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Abstract: More accurate diagnosis of brain disorders can be achieved by properly analyzing structural
changes in the brain. For the quantification of change in brain structure, the segmentation task is
crucial. Recently, generative adversarial networks (GAN) have been rapidly developed and used in
many fields. Segmentation of medical images with these networks will greatly improve performance.
However, segmentation accuracy improvement is a challenging task. In this paper, we propose a
novel corrective algorithm for updating the accuracy and a novel loss function based on dissimilarity.
First, we update the generator using the typical dice similarity coefficient (DSC) as a loss function
only. For the next update, we use the same image as input and obtain the output; this time, we
calculate dissimilarity and update the generator again. In this way, false prediction, due to the first
weight update, can be updated again to minimize the dissimilarity. Our proposed algorithm can
correct the weights to minimize the error. The DSC scores obtained with the proposed algorithm and
the loss function are higher, and clearly outperformed the model with only DSC as the loss function
for the generator.

Keywords: dice similarity coefficient; dissimilarity coefficient; generative adversarial network;
segmentation

1. Introduction

By assigning a specific value to each pixel, semantic segmentation localizes the class
on an image [1]. Magnetic resonance imaging (MRI) is the most widely used imaging
technology to study the brain. The MRI repeats different excitations and produces a
contrast image [2]. MRI can be used to diagnose Alzheimer’s disease (AD) and multiple
sclerosis [3]. One of the common biomarkers for the diagnosis of AD is tissue atrophy [4].
Accurate identification and categorization of brain tissue is crucial for such a diagnosis. To
avoid difficult tasks, such as manually analyzing MRI datasets, automatic segmentation
techniques are developed [5]. Recently, many deep learning models have been developed
for the segmentation of brain tissues [6–12]. The brain comprises three types of tissues:
cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM), as shown in Figure 1.
As the brain MRI is a 3D image, it will consume lots of computational resources for the
process. We all know that 3D images are a stack of 2D images. When 2D images are stacked,
a third dimension is added which will make it 3D. For faster processing with less resources
a 2D approach can be used where each slice is processed one by one until all of the slices in
the 3D are processed. The result of processing 3D at once or processing and adding each
slice to create whole image is the same.

Before deep learning, algorithms were implemented for the segmentation purpose.
However, it takes a lot of time to obtain results from such processes [8]. Unlike deep
learning, the user must change parameters and steps in the algorithm manually as it cannot
learn from the data itself. The segmentation of the medical images is developed along with
the progress in the deep learning models. Recently, there has been significant development
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in GAN [13–17]. GAN is used for a variety of applications, such as generating videos
from images [18], increasing resolution [19], and generating an image from text [20]. GAN
structures comprise of two parts: a generator and a discriminator [21]. There has been a
development of different types of discriminators. Unlike a typical discriminator, which only
classifies the output of the generator [22], a new discriminator that discriminates the image
on the level of the patch has been introduced [23]. Recent studies have shown that semantic
segmentation can be improved with the GAN [22]. Unlike traditional GAN, a multi-
discriminator GAN was introduced to distribute the burden for the worker machine [24].
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Figure 1. Binary maps generated from the ground truth for different classes.

DSC is used as the evaluation metrics for most segmentation tasks. It was first
proposed by Dice [25]. In the case of segmentation, DSC is basically calculated by obtaining
the intersection area between the output and the ground truth. The value of DSC is always
between zero and one. The higher the value of DSC, the better the result will be. To obtain
the DSC of the multiclass segmentation, DSC for each class is obtained, and the average is
calculated [26]. We can use this evaluation matrix as a loss function during the training
too. As deep learning tries to minimize the error while training, we can use the negative
of the DSC as the loss function. However, the limitation of the DSC is that it only gives
information about the correctly predicted pixels.

