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Abstract: The generation, detection, and quantification of high-energy proton spectra that are pro-
duced from laser-target interaction methodologies is a field of increasingly growing popularity over
the last 20 years. Generation methods such as target normal sheath acceleration or similar allow for
collimated laminar ion beams to be produced in a compact environment through the use of short-
burst terawatt lasers and are a growing field of investment. This project details the development
and refinement of a python-based code to analyze time-of-flight ion spectroscopy data, with the
intent to pinpoint the maximum proton energy within the incident beam to as reliable and accurate a
value as possible within a feasible processing time. TOF data for 2.2 × 1016 W/cm2 intensity laser
shots incident on a 2 mm Cu target that were gathered from the PERLA 1 kHz laser at the HiLASE
center were used as training and testing data with the implementation of basic machine learning
techniques to train these methods to the data being used. These datasets were used to ensure more
widely applicable functionality, and accurate calculation to within 1% accuracy of an assumed correct
value was seen to be consistently achievable for these datasets. This wider functionality indicates a
high level of accuracy for previously unseen TOF datasets, regardless of signal/noise levels or dataset
size, allowing for free use of the code in the wider field.

Keywords: time of flight ion spectroscopy; laser induced plasma; data processing

1. Introduction

Due to a range of applications spanning medical treatment [1,2] to nuclear research [3–7],
the generation of high-energy proton spectra is a field of increasing necessity over recent
decades. Non-conventional methods of acceleration are heavily sought after in the hopes of
more regularly achievable, compact, and affordable methods of key energy beam generation.
For laser intensities within the range of 1018–1020 W/cm2 incident on a target surface, target
normal sheath acceleration (TNSA) [8] is the dominant mechanism for electron generation.
Interacting with the laser, the target undergoes thermal heating and effectively instantaneous
plasma ablation [9,10]. The resulting sea of free electrons travel through the target body to
the rear surface with some passing through the target’s rear boundary. This results in a net
imbalance of charge within the target, causing a boundary field acting to restrict the electrons
to grow with each successfully expelled electron. Ultimately this process halts when the sheath
field becomes large enough to restrict escape entirely, reaching electric field strengths on the
order of teravolt/meter. This field is strong enough to induce ionization to latent hydrocarbon
contaminants, accelerating them over a short distance to extremely high velocities. Due to the
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non-linearity of the electron density as they travel across the target, the electric field magnitude
varies per point, thus creating a distribution of ion kinetic energies.

Often for lesser laser intensities (1016 W/cm2), similar results can be produced to
those from the TNSA mechanism which is thus dubbed a “TNSA-like” mechanism. The
functionality of this mechanism is covered in more relevant detail in Section 2. Figure 1
shows an example the energy distribution of accelerated surface contaminant hydrocarbons
(primarily hydrogen ions) that were obtained from TNSA-like ion acceleration incident
on a 2 mm thickness copper target, with a laser intensity 2.2 × 1016 W/cm2 detected via
Faraday cups. As can be seen, the number of ions decreases exponentially with increasing
energy values, tending towards the signal noise threshold.
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Figure 1. Typical energy distribution obtained from residual ion acceleration. Data gathered from
an experimental campaign that was performed at HiLASE centre, intensity 2.2 × 1016 W/cm2 laser
shots incident on a 2 mm Cu target. Detection threshold marks (in KeV) the value at which the signal
noise becomes equal to the signal received, disallowing accurate detection below it.

Analysis of TNSA and TNSA-like spectral data is a field of booming popularity over
the past few years, and subsequently the need for adequate and timely processing of such
vast quantities of data is the limiting factor of our advancement. Until recently, for low
repetition rate systems, identification of the maximum proton energy within the spectrum
could feasibly be done by eye, however newer studies require an automatic process without
sacrificing reliability. This requirement of online processing stems from the availability of
new cutting-edge laser systems operating at PW-class peak power and 1–10 Hz repetition
rate, as well as sub-TW class peak power at 1 kHz [11]. This allows for the gathering of a
substantial number of datasets, necessitating the need for an online identification system
over the time-consuming method of manual identification.

