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Abstract: Concrete structures are considered as durable construction material, but corrosion of the
embedded steel reinforcement occurs under chloride exposure as concrete has porous properties.
Herein, a cyclic drying–wetting test was performed for two years using saltwater to accelerate steel
corrosion in a reinforced concrete (RC) member. The open-circuit potential (OCP) was measured using
a newly developed and replaceable agar sensor. The corrosion potential was measured considering the
chloride concentration, water-to-cement (w/c) ratio, and cover depth at three levels. Furthermore, its
relationships with influential parameters were evaluated using averaged OCP results. The measured
OCP showed a linear relationship with the cover depth, and this tendency was more distinct with
increasing retention period and higher chloride concentration. For the highest w/c ratio (0.6), values
below −100 mV were monitored after only six months regardless of the cover depth, and values
below the critical potential level (−450 mV) were evaluated at lower cover depths (30 and 45 mm).
The results of regression analysis considering the exposure environment showed a clear relationship
in the case of high chloride concentration (7.0%). A linear relationship between cover depth and OCP
was derived with a reasonable determination coefficient ranging from 0.614 to 0.771.

Keywords: chloride ingress; corrosion monitoring; OCP; cover depth; RC member

1. Introduction

Concrete has been exposed to various exposure environments as a durable construction
material, and long service life is usually required for reinforced concrete (RC) structures. RC
structures are vulnerable to tensile stress; thus, they are reinforced with steel reinforcement
or tendons to support their loads. Steel reinforcement is known to be protected from
corrosion due to the high alkalinity of concrete; however, depending on the exposure
environment, corrosion frequently occurs in embedded steel through the penetration of
chloride and sulfate ions, pH reduction caused by carbonation, and the periodic repetition
of drying and wetting by moisture [1–4]. Steel reinforcement and tendons in RC members
are mainly resistant to tensile forces. When corrosion occurs, the bond strength increases
owing to the swelling effect of steel reinforcement up to a corrosion ratio of 3–5%. However,
the slip of steel reinforcement occurs and causes a serious safety problem of the structure
when the critical corrosion amount is exceeded [5]. It is crucial to detect corrosion and
evaluate its behavior as early as possible as the corrosion of embedded reinforcements
causes enormous economic loss and rapidly propagates over time [6,7].

Many studies have been conducted on modeling and control mechanisms for the
corrosion of steel by chloride attack and carbonation. Furthermore, research on corro-
sion prediction and service life analysis has recently been conducted along with BIM
(building information modeling) or engineering uncertainties modeling [8–10]. However,
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studies on corrosion detection for RC structures have many limitations because of the
difference in corrosion behavior in a laboratory experiment and that of an actual struc-
ture, the non-homogeneity of the concrete material, and the influence of local conditions.
The nondestructive technique (NDT) has been used in many fields, as it evaluates the
performance of a structure by collecting the representative index without destroying it.
It has also been applied for evaluating the corrosion feasibility of steel reinforcement.
As reported in [11], the results from electrochemical sensors were summarized as OCP
(open-circuit potential), surface potential, concrete resistivity, noise analysis, and galvanic
current. For OCP measurement, not only conventional reference electrodes such as SCE
and CSE but also new material such as activated titanium and MnO2 were attempted
for measurement [12–14]. Concrete resistivity is a special characteristic of the material
that can permit the amount of carrying current. It shows qualitive results of corrosion
feasibility but is very useful for field assessment [15,16]. Polarization resistance and EIS
(Electrochemical Impedance Spectroscopy) measurement can provide more accurate and
quantitative results such as corrosion current [17]. For galvanic current measurement, many
studies have been performed considering environmental conditions and residual chloride
contents [18,19]. Measurements of influencing parameters on corrosion have been carried
out such as pH [20], oxygen [12], and chloride content [21,22]. In the previous research [11],
the sensor mechanism and classification of the measurement method were well explained.

Monitoring sensors that are conventionally installed on embedded steel reinforcement
during the construction stage can evaluate the relatively quantitative corrosion behavior
(potential and corrosion density) through measuring the potential difference among the
reference electrode (RE), working electrode (WE), and counter electrode (CE) connected to
the embedded steel reinforcement. Although the embedded steel reinforcement and the
related measuring electrodes are safe, significant misleading errors from actual corrosion
potentials may occur when the electrolyte life of the embedded sensors expires or the
internal medium is supersaturated by high-concentration ion penetration.

