerulus and focal-segmental glomerulus were
all used to create this approach for transfer learning. Sections 2 and 3 provide detailed
explanations of the database, materials and research techniques, whereas Sections 4 and 5
contain the results of the tests and conclusions.
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2. Materials and Methods

This section details the procedures involved in conducting the study, including the
data sources, methodologies and models used to enhance and manage the studies for
improved outcomes.

2.1. Data and Preparation

The experimental data consisted of 5095 biomolecular pictures of the kidneys in png
format, each of which was derived from 2926 photos of the segmentation data conducted
by Bueno et al. [8,12]. These data can be used to benchmark the assessment data in a test
classification system that divides the data into normal glomeruli and sclerosed glomeruli.
Dimitris, in the Kaggle dataset [13], separated the 1584 pictures from the open data chal-
lenges, according to the form of the glomeruli tiles, into raw data and 585 additional
focal-segmental images obtained from the study obtained by Kannan et al. [14].

The picture has a resolution of 256 × 256 pixels and is divided into three categories:
normal, sclerosed, and focal-segmental. This clustering was performed to show the part of
the experimental section’s categorization findings that were correct. Rosenberg et al. [6]
conducted studies on focal-segmental sclerosis. Martin-Navarro [11] discovered focal-
segmental kidney disease types in pulmonary sarcoidosis, while Asinobi et al. [15] per-
formed histology on the trend of children’s nephrotic syndrome in Ibadan, Nigeria. Since
the research into the identification of focal-segmental sclerosis has presented few findings,
it is necessary to conduct preprocessing on the image dataset by rotating, changing picture
size and replicating images to achieve uniformity. Since the data train is more accurate, this
technique is suited for the testing the focal-segmental class. As a result, the information
gathered is split into three categories.

Data preparation was performed using previously acquired data, according to the
most recent data source. In this step, the transfer learning approach requires data labeling
on the dataset to identify the different classes. The HuBMAP dataset was used to label the
data train encoded into the path annotation, where the primary data was an image file in
the Big TIFF format that was then examined on the raw tiles using Python programming.
The Mendeley dataset consisted of 31 SVS pictures that were provided as raw data and
converted to PNG files. Data labeling was created for focal-segmental sclerosed, and the
data was separated into train, test and validation. Given the variety of techniques used,
we considered executing the code offline using the system specified in Table 1 (which
was compatible with the Python version) to conduct all tests, as well as performing the
experiments using the cloud service using GPU instances.

Table 1. System requirements for running the experiments.

System Name Specification Description

Operating System Ubuntu 20.04 latest version
Display NVIDIA Geforce GTX 1080 Tii 2 GPUs 12 GiB
Memory DIMM DDR4 16 GiB Synchronous 266 Mhz

Harddrive ATA Disk 1863 GiB (2 TB) 1.7 TB available
Minimum system requirements for conducting the experiments.

The script code was obtained from past research and experiments, and its structure
and methods were modified to meet our study goals. The goal of the project was to assess
the performance of the experiments and compare them to the dataset that was chosen.
As a result, the purpose of this research was to test and enhance the accuracy of picture
categorization using the existing image dataset.

2.2. Exploration Data Analysis

The presence or absence of the ring was determined by assessing the circular shape of
Bowman’s capsule in the nucleus of the glomerular cells. We used the breadth of the red
blood cell distribution (RSVP) to distinguish between sclerosed and localized segmental
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illness, in addition to the study’s main emphasis. In the training data portion, this picture
recognition method is examined first.

The utilized dataset, as indicated in the preceding section, is an unlabeled dataset
collected from three sources. It was then separated into two halves for use as training
and test sets. Additionally, one component created a validation set to demonstrate the
viability of training or testing according to a predefined categorization. As a result, this
study developed a normal, sclerosed and focused training, test and validation set. Figure 2
depicts the validation set data, which includes the true label for each class presented.
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Figure 2. Sample Images of the validation set for the focal-segmental, sclerosed and normal glomeruli.

With a scale of 3:3:1, the data set was split into the train, test and validation sets. The
train set had 2100 photos, with 700 pictures for each class, 2290 test sets with 763 pictures for
each class and 705 pictures validation set with 235 pictures for each class. Figure 3 depicts
the findings, which include a graph of each created set. The training set and validation set
as the pre-trained models in the transfer learning process, are generalized based on the
dataset’s objectives.
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The dataset utilized must be ignored since the data is generalized; therefore, the image
is shrunk into 150 × 150 pixels before the data training process. This step has an influence
on the resolution of the loaded image, so make sure it meets the criteria for intensity. The
count number ranges from 0 to 8000, and the beginning pixel value is on a scale from 0 to 1.
Figure 4 depicts an example of the picture data that meets the learning process’s criteria.
The example image does not reflect all image intensity values from the dataset, but it does
confirm that the data imported is correct.
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2.3. Efficient Network (EfficientNet)