Motivated by the multiple-discriminator GAN, we propose a novel method to update
a GAN alternately with two discriminators, using DSC and a new proposed loss function.
We studied the structure of the predicted output and formulated a new function that could
give information about areas that are not included as the intersection in the DSC. We
hypothesize that instead of using an average of all loss functions at once, a new corrective
alternative update of GAN would be able to train the generator properly. In our algorithm,
the generator weights will be updated twice in an iteration. The first one will be based on
DSC. After that update, the same images are passed through the generator, and the output
from this will be used to calculate dissimilarity. This update will be mainly focused on
minimizing the dissimilarity, or the false prediction.

In this paper, we describe a new coefficient that measures the dissimilarity among the
binary images and a novel algorithm to update the GAN alternatively in a corrective way
with two discriminators. Our main contributions are:

• We propose a new corrective way of updating weights of the generator using two
discriminators alternatively. The discriminator used in the first update discriminates
the image at a patch level, whereas the second one discriminates the whole image at
once. These different updates will be based on different loss functions;

• We propose new loss functions based on the dissimilarity of the images. We formulate
the functions and define an algorithm to calculate them from an image;
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• We confirm with a DSC score of the model on test data that the proposed algorithm
and loss functions help the generator outperform the typical generator trained with
DSC alone.

2. Materials and Methods
2.1. Data

We use the Open Access Series of Imaging Studios 1 (OASIS 1) dataset [27]. For
training, we select 60 subjects randomly. The MRI scan of each subject has dimensions of
176 × 208 × 176. There are three planes (axial, coronal, and sagittal). We extract, train,
and test 2D images for each plane individually. The extracted images are resized to the
dimension of 256 × 256 before training and testing. In the MRI scan of the brain, there are
empty spaces outside of the brain. While extracting 2D images from those MRI, images
at the edge are blank and have no information about the brain. We remove those blank
images and consider only images with the brain portion or information. Visually analyzing
the MRI scans, we determine the range of number of slices used in each plane. For the
axial plane, we use slices from 15 to 145. Similarly, we use slices from 30 to 180 in the
coronal plane, and 25 to 145 in the sagittal plane. All together, we used 7800, 9000, and
7200 images for axial, coronal, and sagittal planes, respectively, while training the model
individually. The ground truth image provided in the OASIS 1 dataset are produced using
Markov random field model and an associated Expectation-Maximization algorithm [27].

2.2. Method

The following equation provides the objective of a conditional GAN:

LcGAN(G, D) = Ex,y[log D(x, y)] +Ex,z[log(1− D(x, G(x, z)))] (1)

where a generative model G tries to minimize LcGAN(G, D), and the discriminator D tries
to maximize it [13]. Mixing GAN objectives and a more traditional loss have been found
beneficial [28]. The task of the generator will be to fool the discriminator and produce
segmentation as near as possible to the ground truth. In contrast, the job of the discriminator
is unchanged [27].

We aim to train our GAN network with two discriminators, where the generator
is updated twice in an iteration according to the DSC as a loss function in first update,
followed by the update with respect to the new proposed dissimilarity coefficients as a loss
function. The updates of the generator according to the discriminators are illustrated in
Figure 2. We use different discriminators for the discrimination of the generator’s output at
a different update. The process of calculating dissimilarity coefficients is summarized in
Algorithm 1 and the process of updating the generator is summarized in Algorithm 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 15 
 

• We confirm with a DSC score of the model on test data that the proposed algorithm 
and loss functions help the generator outperform the typical generator trained with 
DSC alone. 

2. Materials and Methods 
2.1. Data 

We use the Open Access Series of Imaging Studios 1 (OASIS 1) dataset [27]. For 
training, we select 60 subjects randomly. The MRI scan of each subject has dimensions of 
176 × 208 × 176. There are three planes (axial, coronal, and sagittal). We extract, train, and 
test 2D images for each plane individually. The extracted images are resized to the 
dimension of 256 × 256 before training and testing. In the MRI scan of the brain, there are 
empty spaces outside of the brain. While extracting 2D images from those MRI, images at 
the edge are blank and have no information about the brain. We remove those blank 
images and consider only images with the brain portion or information. Visually 
analyzing the MRI scans, we determine the range of number of slices used in each plane. 
For the axial plane, we use slices from 15 to 145. Similarly, we use slices from 30 to 180 in 
the coronal plane, and 25 to 145 in the sagittal plane. All together, we used 7800, 9000, and 
7200 images for axial, coronal, and sagittal planes, respectively, while training the model 
individually. The ground truth image provided in the OASIS 1 dataset are produced using 
Markov random field model and an associated Expectation-Maximization algorithm [27]. 