In this study, a sensor that can be replaced and calibrated outside was fabricated
using agar as an ion transfer material. RC specimens were prepared based on Type 1
ordinary Portland cement (OPC), and the changing OCP was analyzed for two years
considering durability design parameters such as w/c ratio, cover depth, and exterior
chloride concentration. Evaluation of the corrosion behavior through comparison with
measured OCP data and the durability design parameters is important as it can provide
a relative corrosion risk among various design parameters. For this reason, changes in
the measured values were analyzed for concrete samples with three different w/c ratios
subjected to repeated drying and wetting for two years, and the correlation was evaluated
through the averaging method.

2. Corrosion Mechanism and Its Detection Techniques
2.1. Corrosion Mechanism in Steel in RC and PSC

Pore water in concrete has various ions such as Na (OH) and CaCl2, and the pH
in pore water is over 12.0 due to the high alkalinity of cement hydrates. Under high-
alkalinity conditions, the surface of steel can be protected by a passive film from external
acid and ions. However, steel corrosion easily occurs owing to the consumption of hydrates,
decrease in pH, and intrusion of halogen ions. Among the anions, the chloride ion (Cl−)
easily penetrates into concrete and yields local corrosion, so-called pitting. The anodic and
cathodic reactions can be expressed as Equations (1)–(3) [4,23].

Fe → Fe2+ + 2e− (Anodic reaction) (1)

H2O +
1
2

O2 + 2e− → 2(OH)− (Cathodic reaction) (2)

Fe +
1
2

O2 + H2O→ Fe(OH)2 (Overall reaction) (3)
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When oxygen is sufficient in the anodic areas, ferrous hydroxide, Fe(OH)2, can be
further oxidized to other corrosion products, and this is accompanied by increasing volume,
expressed as Equations (4)–(6).

Ferrous hydroxide : Fe2+ + 2OH− → Fe(OH)2 (4)

Ferric hydroxide : 4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3 (5)

Hydrated ferric oxide (rust) : 2Fe(OH)3 → Fe2O3·H2O + 2H2O (6)

Volume swelling at the steel is reported to range from a factor of two to ten, and
this leads to cracking and spalling of concrete. In addition to the corrosion mechanism
mentioned above, crevice corrosion and macro-corrosion can easily occur in steel reinforce-
ment or PS (Pre-Stressing) tendons close to corrosion positions [23,24]. For PS tendons, in
particular, a complex corrosion mechanism occurs as the macro-cathode area and small
macro-anode areas form by the cavities in the duct or grout quality degradation unlike RC
structures. There are various causes of corrosion, such as sulfur ions in cement, the move-
ment of deicing agents and moisture from the upper slab, and the influence of chalky grout.
Macro–micro-complex corrosion mechanisms simultaneously occur as the strands are very
adjacent to each other [23]. Figure 1 shows schematics of various corrosion mechanisms.
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Figure 1. Corrosion mechanism of pitting, crevice, and macro-corrosion.

2.2. Corrosion Detection Sensor

As described in Section 1, many non-destructive devices have been developed for
evaluating the corrosion of reinforcement in RC structures. In this section, a replaceable
OCP measuring sensor is described. In this study, agar was used as the ion transfer material
of the replaceable sensor. Agar, which is a material widely used for cell culture, is almost
insoluble in organic solvents and has high resistance to chemicals. It can absorb a large
amount of water and retain its gel condition when cooled at room temperature. Based on
the results of previous studies [25–27], cement paste was prepared by mixing water and
cement at a 1:4 weight ratio and adding a water-reducing agent, and then it was attached to
the bottom of the socket. Agar was added into a prepared 1 M KNO3 aqueous solution at a
2% weight ratio, and melted for 60 min at 120 ◦C to be used as an ion-exchange membrane.
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The solution was then cooled to approximately 70~80 ◦C and poured onto hardened cement
paste in the mold at a thickness of 4.0 ± 1.0 mm. It was cooled and hardened at room
temperature for 12 h before the test.