Since it has fewer work parameters to optimize the time resources needed, the Effi-
cientNet design necessitates considerable relevance in data processing performance [9].
EfficientNet is comparable to the MobileNetV3 model [16], which uses the MBConv mobile
inverted bottleneck as the fundamental building component of its design. The squeeze-
excitation layer in the process [17], separates this model from prior versions. Before the
picture is extracted further, Figure 5 reveals its resemblance to the previously generated
layers and combined additional model to the last layer for obtaining improved results.
The schema of the proposed combination model takes the form of a dense layer, in which
it is possible to have more of the model than the bundle layer. Afterwards, the design
was created after the transfer learning process on each model was completed, since this
combination needs the first trained model to process the whole model in one design. How-
ever, because this layering issue was still extremely parametric, the impact resulted in a
decreased efficiency. Furthermore, as compared to the conventional layers, the combination
with depth-wise separated convolution reduces computation by a factor of k2. When the
method was presented, the difference was obvious owing to a mix of compound scaling
between the scaling width, depth and resolution, with the aim of improving the overall
performance using the available resources.
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Figure 5. Architecture of the proposed model. (Top) Large block placement application in exchange
for small blocks in EfficientNet; (Bottom-Left) squeeze-excitation is applied to the learning process
by adjusting the model used for the input scale data. [6], and (Bottom-Right) the dense layer is an
additional learning model combined with the main model to produce the learning output.

Compound scaling has two stages: finding the scalping dimension parameters of the
baseline network on the resource input using a grid search, and applying the coefficients
obtained from adjusting the input dimensions on the baseline network to influence the
size of the target model or computational budget, using the coefficients obtained from
adjusting the input dimensions on the baseline network. Tan et al. [9] found a mathematical
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equation that employs the compound coefficient to equalize the scale throughout the
network breadth, depth and resolution, as shown below:

depth :→ d = αφ

width :→ w = βφ

resolution :→= γφ

s.t.→ α·β2·γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

where the variables α, β, γ are the constants obtained from a small grid search. Logically,
φ is a user-controlled coefficient regarding the number of resources available in model
scaling, where α, β, γ determine the additional resources at the network width, depth and
resolution, respectively. In particular, the floating-point operations per second (FLOPS) of
the convolution process was proportional to the variables d, w2, r2 by doubling the network
depth, even though the network width and resolution increased four times. Scaling
ConvNet will increase FLOPS by a total of

(
α · β2 · γ2)φ because convolution operations

usually dominate the computeing costs presented on ConvNet. EfficientNet contains the
same architectural components as the convolutional network in general, despite its distinct
working technique.

The EfficientNet-B7 [18] and EfficientNet-L2 [19] models from the EfficientNet archi-
tecture are used in this research. These two models are EfficientNet’s final models, which
have a higher level of precision and scalability than previous EfficientNet models.

2.4. Residual Network (ResNet)

We picked the ResNet model as one of the models in this experiment, as a contrast to
the approach we evaluated. ResNet, being the most widely used technique, requires layers
to be reformulated as learning residual functions that refer to the layer inputs rather than
the learning non-referenced functions [20]. ResNet has an advantage over other models, in
that it does not add many layers to directly match the underlying mapping. In one of the
examples, ResNet piled the leftover blocks at the top of each network form, illustrating the
transfer of the layer work to the next processed layer in ResNet-50, which has 50 layers.

Formally, the function that represents how ResNet works is F (x) := H(x)− x, where
H(x) is underlying mapping. The original mapping was recast into F (x) + x. There is
empirical evidence that these networks are easy to manipulate and optimize, and can gain
accuracy by considering the addition of depth to the network without creating new layers.

This research uses the ResNet101V2 and ResNet50V2 models. The equation for this
model is to utilize 50 remaining blocks so that the learning process does not take as long
to estimate. The only difference between these two models is how the mappings are
identified in the learning process [21]. ResNetV2 has this capacity by evaluating the form
of the mapping before stacking the rest of the blocks. To put it another way, the model
architecture changes as a result of the process. Constant scaling, exclusive gating and
shortcuts, such as convolutional or dropout shortcuts, are available in some situations. As
a result, while performing the tests, this difference had a substantial impact.

2.5. Very Deep Convolutional Networks for Large-Scale Image Recognition (VGG)

Furthermore, we chose the VGG model as a comparison model in this study, based
on the numerous studies that used it in recent years. VGG [22] is a common picture
classification method. The VGG’s architecture adds depth to the network layer by using a
modest network width. The network employs tiny 3× 3 filters, where the layer components
are made out of the same three blocks, as is standard on CNN. A network, on the other
hand, is defined by its simplicity and is otherwise organized with additional components,



Appl. Sci. 2022, 12, 1040 7 of 15

such as pooling layers and completely linked layers [23]. The VGG16 and VGG19 models
were used in this VGG approach.