This paper details the functionality and creation of a program that was designed to
detect the maximum proton energy of laser-accelerated ion beams to as high an accuracy
as feasibly achievable from the noise background. Development of the code maintained a
focus on obtaining an adequate processing time without a compromise of accuracy. The
code is freely available upon request to the author. The obtaining of the experimental data
is also detailed below.

2. Experimental Setup

An experiment was conducted at the HiLASE center, Czech Republic, overseen by the
Institute of Physics [12], to gather a series of laser-interaction datasets. Data were obtained
from PERLA 1 kHz laser at intensities of 2.2 × 1016 W/cm2 with a 2 mm Cu target.

In total, 24 laser shots were gathered under fixed conditions. Figure 2 shows a basic
schematic of the experimental setup. The laser was fired for a ~1.5 ps burst with 1030 nm
central wavelength and maximum laser energy up to 20 mJ at a 2 mm Cu target, with a
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Faraday cup detector working in the time-of-flight technique positioned normal to the
target in a backwards direction at a distance 0.18 m from the target, with a laser intensity
with a magnitude of 1016 W/cm2 and varying laser focal radius. This slight changing in
laser focus results from the fact that laser-target collision induces a slight ‘boring’ effect
causing the target to bend inwards, indenting and warping the surface. This additionally
induces a slight, albeit largely negligible change to the intensity. The experiment was
conducted within a vacuum chamber, and the detector was negatively biased (100 V) to
repel incident plasma electrons that were travelling with the ion beam.
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Figure 2. Schematic of laser-target collision chamber with 1030 nm central wavelength laser, 1.5 ps
shot duration incident on a 2 mm Cu thickness target. The Faraday cup collector is positioned normal
to back scatter. Capacitor/resistor/amplifier setup contained within the Faraday cup.

As the incident laser intensity was sufficiently low, the ion acceleration mechanism
that occurred in the target backward direction is within the TNSA-like regime. Due to the
low laser contrast during the experiment (10−3), a significant overdense preplasma plume
was generated prior to the arrival of the main pulse. Thus, on the contrary to the classical
TNSA, the main acceleration direction of the ions was opposite to the gradient of density of
the preplasma plume rather than of the initial target, i.e., not necessarily is in the target
normal direction as suggested in particle-in-cell simulations that are described in [13].

The primary component of interest in the above setup is that of the Faraday cup ion
collector. While a range of ion collectors following similar methods exist, the most readily
improved and prominent of these remains to be the Faraday cup due to its reliability
and simplicity. A Faraday cup at its most basic level consists of a conductive open-sided
cylinder connected as a node in series to a signal amplifier. Charged particles impinging
on the metallic surface are absorbed or otherwise transfer that charge to the metal which
evenly distributes across the cups outer surface, building a potential difference. The
plate is regularly and routinely discharged allowing a current to flow across it, which is
amplified by a capacitor/resistor/amplifier parallel setup (for more detail on the Faraday
cup mechanics and functionality see [14]). The voltage Vout that is measured in a given
time is, therefore, proportional to the total number of charged particles striking the target
in that time [14,15]. The collector is additionally often biased at a negative potential to
repel electrons within the incident plasma stream to prevent inaccurate reduction of the
perceived charge via negative charge transfer [16]. The nature of the signal generation
makes accuracy of the incident particles energy more complex, however, as both a high
energy and low energy proton will induce the same inherent signal in the detector. From
time-of-flight (TOF) measurements [17] in which the arrival signal is measured as a function
of time, the particle energy can instead be calculated using the arrival time (which will be
covered in greater detail later), hence there is a requirement for online, real-time diagnostics
setups circumventing the Faraday cups most significant drawback.

This, however, necessitates the inclusion of a discharge rate for the Faraday cup that
is sufficiently high to ensure usable resolution of the data. Faraday cups often achieve a
relative lower time resolution (typically on the nanosecond regime) due to the discharging
rates fixed value being far lower than that which is achievable by other available detectors
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(such as the sub-picosecond response time of the diamond detector), however they can be
situationally preferred due to their high resistance to electromagnetic components.