After injecting the working solution into the socket, RE was inserted for use. Agar
is a well-proven material as a salt-bridge in electrochemistry research, so it was utilized
not only for salt-bridges but also for membranes for acquiring electrochemical connection
between concrete and the electrolyte for our reference electrode. Many other researchers
have reported the reliability of agar as salt-bridges [25,28,29]. In this study, Hg/HgO
electrodes and a 1 M NaOH aqueous solution were used as the medium solution. Figure 2
shows photos of the sensor fabrication process and OCP measurement.
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3. Test Program for Accelerated Chloride Ingress and Potential Measurement
3.1. RC Samples and Used Material
3.1.1. Fabricated RC Samples with Different Cover Depths and w/c Ratios

For two years of a long-term monitoring test, cuboidal RC molds in a size of 300 mm
× 200 mm × 130 mm were fabricated. The cover depth of the RC sample was set to 30, 45,
and 60 mm. To induce corrosion in the central part, both ends of the steel were coated with
epoxy except for 150 mm in the middle part of the reinforcement. SUS mesh was installed
at 5 mm from the embedded steel reinforcement to measure the OCP, and the position of
the socket-type agar sensor was adjusted at the same distance from the steel and SUS mesh.
The SUS mesh had a shape of 30 × 30 mm and was made of the wire with a diameter of
0.5 mm. The agar socket had a 15 mm diameter and 100 mm length. For preventing the
temperature effect on corrosion behavior, the specimens were tested at room temperature
(21 ◦C ~ 25 ◦C). Wires were connected to the steel reinforcement acting as the WE and to the
SUS acting as the CE, and then soldering and an epoxy coating were applied. This process
allowed the electrodes to be connected from the outside of the sample before concrete
pouring. Figure 3 shows a photograph of the mold and internal wire connection. The RC
sample geometry and installation photos are shown in Figure 4. As previously explained,
the agar-based socket can act as a salt bridge and can be inserted with a real reference
electrode. The replaceable agar sensors are shown in the figures below (red circles).
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3.1.2. Mix Proportions and Materials

OPC was used to prepare RC samples, and mix proportions with an air content of 4.5%,
w/c ratio of 0.4–0.6, and a flow of 600.0 mm were prepared. Table 1 shows the concrete
mix proportions and the physical/chemical properties of cement. Tables 2 and 3 show the
properties of cement and aggregates, respectively. The information of steel reinforcement is
summarized in Table 4.
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Table 1. Mix proportions for the test.

No. W/C
S/a
(%)

Unit Weight (kg/m3)

Water Cement Sand Gravel Admixtures

1 0.4 43.0 180 450 712 966 3.15

2 0.5 45.0 180 360 779 974 2.52

3 0.6 47.0 180 300 837 966 2.10

Table 2. Chemical and physical properties of ordinary Portland cement (OPC).

Type
Items

Chemical Compositions (%) Physical Properties

SiO2 Al2O3 Fe2O3 CaO MgO SO3
Ig.

Loss
Specific
Gravity

Blaine
(cm2/g)

OPC 21.96 5.27 3.44 63.41 2.13 1.96 0.79 3.16 3214

Table 3. Physical properties of fine and coarse aggregates.

Type
Items Gmax

(mm)
Specific Gravity

(g/cm3)
Absorption

(%) F.M

Fine aggregate - 2.62 1.01 2.90

Coarse aggregate 20 2.68 0.82 6.87

Table 4. Propertied of the used reinforcement.

Type
Items Diameter

(mm)
Yield Stength

(MPa) Steel Ratio
Spacing

(mm)

Steel rebar 10 400 0.90 41.5

As shown in Figure 1, a reinforcement bundle or tendons in a relatively small area may
have complicated corrosion behavior such as a microcell, crevice cell, and macro cell. In
some subway structure, corrosion in buried steel due to stray current has been reported [30].
If the steel spacing between the upper and lower steel is small, chloride condensation and
a different chloride distribution can be caused [31]. In the test, the steel ratio and minimum
spacing were 0.90% and 41.5 mm, respectively, so the independent corrosion in each steel
was monitored.