These two models are the VGG method’s final models, with a higher readout rate for
the image processing than the other models. VGG16 has 16 weight layers, each of which
consists of 13 3 × 3 convolutional layers and 3 fully connected layers, whereas VGG19
has 19 weight layers, each of which consists of 16 3 × 3 convolutional layers and 3 fully
connected layers. The VGG19 model differs in that it adds a 3 × 3 convolutional layer to
each max pool block with varying sizes, depending on the max pool block.

When compared to numerous newer techniques, the VGG method’s performance
is deemed steady. This outcome was demonstrated by the method’s adaptability, which
allowed new methods to be created [8]. The simplicity of the VGG approach influenced
other methods that could enhance analytical findings without entirely altering the exist-
ing architecture.

3. Results
3.1. Independent Model Experiment Results

We used several treatments for each model in a transfer learning procedure. When
presented with the same treatment, the differing model designs caused problems in the
learning process. The study began with a comparison of two identical models in the same
architecture, with the historical correctness of the models being assessed (Table 2)

Table 2. Performance evaluation of the independent models.

Model Name Weight Precision (avg) Recall (avg) F1-Score (avg) Accuracy Train Estimated Time

VGG19 ImageNet 0.94 0.94 0.93 93.62% 9 m 23 s
ResNet101V2 ImageNet 0.98 0.98 0.98 98.16% 7 m 19 s
EfficientNetB7 ImageNet 0.95 0.95 0.95 94.61% 12 m 52 s
EfficientNetL2 Noisy student 0.11 0.33 0.17 33.33% 12 m 36 s

VGG19. VGG19 was tested by training a 3 × 3 convolutional layer using an ImageNet
classification model using average pooling. The output was assessed by permitting nu-
merous fine-tuning approaches, such as the activation of the rectified linear unit (ReLU)
dense layer to achieve a low learning rate, the activation of the soft-max layer and saving
checkpoints on the best model [24]. The period began with an evaluation of the time spent
during training, the number of total parameters processed and the storage of a learning
process evaluation. With a total parameter of 20,090,435, VGG19 successfully completed the
training with an average model accuracy of 0.9361, validated with a high value of 0.9390
and the maximum accuracy value of 0.9981. It is possible to infer that the two VGG models
can depict models that are good enough to be classed as medical pictures, based on the
findings of the two models. The accuracy of the case suggested by the VGG model was
in the range of 0.80 to 0.90 and above. In terms of the value scale, the VGG19 value is an
appropriate category to use as an image classification model, as shown in Table 3. Figure 6a
demonstrates that the original value’s correlation with the predicted value shows a high
color prediction for the focal and sclerosed classes, while the projected normal class has a
sufficient color in the classification.

Table 3. Performance evaluation combined models.

Model Name Precision (avg) Recall (avg) F1-Score (avg) Accuracy Estimated Time

VGG16 + VGG19 0.94 0.94 0.93 93.62% 21 m 25 s
ResNet101 + VGG16 + VGG19 + EfficientNetL2 0.95 0.95 0.95 94.89% 40 m 38 s

ResNet101V2 + EfficientNet-L2 0.97 0.97 0.97 97.16% 19 m 55 s
ResNet101V2 + VGG16 + EfficientNetB7 0.97 0.97 0.97 97.02% 33 m 13 s
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ResNet101V2. The architectural resemblance between these two models may also
result in the same model performance configuration. On the convolutional network, both
model sets are constructed with a resolution of 150 × 150 using ImageNet weight. With a
logistic regression (LR) value of 0.01 and a momentum value of 0.7, both of these models
employed stochastic gradient descent (SGD) optimization for fine-tuning [25]. This setting
is an iterative approach for fine-tuning the objective function. Each high-accuracy validation
point was saved in the model checkpoint function and utilized as a weight model in a
pre-trained model.

ResNet101V2 runs 55,637,123 parameters in total. After determining these parameters,
ResNet101V2 completed the training with an average accuracy of 0.9815, which was
confirmed by the maximum value of 0.9801, for which the greatest accuracy score was 1000.
The training results, as shown in Table 3, demonstrate that each model employed in the
experiment had the best accuracy.

EfficientNetB7 and EfficientNetL2. The EfficientNet model employed in this study
differs significantly from the previous one. EfficientNet-B7 can operate using ImageNet
weight, but EfficientNet-L2 requires noisy student weight as a pre-trained model, accord-
ing to prior research. This occurred because EfficientNet-L2 was incompatible with the
ImageNet weights, when the number of layer weight initiations of the model differed. The
unevenness of the pre-trained models employed was caused by weight fluctuations, al-
though this is an exception to correctly performing the training process. Even when running
on different models, these two models employed the same fine-tuning. The average-pool
layer was added to the end of the flattened layer. In addition, the use of the ReLU feature
and a dropout layer with a value of 0.2 created a dense layer. A thick layer was seen in the
last portion. Furthermore, this approach employed an optimizer in the form of Adam [26],
throughout the compilation process.