However, photopeak detection from Faraday cups follow a more unique generation
process than the previously mentioned ion load. Incident XUV rays are absorbed by valence
delocalized electrons within the metallic cups surface, causing expulsion of the electron
and, therefore, a net positive charge buildup leading to a detectable photopeak signal.
Due to the unique, high-energy method of signal production, Faraday cups often produce
photopeaks of much lower amplitude in comparison to rival signal detection systems such
as diamond detectors. Indeed, the photopeak magnitude is often a fraction of that reached
by the ion load.

The emission of secondary electrons remains a principal complication of Faraday
cup function. As the ions kinetic energy often greatly exceeds that of the materials work
function, free electrons can be emitted, causing a larger imbalance of charge. Furthermore,
multiple electrons can be emitted per ion causing a potentially extravagant margin of error.
Techniques have been developed to combat this process, such as optimal Faraday cup
shapes or graphite shielding [16] which allow Faraday cups to maintain a reliable accuracy
for TOF calculation. The energy distribution can also be derived from these data via the
following equation [14]:

dNi
dEi

=
Lm

1
2
i i(t)

e(8Ei)
3
2

(1)

where Ni represents the number of ions in an energy interval dEi, i(t) is the current produced
for a time-of-flight t, L is the detection distance, e is the electronic charge, mi is the ion mass,
and Ei is the ion energy.

The datasets that were gathered via the Faraday cup as described above were used as
testing data during code development, and the varying intensity allowed the functionality
of the code to be scrutinized for a range of S/N ratios. Figure 3 shows the TOF plot for two
of the provided datasets, with the largest and smallest amplitude of the datasets provided
respectively. The x-axis has been adjusted to allow the photopeaks to lie on the zero-line
for each shot, however due to the Faraday cups reduced photopeak signal strength, as
well as the back side oriented detection setup (TNSA detection favors forward orientation),
the photopeak is significantly smaller than in typical TNSA-like TOF datasets. This is
arguably ideal for the development of identification software, as the codes’ ability to detect
the minimum possible photopeak signal can be scrutinized.
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Figure 3. TOF data that were obtained from PERLA 1 kHz laser at intensities of 2.2 × 1016 W/cm2

with 2 mm thickness Cu target. Shots 1 and 2 gathered data using the same laser intensity and target
parameter specifications under different laser focal sizes due to consecutive laser-target collisions.
The X-axis has been adjusted to allow the photopeak to lie on the zero-line for each shot, respectively.
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Time-of-flight diagnostics allow for the study of key energy ranges within these
datasets via the accurate measurement of ions arrival times with respect to the ion’s
generation time (which can reliably be estimated to be the time of laser-target collision, as
it is orders of magnitude larger than the time over which the acceleration mechanism takes
place) [18]. This sudden photopeak spike marks the arrival of soft X-rays that are produced
from the laser-target collision and thus acts as an indicator of the “time of release” for the
ions. From this information, the time-of-arrival, and thus the kinetic energy of the particles
arriving at any given time can be calculated, assuming the particle species is known.

When discussing the maximum kinetic energy that is present within the shot, it is
trivial to say that, due to the mass difference across the possible ions, this value is held
by the first arriving particles which solely consist of protons, as their decreased mass will
ensure a significantly higher velocity and thus a lesser arrival time. We can, therefore,
assume that all particles of relevance for this program are hydrogen ions since they are
normally present on the target surface as contaminants.

3. Code Functionality

This section details the functionality and development of a simple algorithm to deter-
mine the first arrival time of TNSA-generated ions from the above-discussed TOF spectra.
Of the 24 datasets, 15 were used as training data while the remaining 9 were used as a
confirmation test set, a separate set of data that was not used in the code development but
was instead utilized to confirm the validity and functionality of the finished code operating
on a set of data hitherto unseen. The development and operation of the code itself will now
be discussed before concluding with the validity test.