3.2. Accelerated Chloride Intrusion Test and OCP Measurement

Regarding the saltwater for accelerating the corrosion of steel, three different chloride
concentrations (0.0%, 3.5%, and 7.0% of wt.) were adopted. The 3.5% concentration is the
ordinary level of sea water. Higher levels of chloride concentration have been reported
when deicing agent (CaCl2) is used for concrete pavements, so a 7.0% concentration was
additionally considered. Another reason was that three levels are at least required for
non-linear fitting for the evaluation of chloride behavior. One-way penetration from the top
of the RC sample was induced. For long-term monitoring, dry-air curing was performed for
four weeks after concrete pouring, and then an accelerated corrosion test through saltwater
was conducted. Artificial seawater with three concentrations was left on the top for two
weeks and then removed. Subsequently, the OCP under the wet condition was measured.
Afterward, the dry condition was maintained for two weeks, and the OCP under the dry
condition was measured again. Two weeks (wet) in the presence of saltwater and two
weeks (dry) in the absence of saltwater were set to one cycle, and two cycles (eight weeks)
were performed. After testing for two cycles (eight weeks), the measurement cycle was
changed. The OCP measurement under the wet condition after the presence of saltwater
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for six weeks and that under the dry condition after the absence of saltwater for two weeks
were set to one cycle, and the test was conducted. Figure 5 shows the cyclic drying–wetting
test process for two years. A potentiostat (VERSASTAT3, AMTEK) was used as the OCP
measuring equipment. Figure 6 shows photographs of the cyclic accelerated test and
OCP measurement.
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4. Corrosion Potential Behavior with Test Parameters
4.1. OCP Evaluation with the Averaged OCP

The OCP measurement for two years is shown in Figures 7–9 with increasing chloride
concentration. Although data fluctuation occurred due to the non-homogeneity of concrete,
the OCP value increased in the negative direction with higher chloride concentration.
Some OCP values were recovered due to the changes in temperature and local saturation
condition. In particular, when corrosion occurs, the OCP value recovers or the corro-
sion rate decreases during corrosion progress [32]. This is because the corrosion product
(rust) generated locally on the surface hinders the further oxidation of steel reinforcement.
When long-term measurement is performed, the OCP decreases again in a direction that
propagates corrosion. In addition, the dry condition was maintained before exposing the
specimens to saltwater for increasing the inflow of oxygen. As the OCP values measured
during this period showed large fluctuations due to a reduction in potential, the average
values of three samples were used after data filtering.
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monitoring, some specimens were dismantled, and the steel reinforcement in the corro-
sion-induced part was collected. The rust on the surface was then removed using citric 
acid. Afterward, the surface condition of the steel was examined using a microscope 
(DEM-MUT) with 10 times magnification. For the sample that contained no chloride in 
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The critical corrosion potential of the used electrode was −450 mV [33], but the OCP
that meets the value was measured from a cover depth of 30 mm after one year at a chloride
concentration of 7.0% regardless of the w/c ratio. After one year of corrosion monitoring,
some specimens were dismantled, and the steel reinforcement in the corrosion-induced part
was collected. The rust on the surface was then removed using citric acid. Afterward, the
surface condition of the steel was examined using a microscope (DEM-MUT) with 10 times
magnification. For the sample that contained no chloride in the aqueous solution, the
degree of corrosion was insignificant. In the two cases with high chloride concentrations
(3.5% and 7.0%), however, significant pitting-type corrosion was evaluated. Figure 10
shows the surface corrosion condition after one year.
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In this study, the progress of pitting corrosion with increasing chloride concentration
was only observed, and the corrosion weight and area were not evaluated. Unlike the
corrosion pattern due to carbonation, local corrosion pits are caused by chloride penetration
and are accelerated in the cracked area [34]. In the previous studies [35,36], the flexural
capacity of an RC beam was evaluated considering the pitting corrosion effect. The residual
steel area and distribution function of the corrosion pit were modeled. The probability of
failure was evaluated with the pit interference effect, which showed significant increases
in corrosion probability at the initial uniform corrosion condition. After the 2-year test,
the agar material showed a stable form without changing color and swelling. The agar-
melting process for 120 min and distilled water for cement mixing with high alkalinity were
effective for bacteria growth control. Careful investigation of preventing bio-deterioration
from bacteria is required for the long-term test over 2 years and mass production of the
agar-based sensor. The reproducibility test after the corrosion test was performed for 150 s
with 1 M KNO3 and a reference of Ag/AgCl. The average of the measured results from 6
samples showed that 0.05208 mV (OCP) and 0.342 of COV were evaluated.