2.2. Method 
The following equation provides the objective of a conditional GAN: 

where a generative model 𝐺  tries to minimize ℒ 𝐺𝐴𝑁(𝐺, 𝐷), and the discriminator 𝐷 
tries to maximize it [13]. Mixing GAN objectives and a more traditional loss have been 
found beneficial [28]. The task of the generator will be to fool the discriminator and 
produce segmentation as near as possible to the ground truth. In contrast, the job of the 
discriminator is unchanged [27]. 

We aim to train our GAN network with two discriminators, where the generator is 
updated twice in an iteration according to the DSC as a loss function in first update, 
followed by the update with respect to the new proposed dissimilarity coefficients as a 
loss function. The updates of the generator according to the discriminators are illustrated 
in Figure 2. We use different discriminators for the discrimination of the generator’s 
output at a different update. The process of calculating dissimilarity coefficients is 
summarized in Algorithm 1 and the process of updating the generator is summarized in 
Algorithm 2. 

 

ℒ 𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼 , [log𝐷(𝑥, 𝑦)] + 𝔼 , [log (1 − 𝐷 𝑥, 𝐺(𝑥, 𝑧) ] (1)

Figure 2. Illustration of updating the generator twice in an iteration with a different discriminator at
each time.



Appl. Sci. 2022, 12, 12944 4 of 13

During the first update process, the generator model produces a segmented output
for the corresponding input. DSC is used as a loss function. As the value of DSC is always
between 0 and 1, the bigger the value, the better will be the result. So, we use the negative
of the DSC calculated as the loss function, and then a patchGAN discriminator penalizes at
the patch level. The loss lu1 for the first update is the weighted sum of a DSC loss and an
adversarial loss:

lu1 = lDSC + 10−3lGen (2)

where lDSC is negative of DSC value, which can be calculated as:

DSC =
2
∣∣I ∩ Î

∣∣
|I|+

∣∣ Î
∣∣ (3)

where I is the ground truth, and Î is the predicted output. The second update is to train
the model about giving information and minimizing the false prediction during the first
update. After updating the generator, we predict the same image through the generator and
calculate the dissimilarity between the ground truth and the predicted image. We propose
two types of coefficients related to dissimilarity. The dissimilarity coefficient (DC) is related
to the false positive and false negative predictions. The calculation of these coefficients is
given in Equations (7) and (9). The total DC loss is the sum of these two coefficients. The
second update is focused on training the generator to correct and minimize the dissimilarity.
The loss lu2 for the second update is the weighted sum of a DC loss and an adversarial loss:

lu2 = lDC + 10−3l′Gen (4)

For the second update, the generative loss l′Gen is defined based on the probabilities
of the discriminator over all training data as:

l′Gen =
N

∑
n=1
−logDθD

(
GθG (I)

)
(5)

where, GθG and DθD are generator and discriminator networks parametrized by θG and θD,
respectively.

2.2.1. UNet as Generator

For medical image segmentation, UNet architecture is the most widely used [29]. We
also used UNet as the generator model for our proposed model, which is illustrated in
Figure 3. UNet architecture has an encoder and decoder path. The encoder comprises
of convolution layers and max pooling, whereas the decoder comprises of convolution
layers and up convolution. The feature map from the encoder is concatenated with the
corresponding feature map of the decoder, using a skip connection. We use two convolution
layers followed by batch-normalization layers and LeakyReLU as the activation function in
each step of the encoder. Each step is followed by 2 × 2 max pooling. In the decoder path,
each up sampling is followed by two convolution layers as in the encoder. The output of
up sampling is concatenated with the feature map from the encoder before it goes through
the convolution.