For the construction of the algorithm to accurately detect the maximum proton energy
of a TOF dataset, a similar code that was written in python was used as a baseline. This
early code provided two methods of calculation of the maximum proton energy, the former
using a basic calculative measure in which the beginning of the curve was taken as the first
signal point to exceed the value of three times the standard deviation of the noise data. This
value was chosen based on trial and error testing of the code. The latter of the two methods
was derived via processing the time-domain data into an energy distribution (the results of
which are shown in Figure 1) via Equation (1) as previously shown. The maximum energy
could, therefore, be taken from the resulting plots largest energy value.

This code was expanded upon in order to provide a higher level of accuracy for the
maximum energy and improved user experience. Below, these changes are detailed, and
in the results section we will compare the accuracy of the original and newly designed
methods of maximum energy determination (note that, due to the infinitesimal nature
of the maximum proton energy, we are limited by the noise floor of the detector and so
our maximum energy is defined by some arbitrary conditions, as will be detailed later).
Both the original base code and the improved code were constructed exclusively in Python
3.11.0, with data analysis mainly performed using the libraries numpy, pandas, and scipy.

The first step towards accurate energy determination is pinpoint isolation of the
photopeak which, due to its often sudden-spiked nature can in most cases be identified
within the signal noise. A system was designed to calculate an estimate quantifiable value
of the datasets noise by calculating the average of all modulus values and the standard
deviation within the first 2% of the data points within the set. This number was manually
chosen based on the observation that the photopeak did not lie within this range in any
observed data. The modulus values must be used for the averaging process as the noise
fluctuates equally about zero, meaning the standard average provides no measurement
of the noise magnitude, and the modulus can instead be used to define an average value
above zero, about which the signal consistently lies. The photopeak time-of-arrival is then
taken as the first voltage signal point to exceed this average modulus noise value plus
twice the standard deviation. This formula was again chosen through a trial and error
process using the full number of gathered datasets for its development and was found to
consistently pinpoint the photopeak to within an acceptably small margin of uncertainty
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for all of the datasets provided. This process also defines the photopeak as the rising
edge point as opposed to the highest value, however, due to the inherent thinness of the
photopeak relative to the datasets full-time scope, this approximation maintains validity (in
a dataset of 50,000 points spanning 10 µs, the photopeak spans five datapoints, or 0.1 ns).
This method pinpointed the photopeak exactly in 18 out of the 18 sets in which there was a
visible photopeak, however, in the case of the remaining six datasets no photopeak was
discernable from the noise due to experimental limitation. For this reason, as well as the
thought that there may be datasets in which the photopeak is wrongly pinpointed, the code
was thus built in with a manual override, giving the user the option to select a photopeak
time by hand when necessary due to the dataset limitations. This can prove useful in
situations such as the above, in which the photopeak cannot be seen on the individual set,
but its location can be inferred from other sets taken under the same conditions.

To find the beginning of the data curve and thus the maximum proton energy, the
gradient was calculated for every point using least squares regression in the range of r
points to the left and right of that datapoint. This represents a series of points by the
calculated best fit line derived from [19]:

m =
NSxy−SxSy

NSxx−S2
x

Sx ≡ Σixi

Sy ≡ Σiyi
(2)

c = SxxSy−SxSxy

NSxx−S2
x

Sxy ≡ Σixiyi

Sxx ≡ Σix2
i

(3)

where x and y are the time and signal values, respectively, m is the gradient of the best fit
line, c is the point of Y-axis intersection, all forms of S are self-defined above, and N is the
total datapoint count 2r + 1. The value r, named the range value, was initially arbitrarily
assigned, however it was later refined using basic linear regression methods to determine a
simple formula for the calculation of an appropriate range value for a new dataset. This
process will be covered later in this section.

The process to calculate the local gradient about a point (using Equation (2)) was
repeated for every point within the defined point range. From this, a graph of signal change
against time can be plotted (Figure 4) which, for a sufficiently large range value, will have
greatly reduced noise in comparison to the initial TOF graph (Figure 3). From this relatively
noiseless graph, the rising edge can be accurately pinpointed algorithmically based on
fluctuations of its own gradient, acting as an accurate prediction of the time-of-arrival of
the maximum energy protons. A secondary method which calculated a moving average
in place of a gradient calculation was also designed, however later testing (see Section 4)
showed a consistently lower accuracy and larger deviation from the value that was gathered
by eye for this method and was, therefore, cut from this paper for the sake of brevity.