With a training parameter of 2,625,539, EfficientNet-B7 achieved an average accuracy
of 0.9461. The highest value, 0.9291, was used to confirm this accuracy, and the maximum
accuracy was 0.9662. Meanwhile, EfficientNet-L2 utilized a training parameter of 5,640,195,
with an average accuracy of 0.3333 as a consequence. The greatest accuracy as 0.3424, and
this accuracy was confirmed using the highest value of 0.3333.

The EfficientNet-B7 and EfficientNet-L2 designs had significant variations in their train-
ing outcomes. EfficientNet-B7 does a far better job at presenting results than EfficientNet-L2.
Figure 6c,d indicate that the EfficientNet-L2 predictions show that everything is in the usual
class, but the EfficientNet-B7 predictions are evenly distributed in each class. These findings
demonstrate that the allied model does not generate accurate transfer learning predictions.

Based on the training data, we may infer that the EfficientNet model does not have a
high level of accuracy. The inequality found in the EfficientNet-L2 model indicates that the
accuracy findings in EfficientNetB7 are inconsistent. The model’s incompatibility with the
dataset utilized, on the other hand, prevents it from producing the optimal results.
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3.2. Combining Model Experiment Results

After reviewing the results of the experiment, we tried again, this time using many
models that were judged unfit for classification. As shown in Table 3, the findings of
Effi-cientNet-L2 do not exhibit a high degree of accuracy, especially when compared to the
criteria set by the trials. In a model with low accuracy, a high yield model has a substantial
impact on improving accuracy. The experiments on a cognate or unrelated model confirmed
this idea.

Combination Allied Model. The accuracy value obtained from the combination of
the associated models is dependent on the base model utilized. The value obtained in the
combination model was proportional to the model’s independent accuracy value. This
experiment was carried out on three family models that is VGG, ResNet, and EfficientNet,
all of which have different layer designs despite being related. With VGG16 as the basic
model, the VGG model accuracy is 93.62 percent, as shown in Table 4. According to
Figure 7, the normal class distribution offers less predictive data than the focused and
sclerosed classes.

Table 4. Classification of the allied model.

Classify
Evaluation

Precision Recall F1-Score

Focal 0.94 1.00 0.97
Normal 1.00 0.81 0.89

Sclerosed 0.88 1.00 0.94
VGG16 and VGG19 combined into the combination model produce better results.
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Combination Cross-Model. Cross-model combination refers to the model that is
prioritized in order to enhance its accuracy value, limiting the models that may be combined
to those that meet these requirements. EfficientNet-L2 and ResNet 101, for example,
confirmed the need to improve. As a result, it is necessary to properly test each of these
two models.

According to the base model employed in these tests, there are some varied catego-
rization findings. Table 4 indicates that the classification results of Res-Net101V2 may
enhance the accuracy results of EfficientNet-L2 by approaching the ResNet101V2 value
independently, by achieving 97.16 percent. The projected value in Figure 7c is affected by
this finding, with the distributions of each class matching the original value with a few
erroneous values.

Combination Multivariate Model. EfficientNet-L2 has risen by up to two times while
using ResNet101 as the basic model, compared to the prior trial when the model was
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conducting independent training. In this situation, ResNet101 has a low accuracy value,
but it is still better than EfficientNet-L2; thus, the gain is not substantial. As a result of
attempting to add another model with greater accuracy to this combination, two VGG
models are used in the classification process as a multi-model combination experiment.
The accuracy value from the combination model produces similar results, which are better
than the EfficientNet-B7 model independently.

VGG, ResNet and EfficientNet were all used to perform model tests. One model
from each model family was selected as the basic model, since it generated high accuracy
results. Each model’s accuracy has greatly improved as a result of this setup. This model’s
combination experiment takes two to three times as long as the models that conduct
experiments individually, depending on the number of models that can be combined. As
shown in Table 4, the time necessary to combine three particular models to obtain the
best results, is equal to the training time for each model. This impact does not apply
to the combinations inside the same model, since the predicted outcomes do not need
numerous iterations, allowing the results to be taken from the same model without having
to retrain the model. However, by combining the two models in the same model, it does
not significantly enhance the model classification accuracy. As a result, in order to obtain
more optimum findings, the time efficiency of this model combination experiment must
be addressed.