4.2. Relationship between OCP and the Parameters
4.2.1. Effects of the Cover Depth and w/c Ratio on the OCP with Increasing
Chloride Content

It is difficult to quantify the OCP values at each measurement point by comparing
them with the factors affecting corrosion (w/c, cover depth, and chloride concentration).
The OCP change tendency according to the factors can be clearly identified by averaging the
OCP values measured for two years. Figure 11 shows the average values with increasing
cover depth. The corrosion potential decreased as the cover depth increased and the
w/c ratio decreased. When the OCP ratio was analyzed based on a corrosion potential
of −450 mV, it was found to be approximately 18.4% even under the most unfavorable
conditions (30 mm, w/c 0.6) at a chloride concentration of 0.0%. At 3.5%, however, it
significantly increased to 40.1 ~ 67.4% for w/c 0.6, 27.6~37.7% for w/c 0.5, and 28.0~39.1%
for w/c 0.4. This tendency increased from ~49.8 to ~76.5%, 33.8% to 50.8%, and 28.0% to
37.3%, respectively, at a chloride concentration of 7.0%.
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When each average OCP value was evaluated through linear regression analysis, the
gradient can be assumed as the degree to affect the OCP. When the x-axis (cover depth) in
Figure 11 was subjected to linear regression analysis with respect to the OCP, the gradient
can be summarized as shown in Table 5. As can be seen from the table, the OCP recovery
through the cover depth was rapidly improved in all cases as the w/c ratio increased. This
tendency indicates that securing the cover depth is an important protection mechanism
that can reduce the corrosion risk in the condition of low-quality concrete and high external
chloride concentration. The results can provide useful information for durability design
such as determining the minimum cover depth and maximum w/c ratio of concrete. A
critical chloride content inducing corrosion is usually adopted for service life evaluation;
however, it is only assumed, and the conservative index since corrosion initiation occurs
very complicatedly and the value varies a lot with experimental conditions [1,2,6].

Table 5. Gradient analysis of the cover depth effect on the open-circuit potential (OCP).