This raises a key point in the development of this code, however. A small range value
will result in a gradient chart with a lesser reduced noise, whereas a large range value
will result in over-smoothing of the data and a significant shifting of the curve’s rising
edge, thus losing accuracy. The system’s ability to accurately determine an estimation for
maximum proton energy is, therefore, dependent on a procedural range value which must
differ for every dataset depending on dataset size and S/N ratio.

While the optimal range value (i.e., the range value which results in the predicted
maximum proton energy that is closest to the manually chosen reference value) is unique
for each dataset and cannot be predicted specifically (again, due to dataset noise), we can
use trends in pre-existing data and basic linear regression techniques to notice trends and
patterns that will allow an accurate prediction. A separate, secondary code was developed
which calculates an estimate for the beginning of the TOF curve for a given dataset for
a series of different range values. For each range value, the calculated prediction for the
time-of-arrival is found and compared against the reference answer, a value determined
manually by eye which is estimated to be the point at which the curve begins. Through
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comparison to the reference value, the range value which gives the most accurate estimation
of the minimum TOF for this dataset can be found. By repeating this process for the 15
datasets that were provided, which differ only by signal amplitude, a relationship between
the amplitude and the range value was established, which provided a backbone for the
development of a set of equations allowing the determination of an approximate optimal
range value based on a dataset’s characteristics. Of course, due to the inherent nature of the
task, i.e., finding an infinitesimal rise in a sea of noise, there cannot be a definitive “correct”
value chosen by eye, and as a result this comparison value is an educated estimation at best.
However, it acts as a maximum achievable level of accuracy for which we aim for. Through
the use of this secondary code, the primary code was fitted with a system to determine an
appropriate range value based on pre-determined value bands of S/N ratio, dataset size,
and ion load amplitude.
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4. Findings and Accuracy

The results of the finished code applied to the nine sets of testing data will now be
discussed and compared to the comparative results that were derived from the initially
provided two methods, as well as the briefly mentioned average method that wa derived
as an additional part of this project.

Figure 5 acts as a qualitative comparison of the original simple processing methods
of the maximum energy determination to the described gradient method (as well as the
aforementioned inefficient average method). These data were the result of processing
of the four methods on the first shot shown in Figure 3. As can be seen, the gradient
method calculates a deviation from the reference value of 4.2 nanoseconds, compared to the
original smallest deviation of 0.092 microseconds (energy distribution calculation) showing
a drastically increased accuracy. This pattern was observed across all of the training and
testing datasets that were gathered.
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original simplified methods compared to the newly designed algorithms for a single training dataset
(Figure 3 shot 1).

Table 1 shows the predicted manually gathered values and calculated values for five
of the testing shots. As can be clearly seen, in the time domain a constant high level of
accuracy is maintained regardless of S/N ratio, which was significantly higher for the first
three shots in comparison to the latter two (a comparison to that seen in Figure 3 can be
made). The accuracy was calculated based on the total deviation of the algorithmically
selected point from the point that was chosen by eye as a fraction of the overall dataset size
within the time domain. Over the 15 training sets, the calculated answer deviated from the
manually gathered answer by an average of 0.24% of the dataset, showing a consistently
reliable level of accuracy. The deviation was noticeably higher on average for lower S/N
ratio shots with a direct proportionality between the two, as can be seen in the data of
Table 1 by noting that the shots are arranged in order of decreasing S/N ratio. This is
trivial as a more noise-dominant dataset would provide larger complications for the data
processing algorithm.

Table 1. Gradient-method calculated predictions of shortest time-of-arrival and corresponding max.
proton energies for a number of the training datasets, along with the corresponding equivalent
energies. Shots arranged in order of decreasing S/N ratio. The accuracy was calculated from the
deviation between estimate and algorithm answers as a percentage of full dataset size.