2.2.2. Multiple Discriminators

We performed a study based on two discriminators. One discriminator is a conditional
GAN which discriminates real segmented images from generated segmented images.
Another discriminator is Markovian discriminator (patchGAN) [27].

For the discriminator based on a conditional GAN, we follow the summarized ar-
chitecture by [15]. This architecture avoids the use of max pooling. The maximization
problem in Equation (1) is solved by training the discriminator network [20]. There are
eight convolutional layers increasing from 64 to 512 by a factor of 2; the same as in the VGG
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architecture [30]. To reduce the resolution when the feature numbers are doubled, stride
convolutions are used. We use LeakyReLU as the activation function (α = 0.2). The final
feature maps are followed by two dense layers and then by a sigmoid activation function,
which provides a probability for the classification. Figure 4a illustrates the architecture
of this conditional GAN. The task of the discriminator is to examine the output of the
generator and determine whether it is similar to the original ground truth or not. If it is
comparably similar to the ground truth, it will predict it as “real”, otherwise it will be
“fake”. Hence, the generator will consider this loss to generate images similar to the ground
truth as much as possible. The discriminator in Figure 4a functions like a binary classifier
where real is represented by true and fake is represented by false.
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We follow patchGAN architectural guidelines summarized by [27]. The discriminator
in patchGAN only discriminates the structure at the scale of patches. A patch of size
N × N is classified as real or fake. Assuming the pixels separated by more than a patch are
independent, this discriminator models the image as a Markov random field [27]. Figure 4b
illustrates the architecture of this patchGAN. The structure is similar to the conditional
GAN we used. This discriminator also comprises of eight convolutional layers increasing
from 64 to 512 by a factor of 2, and LeakyReLU (α = 0.2) is used as an activation function.
In this architecture, the final two dense layers are replaced by a single convolution layer
with a single feature map with a kernel size 3 × 3. The final result of this discriminator is a
of size of 16 × 16.

2.3. Proposed Loss Functions

In DSC, only the intersection of the predicted and the ground truth is calculated. Thus,
using DSC as a loss function will only give information about the true positive pixels
in the result image. There are false negative and positive pixels in the predicted output,
along with the true positive pixels. This pixel information can also help to improve the
intersection or the true positive pixels.

2.3.1. Dissimilarity from False Negative

Studying the false negative pixels and reducing the number of those will automatically
help us increase true positive pixels. The relation between false-negative pixels and DSC is
inversely proportional. The lower the number of false-negative pixels, greater the value
of DSC.

DSC ∝
1

PFN
(6)

where PFN is the number of pixels of the false negative in the predicted image. Figure 5
shows the process of getting false negative pixels from the predicted output. To get false
negative pixels, we first invert the predicted output image. To do so, we subtract each pixel
of the output image from a integer value one. Then the inverted image is multiplied by
the ground truth image. As both images (ground truth and predicted output) are binary
images, only the intersection between them will not be zero. This remaining non-zero area
is the false negative pixel, as this area is non-zero in the ground truth. From this pixel value,
we can calculate a dissimilarity coefficient. The dissimilarity coefficient for false-negative
pixels prediction is calculated as,

DCFN =

∣∣I ∩ inv
(

Î
)∣∣∣∣inv

(
Î
)∣∣ (7)

where
∣∣inv

(
Î
)∣∣ is the number of pixels of the ROI from the inverted predicted output.

DCFN is a metric of area overlap between the ground truth and the inverted predicted
image.

∣∣I ∩ inv
(

Î
)∣∣ represents the number of pixels that are predicted as background but

are not background in the ground truth image. Thus, we consider these pixels as a false
negative. The process of calculating a dissimilarity coefficient for false negative values
is summarized in Algorithm 1. From Equation (7) we can say that the DCFN is the ratio
of the number of false negative pixels, or false background pixels, to the number of total
background pixels predicted. This ratio tells us how many of the predicted background
pixels do not match with the actual ground truth background pixels.