Averaged OCP = a × Cover Depth + b

a b R2

WC-0.4 (0.0%) 0.3297 −61.669 0.5075

WC-0.5 (0.0%) 0.1771 −65.936 0.9926

WC-0.6 (0.0%) 0.384 −93.324 0.9377

WC-0.4 (3.5%) 1.1218 −204.33 0.4354

WC-0.5 (3.5%) 1.5005 −218.96 0.8921

WC-0.6 (3.5%) 4.0884 −414.6 0.9099

WC-0.4 (7.0%) 1.2439 −208.4 0.6597

WC-0.5 (7.0%) 2.5515 −314.69 0.8382

WC-0.6 (7.0%) 3.9919 −459.86 0.987

4.2.2. Effects of the Cover Depth and w/c Ratio on the OCP with Increasing Period

Owing to the periodic infiltration of saltwater, the chloride content increases inside the
concrete, and it yields a condition vulnerable to corrosion despite the continuous cement
hydration. In Figure 12, the OCP values for two years were classified into four stages to
analyze the OCP value with the exposure period. When the w/c ratio was 0.4, a significant
drop in the OCP value began to be observed under 3.5% and 7.0% conditions only after
one year. When the w/c ratio was higher (w/c: 0.6), values below −100 mV were observed
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regardless of the cover depth after six months. At cover depths of 30 and 45 mm, the
OCP linearly and significantly decreased and reached the critical level of −450 mV. The
OCP reduction over time was mainly caused by the inflow of moisture and oxygen under
dry and wet conditions. A rapid reduction in the OCP was measured in the saltwater
environment that exceeded the seawater condition (7.0%).
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When each exposure environment is fixed, a relatively high coefficient of determination
can be derived by obtaining multiple correlations of time, cover depth, and OCP. Figure 13
shows the OCP correlations for the seawater concentration (3.5%) condition and the severe
seawater condition (7.0%). A higher correlation was derived as the chloride concentration
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increased, and each result was shown as a contour and a regression equation. A weak
correlation was observed under the wet condition (0.0% concentration), but the correlation
was improved and the corrosion potential decreased with high chloride concentration. From
the wet condition, as the chloride concentration increased to 3.5% and 7.0%, the multiple
correlation coefficient increased from 0.627 to 0.634 (0.0%), 0.789 to 0.905 (3.5%), and 0.783 to
0.878 (7.0%), respectively. The coefficient of determination also increased from 0.614 to 0.771
under the 7.0% condition. The regression equations under each condition are summarized in
Table 6, and the OCP contour for each condition is shown in Figure 14. It is well reported that
the exposure condition is very important as the exterior chloride concentration governs the
surface chloride content, and it determines the required cover depth and concrete properties
for the intended service life [1,6,37]. Initial chloride ions from sea sand or chemical admixtures
usually remain constant without the dissociation of bound chlorides due to the pH drop [37,38].
The surface chloride content increases with the exposure period and remains constant after
20~30 years [39,40]. The results from the test showed a clear relationship with longer exposure
period and higher chloride content, and they were directly compared with averaged OCP,
which meant actual corrosion behavior. The linear OCP relation with cover depth can be used
for a referential guide for durability design.
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Table 6. Regression results of the open-circuit potential (OCP) with exposure and cover depth. W/C,
water-to-cement.

Condition W/C Ratio

OCP = A(Time) + B(Cover Depth) + C

Multiple
Correlation

Determination
Coefficient A B C

Wet Condition

0.4 0.634 0.402 −0.140 0.330 −14.392

0.5 0.627 0.393 −0.159 0.177 −12.385

0.6 0.629 0.395 −0.183 0.384 −31.730

3.5%
Concentration

0.4 0.905 0.819 −0.528 1.122 −26.206

0.5 0.887 0.787 −0.501 1.501 −49.861

0.6 0.789 0.622 −0.357 4.088 −294.175

7.0%
Concentration

0.4 0.878 0.771 −0.564 1.244 −18.187

0.5 0.838 0.702 −0.468 2.552 −156.681

0.6 0.783 0.614 −0.390 3.992 −328.259
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5. Conclusions

In this study, reinforced concrete (RC) samples were prepared considering the chloride
concentration, cover depth, and water-to-cement (w/c) ratio. In addition, the open-circuit
potential (OCP) of the embedded steel reinforcement was measured by conducting a cyclic
drying–wetting test in a saltwater environment for two years, and its relationships were
obtained considering durability design parameters and exposure period. The conclusions
and research limitation drawn in this study are as follows:

(1) Under the conditions that considered saltwater, the OCP was evaluated to be lower
than the critical potential (−450 mV) regardless of the w/c ratio under the lowest
cover depth condition (30 mm) after six months. As corrosion progressed, the OCP
varied due to the partial saturation and rust product.

(2) The averaged OCP measured for two years was derived, and each average value was
analyzed with the cover depth. The corrosion potential decreased with increasing
chloride exposure period and high chloride concentration. When the w/c ratio was
0.4, a significant drop in the OCP value began to be observed under the 3.5% and
7.0% conditions only after one year. Under the condition with a high w/c ratio
(w/c: 0.6), values below −100 mV were observed regardless of the cover depth after
six months. The averaged OCP increased linearly in the negative direction with
decreasing cover depth, and they showed a clearer tendency with higher chloride
concentration. Regression equations were evaluated for the OCP behavior for each
exposure environment considering the exposure period and cover depth.

(3) The measured OCP showed fluctuations with varying saturation and the corrosion
pitting effect was not investigated. If the bearing capacity in the corroded RC beam
with the mineral admixture such as fly ash and slag was evaluated through long-term
accelerated conditions, the results from this work would show more reasonable ones
that can be applied to a real RC member.
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