3.3. Evaluation

We compared and contrasted two categorization studies, each of which had its own
set of benefits and drawbacks. This study discovered mixed findings from all of the
models evaluated in the different model trials. These outcomes were influenced by the
model architecture used, as well as the fine-tuning the model. The projected time for
each model was also dependent on the parameters that were utilized during training;
the more parameters that are used, the longer the training will take. Furthermore, the
training per epoch method produced diverse graphs. The graphs observed did not develope
steadily and there was significant irregularity in the graphs acquired. As a result, it is not
recommended to use a model with such dramatic findings for classifying medical pictures.
The F1-score evaluation parameter was utilized to examine the value of each class and the
mean of each model. The accuracy and recall levels in the arithmetic theorem provided this
F1-score. Table 5 indicates that the normal glomeruli class dominates the EfficientNet-L2
model’s prediction results, which is consistent with Figure 6d, which displays predictions
in the normal class. In Table 6, the class predictions for ResNet101V2 are dispersed in each
class with a modest error rate, as shown in Figure 6b, in which the original and predicted
values overlap fairly well.

When comparing the independent assessment models displayed in Figure 8 (left),
it is clear that EfficientNet-L2 is not acceptable as a reference model for medical image
classification since it has the lowest evaluation value, with just a 0.17 F1-score. With an
F1-score of 0.98, ResNet101V2 is the best reference model for medical picture categorization.
The findings of the combination technique experiment were identical for each model
combination. Table 4 demonstrates that the model combination experiment yields findings
that are more than 90% accurate over time. Figure 8 shows this outcome, with a predictive
value in each class’s distribution that matches the original value and many error values in
the incorrect predictions.
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Table 5. Classification of EfficientNetL2.

Classify
Evaluation

Precision Recall F1-Score

Focal 0.00 0.00 0.00
Normal 0.33 1.00 0.50

Sclerosed 0.00 0.00 0.00
The classification performance obtained via EfficientNetL2.

Table 6. Classification of Resnet101V2.

Classify
Evaluation

Precision Recall F1-Score

Focal 1.00 1.00 1.00
Normal 1.00 0.95 0.97

Sclerosed 0.95 1.00 0.97
The classification performance obtained via Resnet101V2.
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Based on these findings, this study assesses each model’s classification prediction
class to demonstrate the impact of accuracy on model performance. The three model
combination trials revealed a metric assessment value that was relatively steady with a
low error rate (Tables 7–9). The prediction value of the class distribution, which is near
to 1.00, indicates that the forecast value closely follows the actual value. Figure 8 (right)
indicates that all the combination technique trials achieved an assessment value of more
than 0.90, with an average F1-score of 0.955. However, the predicted training time for this
model combination experiment was very high, with an average of 28 min required, making
it less time efficient.

Table 7. Classification of the cross model.

Classify
Evaluation

Precision Recall F1-Score

Focal 1.00 1.00 1.00
Normal 0.99 0.92 0.96

Sclerosed 0.93 0.99 0.96
The classification performance of the combined model with ResNet101V2 and EfficientNet-L2.
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Table 8. Classification of the multivariate model.

Classify
Evaluation

Precision Recall F1-Score

Focal 1.00 1.00 1.00
Normal 1.00 0.91 0.95

Sclerosed 0.92 1.00 0.96
The classification performance of the combined model with ResNet101V2, VGG16, and EfficientNetB7.

Table 9. Previous works and the performance metrics regarding glomeruli research.

Author Glomeruli
Classification Method Data Classes Name of Classes Mean Performance

Metrics

Bueno et al. [8] SegNet + VGG19 1245 images 3 Non-Glomeruli, Normal
and Sclerosed 81.91% F1-score

Bueno et al. [12] AlexNet 1245 images 2 Normal and Sclerosed Glomeruli 99.57% F1-score

Altini et al. [7] DeepLab v3+ 2344 images 2 Non-Sclerosed and
Sclerosed Glomeruli 84.64% F1-score

Barros et al. [27] KNN 811 images 2 Normal and Proliferative Glomeruli 88.3% accuracy

Marsh et al. [28] Fully CNN 3867 images 3 Tubulointerstitial, Non-Sclerosed
and Sclerosed 84.75% F1-score

Kannan et al. [14] InceptionV3 1496 images 3 No glomerulus, Normal or Partially
Sclerosed, and Globally Sclerosed 92.67% accuracy

Proposed Research Method Combined Model 3924 images 3 Normal, Sclerosed and Focal
Glomeruli 98.16% F1-score

Similar research related to chronic kidney disease base on glomeruli disease.

4. Discussion

Based on the research results, the combination of deep transfer learning methods to
classify kidney disease in glomeruli has many characteristics, in terms of technical data
collection, exploratory data analysis and also the comparison with relevant research. By
prioritizing the data obtained from previous research coupled with the latest data from
relevant health institutions, we attempted to filter the data that was suitable and with a
high degree of similarity, so that the data collected could improve the results of machine
learning. This technique was also carried out in previous research, by Manzo et al. [29],
which used CX-ray images data from various sources to detect COVID-19 disease through
machine learning. However, the approach of this study used segmentation techniques from
diseases images; therefore, its steps are quite tedious. Meanwhile, we used the diseased
kidney data as a dataset to be studied by the machine. As a result, when testing the data,
the machine already recognized the exact criteria for the diseased kidney.