2.3.2. Dissimilarity from False Positive

Among the predicted pixels, there are false positive pixels. While increasing the
intersection with the ground truth, the model should also know about the false positive
pixels to minimize the prediction of those pixels in the future. The relation of the number
of the true positive pixels with the number of the false positive pixels is also inversely
proportional. Reduction in the false positive pixels will help to focus or give information
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to increase the intersection of the ground truth and the predicted region, resulting in the
improvement of the DSC.

DSC ∝
1

PFP
(8)

where PFP is the number of pixels of the false positive in the predicted image. Figure 6
shows the process of getting false positive pixels from the predicted output. To get false
negative pixels, we first invert the ground truth image. To do so, we subtract each pixel of
the ground truth image from a integer value one. Then the inverted image is multiplied
by the predicted image. As both images (ground truth and inverted predicted output) are
binary images, only the intersection between them will not be zero. This remaining non-
zero area is the false positive pixel as this area is non-zero in the output image. From this
pixel value, we can calculate a dissimilarity coefficient for false positive. The dissimilarity
coefficient for false-positive pixels prediction is calculated as,

DCFP =

∣∣inv(I) ∩ Î
∣∣∣∣ Î∣∣ (9)

where |inv (I)| is the number of pixels of the ROI from the inverted ground truth, and
∣∣ Î∣∣

is the number of pixels of the ROI from the predicted output image. DCFP is a metric of
area overlap between the inverted ground truth and the predicted image.

∣∣inv (I) ∩ Î
∣∣

represents the number of pixels that are predicted as foreground but are not foreground in
the ground truth image. Thus, we consider these pixels as a false positive. The process of
calculating dissimilarity coefficient for false positive values is summarized in Algorithm 1.
From Equation (9) we can say that the DCFP is the ratio of number of false positive pixels,
or false foreground pixels, to the number of total foreground pixels, or ROI predicted. This
ratio tells us how many of the predicted ROI pixels do not match with the actual ground
truth ROI pixels.

Algorithm 1 Computation of dissimilarity coefficient for false negative DCFN and false positive
DCFP

Input: ground truth image I, predicted image Î
Output: DCFN, DCFP
1. Inverse_Î← 1 − Î
2. Intersection_FN← I × inverse_Î
3. union_FN← sum (inverse_Î)
4. DCFN ← 2 ∗ Intersection_FN/union_FN
5. Inverse_I← 1 − I
6. Intersection_FP← inverse_I ∗ Î
7. union_FP← sum ( Î)
8. DCFP ← 2 × Intersection_FP/union_FP
9. return DCFP, DCFN
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Algorithm 2 Our proposed algorithm to update generator G with two different discriminators
(D1 and D2)

1. for epoch do
2. Obtain segmented image Î from input I: Î = G(I)
3. Export the ground truth IGT and segmented image Î as input to discriminator D1
4. Train D1 (update weights):

∇θd1
= 1

m

m
∑

i=1

[
log D1

(
IGT)+ log

(
1− D1

(
Î
))]

5. Train G (update weights):
∇θg = ∇θDSC + 10−3 ∗ ∇θgen

∇θgen = 1
m

m
∑

i=1
−logD1(G(I))

∇θDSC = 1
m

m
∑

i=1

[
−2 ∗

(∣∣I ∩ Î
∣∣)/

(
|I|+

∣∣ Î
∣∣)]

6. Obtain segmented image Î from input I: Î = G(I)
7. Export the ground truth IGT and segmented image Î as input to discriminator D2

8. Train D2 (update weights):

∇θd2
= 1

m

m
∑

i=1
[log D2

(
IGT)+ log

(
1− D2

(
Î
)]

9. Train G (update weights):
∇θg = ∇θDC + 10−3 ∗ ∇θgen

∇θgen = 1
m

m
∑

i=1
−logD2(G(I))

∇θDC = 1
m

m
∑

i=1
[DCFP + DCFN ]