Shot No.
By-Eye

Estimate
Time/µs

Algorithm
Calculated

Time/µs

By-Eye
Estimate

Energy/KeV

Algorithm
Calculated

Energy/KeV
Accuracy %

1 0.206 0.202 3.966 4.125 0.042

2 0.229 0.221 3.207 3.454 0.088

3 0.206 0.191 3.967 4.656 0.163

4 0.414 0.434 0.522 0.897 0.212

5 0.314 0.279 1.709 2.163 0.368

It is worth noting that these results are presented in the time domain as opposed to
the energy domain. Despite the energy domains more distinct relevance to the project
as a whole, the time domain was chosen to display the project results due to a larger
consistency across datasets. As a result of the squared component that is present within
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the kinetic energy formula, any error in the time domain will be magnified exponentially
upon conversion, providing a less accurate representation of the code’s ability to accurately
make an estimation of the maximum proton energy. Additionally, slight deviations in the
distance value may be magnified within the kinetic energy equation, thus decreasing the
accurate representation of the code further.

When run locally, this code is capable of processing the initial 15 datasets in under 0.5 s,
a time which can be greatly improved if run on a more specialized device. Nevertheless, the
sufficient processing time, as well as the consistently low deviation between the manually
selected and calculated values of minimum time-of-flight puts forth the algorithm as a
suitable substitute for manual identification and strongly affirms its reliability for the
processing of large-scale dataset quantities.

5. Conclusions

In summary, a code was provided to calculate energy distribution spectra and maxi-
mum proton energy values from input time-of-flight datasets. The method of maximum
proton energy derivation was drastically improved to allow for a more accurate automatic
determination of the value via rudimentary machine training techniques, making use of
linear regression systems, allowing the code to be fine-tuned using the data. The code
was additionally altered to allow functionality for any provided TOF dataset, meaning
the proton energy could be predicted to typically within 0.24% margin of error for a uni-
versal set of TOF data, regardless of the signal intensity or S/N ratio. Additional feature
implementation allowed for the photopeak location to be manually set for situations that
may require such a feature, such as cases where no photopeak is visible in an individual
dataset but the location of which can be inferred from other data. The code has minimal
processing time (>30 datasets/sec, where each set consists of 50,000 points, run on local
hardware), and user-friendly systems and annotations have been included for third-party
users to easily understand and operate it. Due to the automatic nature of the program,
processing of a large number of datasets is possible in quick succession without the need
for manual monitoring, suitable for the high-repetition rate that is often achieved with
currently available laser systems [20,21] and similarly suitable datasets. The code will be
available for free use for the study of TOF data and will prove to be useful in investigations
requiring high level accuracy of the laser-accelerated proton spectra characteristics.

The developed code is suitable to systematically analyze a broad range of data that are
acquired via laser-plasma experimental campaigns, in particular those aiming at investigat-
ing the reliability of laser-driven ion beams for multi-disciplinary applications, including
proton insertion in nuclear fusion studies or clinical biomedical research [22].

Author Contributions: The paper’s initial idea was proposed by D.M. and E.R.; the experiment was
carried out by V.I., Y.L., M.C. and J.H.; data analysis was performed by E.R., V.I. and L.G.; original
draft preparation by E.R. review and editing performed by D.M., V.I., L.G., Y.L., M.C., J.H. and M.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the project Advanced research using high-intensity
laser-produced photons and particles (CZ.02.1.01/0.0/0.0/16_019/0000789) from European Regional
Development Fund (ADONIS) and IMPULSE project by the European Union Framework Program
for Research and Innovation Horizon 2020 under grant agreement No 871161” YL acknowledges the
support from the European Regional Development Fund and the state budget of the Czech Republic
(project BIATRI: No. CZ.02.1.01/0.0/0.0/15_003/0000445). This project has received funding from
the European Union’s Horizon 2020 research and innovation programme under Grant agreement no.
871124 Laserlab-Europe, Grant agreement no. 739573 HiLASE Centre of Excellence and Operational
Programme Research, development, and education under Decision on grant no. 15_006/0000674-01
HiLASE Centre of Excellence.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available from the corresponding authors upon reasonable request.



Appl. Sci. 2022, 12, 13021 10 of 10

Acknowledgments: We acknowledge HiLASE Centre in Dolní Břežany, Czech Republic, for provision
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