For our data exploration, we focused on determining the level of the distribution of
red blood cells (RSVP) that appeared in the diseased kidney image by adjusting the pixels
and brightness of the image, so that it appeared more proportional. This technique is in
line with the method used by Pavinkurve et al. [30], which performs image preprocessing
to detect the same disease. In this study, this technique was able to overcome the problem
of image bias in CT scan images. The suitability of this technique with the results of the CT
scan images is considered as being capable of facilitating the machine learning process to
obtain the object of the image. On the other hand, this study utilizes subject matter that is
often studied in previous studies, but is unique in its application of the methods.

This research, which focuses on discussing kidney disease, has relevant developments
with the same objectives, including the utilization of image classification that applies
different machine learning methods in various amounts, and the segmentation of images
by combining classification and segmentation methods. We obtained this perspective by
developing a combined model research method that utilized various types of methods
to compare which results were more accurate and precise, as was also performed by
Bueno et al. in two kidney disease studies, which combined the resulting segmentation
method with the adopted classification method to find the significant differences in diseased
kidneys. Furthermore, they found a new method to produce a more accurate optimal image



Appl. Sci. 2022, 12, 1040 13 of 15

classification method for diseased kidneys. By utilizing the results obtained in the research
of Bruno et al., we expanded the research by adding various transfer learning methods that
had been previously studied and adding to the dataset used, so that the results obtained
were compared with each other to achieve a higher accuracy value.

The technique that we found in this study is also supported by previous research,
which uses a variety of techniques. The use of automatic learning in kidney disease is our
focus for the development of the current research. This is in line with what was conducted
by Altini et al. [7], who developed research on kidney disease using the DeepLab method
through MATLAB, whereby the learning process can present the detailed results requested
by the user to facilitate comprehensive research performance. Meanwhile, several previous
studies used neural network techniques, either by directly using the model or installing
a new model. This technique was found in a study developed by Barros et al. [27] and
Marsh et al. [28], by installing neural networks to find the types of glomerular proliferative
kidney disease, which implements neural networks in the form of a full model to detect
the type of tubulointerstitial kidney glomeruli disease. This condition prompted us to
conduct research on a combination of models that utilize neural networks in the transfer
learning model. Thus, we could develop our research based on the learning scheme of
neural networks in each of the models we used. In addition, the research we used was
also supported by the research of Kannan et al. [14], who researched the differences in
the sclerosed shape of diseased kidney glomeruli using the CNN model in the form of
Inception V3.

5. Conclusions

To obtain the desired results, medical image categorization necessitates the following
procedures. The fundamental task in deep machine learning is to find an appropriate model
to run on a medical imaging dataset, which may be accomplished by altering an existing
model, developing a new model or applying an existing model. This study compared
each model to obtain a high classification accuracy value by using an existing model on a
medical picture dataset. This study integrated many models into a single model to obtain a
higher and more consistent classification accuracy value from the current models.

We found the EfficientNet model to be weak in comparison to various other machine
learning models after analyzing the suggested technique. This study demonstrated that
EfficientNet-L2 is not yet ideal for correctly identifying medical pictures, since it only
achieves a 33 percent accuracy rate. As a result, the EfficientNet model is ineffective
in classifying medical images independently. However, we discovered that the ResNet
model is a good fit for categorizing medical images. We discovered a ResNet101V2 that
is appropriate for usage in the medical picture dataset gathered during the application
of current models. ResNet101V2 has the best accuracy of all the tests performed on an
independent model, with values over 98.16 percent. As a result of this finding, it is clear that
certain models are less accurate than others, necessitating the use of alternative techniques.
As a result, combining models becomes a new experiment in order to improve the accuracy
of the unfavorable model.

The allied, cross and multivariate models were evaluated in this combination exper-
iment. The classification results from the three trials demonstrate that by using the best
model as the base model, all combination models attain accuracy values above 90%. This
application focuses on the best model in order to enhance the less-than-ideal model. Since
it works highly depending on the number of merged models, the combined model has
flaws in terms of the computation time. However, when compared to the models created
separately, the absolute accuracy of the combined model is the highest.