10. end for

2.4. Training Details and Parameters

We trained the model for all planes on a NVIDIA GeForce RTX 3090 GPU using images
extracted from different planes individually. The MRI subjects for training are different
from the subjects for the testing. We obtained inputs and the ground truth images from
MRIs and rescaled them to the dimension of 256 × 256 before feeding them to the network.
Since we are using DSC as a loss function, we need a binary map corresponding to each
class. We extracted a binary map for each class (background, CSF, GM, and WM). For that,
we generated binary images which have a value of one only at the pixels where class or
tissue is present in the ground truth, otherwise the value was set to 0. We used Adam [31]
with β1 = 0.9 for the optimization. The proposed model networks were trained with a
learning rate of 10−3 as in [32]. The generator is updated twice in an iteration with different
discriminators, and the discriminators are updated alternately with each update.

2.5. Evaluation Metrices

We used two types of metrices for the evaluation: DSC and Volumetric Overlap Error
(VOE) [33]. Using Equation (3) we can calculate the DSC scores. For the VOE, we calculate
the intersection and the union of the segmented and the ground truth.
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For the ground truth segmentation map S and the predicted segmentation map S′, the
VOE is defined in Equation (10).

VOE = 1− |S ∩ S′|
| S ∪ S′| (10)

3. Results

Our main goal is to improve DSC scores by training GAN with dissimilarity loss
functions and DSC as loss function. We proposed a new algorithm to update the generator
with multiple discriminators instead of a single discriminator to make corrections in the
updated weight. To check whether our assumption and proposed method’s performance,
we performed two experiments described in the section below.

3.1. Single Discriminator GAN Model with DSC and DC Loss Functions (Exp_model_1)

In this experiment, we used a UNet generator as in the proposed algorithm. But in
this case, we used a single discriminator only. During the training process, DSC and DC
are calculated from the same segmented output, and the generator and discriminator are
updated. The loss function for this model’s generator update is:

l = lT + 10−3lGen (11)

lT = lDSC + lDC (12)

3.2. Single Discriminator GAN Model with Only DSC Loss Functions (Exp_model_2)

Another experiment compares the model’s performance with only the DSC loss func-
tion. We kept all parameters the same for this experiment, along with the same training
dataset. The loss function for the update of the generator is:

l = lDSC + 10−3lGen (13)

For the testing, we took slices from 15 to 145, 30 to 180, and 25 to 145 in axial, coronal,
and sagittal planes, respectively, similar to the training data. Thus, we have 130, 150,
and 120 slices per subject in the axial, coronal, and sagittal planes, respectively. We chose
twenty-five subjects from the dataset which were not included in the training data. We
extracted slices from each subject, calculated the average DSC score for that plane, and
calculated the standard deviation for each calculated average. As discussed, the test data
were predicted using three models (the proposed model and two models addressed in the
experiment to check the improvement). As we aim to improve the DSC score by providing
additional dissimilarity loss to the model, we compared and focused the result mainly on
the DSC scores obtained by the models.

We evaluated the models using another evaluation metric, VOE, as in Table 1. From
the table, it can be seen that the VOE score is decreased by up to 2% in some cases of the
axial and coronal planes. The lower the value of VOE, the better the result will be. Hence,
we can say that our model has less volumetric error in case of the axial and coronal planes.
However, the score for the sagittal plane is similar to the Exp_model_1. As the values for
sagittal planes are not higher than the Exp_model_1, and the values in two other planes
are less than the Exp_model_1, we can claim that our proposed model outperforms the
other models.

In Table 2, we compared the DSC scores of the models. We extracted 2D images from a
plane and segmented it to create the segmented 3D image from those 2D slices. In the axial
plane we can see that the DSC score for the WM, GM, and CSF, are higher in the proposed
model by 1% than the exp_model_1. Also, if we compare it with the exp_model_2, the
scores are improved by 2% for all classes. Hence, in the axial plane we can claim that our
proposed model is better than other models. For the coronal plane, the scores are slightly
higher in the proposed model than in the exp_model_1, but not by a significant margin.
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On the other hand, the scores are greater than scores of exp_model_2 by up to 1%. The
same condition occurred in the sagittal plane, where the score of the proposed model is
higher than exp_model_2 by 1% but had just a slight improvement in comparison to the
exp_model_1. However, we have already seen that the VOE for the axial and coronal planes
is less in the proposed model. Also, in the sagittal plane, our proposed model’s scores are
not less than the other models. Hence, we can claim that our model outperforms other
models in the segmentation of the brain tissues.