With the advancement of medical image classification research, it is important to
address the various aspects that influence the model employed. Existing models may
be improved by inputting or altering various optimization variables to obtain the best
results for the combined model, as well as the procedures required to streamline the model
process’s estimated time and its impact on the model architecture. To put it another way, this
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research is anticipated to continue discovering the best outcomes in terms of architecture
and the predicted time necessary, so that the accuracy value attained is achieved using the
best methods and models.
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2. Duchnowski, P.; Hryniewiecki, T.; Kuśmierczyk, M.; Szymański, P. Anisocytosis predicts postoperative renal replacement therapy

in patients undergoing heart valve surgery. Cardiol. J. 2020, 27, 362–367. [CrossRef] [PubMed]
3. George, S.; Pal, A.C.; Gagnon, J.; Timalsina, S.; Singh, P.; Vydyam, P.; Munshi, M.; Chiu, J.E.; Renard, I.; Harden, C.A.; et al.

Evidence for SARS-CoV-2 spike protein in the urine of COVID-19 patients. Kidney 2021, 2, 924–936. [CrossRef]
4. Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A comprehensive status report. Virus Res. 2020, 288, 198114. [CrossRef] [PubMed]
5. Kolhe, N.V.; Fluck, R.J.; Selby, N.M.; Taal, M.W. Acute kidney injury associated with COVID-19: A retrospective cohort study.

PLoS Med. 2020, 17, e1003406. [CrossRef] [PubMed]
6. Rosenberg, A.; Kopp, J. Focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 2017, 12, 502–517. [CrossRef] [PubMed]
7. Altini, N.; Cascarano, G.D.; Brunetti, A.; Marino, F.; Rocchetti, M.T.; Matino, S.; Venere, U.; Rossini, M.; Pesce, F.; Gesualdo, L.;

et al. Semantic segmentation framework for glomeruli detection and classification in kidney histological sections. Electronics 2020,
9, 503. [CrossRef]

8. Bueno, G.; Fernandez-Carrobles, M.M.; Gonzalez-Lopez, L.; Deniz, O. Glomerulosclerosis identification in whole slide images
using semantic segmentation. Comput. Methods Programs Biomed. 2020, 184, 105273. [CrossRef] [PubMed]

9. Tan, M.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International
Conference on Machine Learning ICML, Jacksonville Beach, FL, USA, 11 June 2019; pp. 10691–10700.

10. Foret, P.; Kleiner, A.; Mobahi, H.; Neyshabur, B. Sharpness-aware minimization for efficiently improving generalization. arXiv
2020, arXiv:2010.01412.

11. Martín-Navarro, J.A.; Gutiérrez-Sánchez, M.J.; Petkov-Stoyanov, V.; Justo-Ávila, P.; Ionela-Stanescu, R. Glomerulonefritis focal y
segmentaria en paciente con sarcoidosis pulmonar. Nefrol 2013, 33, 431–433.

12. Bueno, G.; Gonzalez-Lopez, L.; Garcia-Rojo, M.; Laurinavicius, A.; Deniz, O. Data for glomeruli characterization in histopatholog-
ical images. Data Brief 2020, 29, 105314. [CrossRef] [PubMed]

13. Dimitris. HuBMAP: Glomeruli Tiles and Mosaics, Kaggle. 2020. Available online: https://www.kaggle.com/anadelta/hubmap-
glomeruli-tiles (accessed on 17 March 2021).

14. Kannan, S.; Morgan, L.A.; Liang, B.; Cheung, M.G.; Lin, C.Q.; Mun, D.; Nader, R.G.; Belghasem, M.E.; Henderson, J.M.; Francis,
J.M.; et al. Segmentation of glomeruli within trichrome images using deep learning. Kidney Int. Rep. 2019, 4, 955–962. [CrossRef]
[PubMed]

15. Asinobi, A.O.; Ademola, A.D.; Okolo, C.A.; Yaria, J.O. Trends in the histopathology of childhood nephrotic syndrome in Ibadan
Nigeria: Preponderance of idiopathic focal segmental glomerulosclerosis. BMC Nephrol. 2015, 16, 213. [CrossRef] [PubMed]

http://doi.org/10.2217/bmm-2018-0101
http://www.ncbi.nlm.nih.gov/pubmed/30520658
http://doi.org/10.5603/CJ.a2019.0020
http://www.ncbi.nlm.nih.gov/pubmed/30799549
http://doi.org/10.34067/KID.0002172021
http://doi.org/10.1016/j.virusres.2020.198114
http://www.ncbi.nlm.nih.gov/pubmed/32800805
http://doi.org/10.1371/journal.pmed.1003406
http://www.ncbi.nlm.nih.gov/pubmed/33125416
http://doi.org/10.2215/CJN.05960616
http://www.ncbi.nlm.nih.gov/pubmed/28242845
http://doi.org/10.3390/electronics9030503
http://doi.org/10.1016/j.cmpb.2019.105273
http://www.ncbi.nlm.nih.gov/pubmed/31891905
http://doi.org/10.1016/j.dib.2020.105314
http://www.ncbi.nlm.nih.gov/pubmed/32154349
https://www.kaggle.com/anadelta/hubmap-glomeruli-tiles
https://www.kaggle.com/anadelta/hubmap-glomeruli-tiles
http://doi.org/10.1016/j.ekir.2019.04.008
http://www.ncbi.nlm.nih.gov/pubmed/31317118
http://doi.org/10.1186/s12882-015-0208-0
http://www.ncbi.nlm.nih.gov/pubmed/26670137


Appl. Sci. 2022, 12, 1040 15 of 15

16. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.-C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for
MobileNetV3. In Proceedings of the International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019;
pp. 1314–1324. [CrossRef]

17. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42,
2011–2023. [CrossRef] [PubMed]

18. Xie, Q.; Luong, M.-T.; Hovy, E.; Le, Q.V. Self-training with noisy student improves imagenet classification. In Proceedings
of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 10684–10695.

19. Pham, H.; Dai, Z.; Xie, Q.; Le, Q.V. Meta pseudo labels. arXiv 2020, arXiv:2003.10580.
20. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
21. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Computer Vision—European Conference on

Computer Vision; Springer: Cham, Switzerland, 2016; pp. 630–645. Available online: https://link.springer.com/chapter/10.1007/
978-3-319-46493-0_38 (accessed on 23 February 2021).

22. Zhu, J.; Shen, B.; Abbasi, A.; Hoshmand-Kochi, M.; Li, H.; Duong, T.Q. Deep transfer learning artificial intelligence accurately
stages COVID-19 lung disease severity on portable chest radiographs. PLoS ONE 2020, 15, e0236621. [CrossRef] [PubMed]

23. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–14.

24. Javid, A.M.; Das, S.; Skoglund, M.; Chatterjee, S. A ReLU dense layer to improve the performance of neural networks. In Proceedings
of the ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada,
6–11 June 2021; pp. 2810–2814. Available online: http://arxiv.org/abs/2010.13572 (accessed on 3 March 2021).

25. Sra, S.; Nowozin, S.; Wright, S.J. Optimization for Machine Learning; MIT Press: Cambridge, MA, USA, 2012.
26. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Available online: https://arxiv.org/abs/1412.6980#:
~{}:text=WeintroduceAdam%2C (accessed on 4 February 2021).

27. Barros, G.O.; Navarro, B.; Duarte, A.; Dos-Santos, W.L.C. PathoSpotter-K: A computational tool for the automatic identification of
glomerular lesions in histological images of kidneys. Sci. Rep. 2017, 7, srep46769. [CrossRef] [PubMed]

28. Marsh, J.N.; Matlock, M.K.; Kudose, S.; Liu, T.-C.; Stappenbeck, T.S.; Gaut, J.P.; Swamidass, S.J. Deep learning global glomeru-
losclerosis in transplant kidney frozen sections. IEEE Trans. Med Imaging 2018, 37, 2718–2728. [CrossRef] [PubMed]

29. Manzo, M.; Pellino, S. Fighting together against the pandemic: Learning multiple models on tomography images for COVID-19
diagnosis. AI 2021, 2, 261–273. [CrossRef]

30. Pavinkurve, N.P.; Natarajan, K.; Perotte, A.J. Deep vision: Learning to identify renal disease with neural networks. Kidney Int.
Rep. 2019, 4, 914–916. [CrossRef] [PubMed]

http://doi.org/10.1109/iccv.2019.00140
http://doi.org/10.1109/TPAMI.2019.2913372
http://www.ncbi.nlm.nih.gov/pubmed/31034408
http://doi.org/10.1109/cvpr.2016.90
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_38
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_38
http://doi.org/10.1371/journal.pone.0236621
http://www.ncbi.nlm.nih.gov/pubmed/32722697
http://arxiv.org/abs/2010.13572
https://arxiv.org/abs/1412.6980#:~{}:text=WeintroduceAdam%2C
https://arxiv.org/abs/1412.6980#:~{}:text=WeintroduceAdam%2C
http://doi.org/10.1038/srep46769
http://www.ncbi.nlm.nih.gov/pubmed/28436482
http://doi.org/10.1109/TMI.2018.2851150
http://www.ncbi.nlm.nih.gov/pubmed/29994669
http://doi.org/10.3390/ai2020016
http://doi.org/10.1016/j.ekir.2019.04.023
http://www.ncbi.nlm.nih.gov/pubmed/31317112

	Introduction 
	Materials and Methods 
	Data and Preparation 
	Exploration Data Analysis 
	Efficient Network (EfficientNet) 
	Residual Network (ResNet) 
	Very Deep Convolutional Networks for Large-Scale Image Recognition (VGG) 

	Results 
	Independent Model Experiment Results 
	Combining Model Experiment Results 
	Evaluation 

	Discussion 
	Conclusions 
	References