Table 1. VOE comparison of segmentation results from different experimental models.

Axial

Model CSF GM WM

Exp_model_1 0.0991 0.0958 0.1164
Exp_model_2 0.1075 0.1057 0.1237

Proposed model 0.0907 0.0831 0.0913

Coronal

Exp_model_1 0.0924 0.0803 0.0688
Exp_model_2 0.0947 0.0862 0.0790

Proposed model 0.0890 0.0784 0.0688

Sagittal

Exp_model_1 0.0885 0.0811 0.0821
Exp_model_2 0.0962 0.0938 0.1037

Proposed model 0.0877 0.0806 0.0829

Table 2. DSC score comparison of segmentation results of all testing subjects (average of DSC scores
in total testing subjects).

Axial

Model CSF GM WM

Exp_model_1 0.9463 ± 0.0445 0.9472 ± 0.0591 0.9304 ± 0.1098
Exp_model_2 0.9399 ± 0.0703 0.9390 ± 0.0902 0.9235 ± 0.1271

Proposed model 0.9518 ± 0.0200 0.9555 ± 0.0374 0.9467 ± 0.09458

Coronal

Exp_model_1 0.9511 ± 0.0220 0.9578 ± 0.0198 0.9635 ± 0.0312
Exp_model_2 0.9497 ± 0.0252 0.9541 ± 0.0326 0.9564 ± 0.0585

Proposed model 0.9530 ± 0.0212 0.9589 ± 0.0192 0.9634 ± 0.0340

Sagittal

Exp_model_1 0.9534 ± 0.0198 0.9573 ± 0.0223 0.9551 ± 0.0538
Exp_model_2 0.9487 ± 0.0303 0.9492 ± 0.0457 0.9395 ± 0.0926

Proposed model 0.9537 ± 0.0199 0.9575 ± 0.0232 0.9546 ± 0.0553

4. Discussion

We confirmed the superior performance of our proposed model using DSC scores
in testing. We further investigate the result with or without dissimilarity coefficient by
running the test with exp_model_1 and exp_model_2. The exp_model_1 and the proposed
model have the dissimilarity coefficient as a loss function, along with the DSC. The only
difference is that the model is updated once or alternatively for those loss functions. From
Tables 1 and 2 it is visible that the network with the information about the dissimilarity
performed better than using DSC alone. If we compare the result of the models exp_model_1
with dissimilarity information and exp_model_2 without dissimilarity information, the
network’s score is improved by up to 3%. In all three planes and testing subjects, the
models with our proposed additional loss function outperformed the model with only the
DSC loss function.
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We compared our proposed method with other approaches as well, which is shown in
Table 3. We want to mention that all the models listed in that table are not implemented
by us. The scores shown in the table are as it was reported in the corresponding papers.
The average scores of each class/tissue are the average scores of the three planes. From
Table 3, we can see that our method has scored the highest DSC scores in all three tissues.
If we compare with the best previous approach, as mentioned in the table, our model has
performed better by 1%, 2%, and 1% in WM, GM, and CSF, respectively. The only compara-
ble result was obtained using patch-wise models [34,35]. Therefore, we can conclude that
our method has performed better than the previous state-of-the-art approaches for brain
tissue segmentation.

Table 3. Comparison of segmentation results of different approaches.

Authors Methods
DSC Scores

WM GM CSF

Zhang et al. [8] CNN 86.4% 85.2% 83.5%
Nie et al. [9] FCN 88.7% 87.3% 85.5%
Lee et al. [34] Path-wise UNet 94.33% 93.33% 92.67%

Yamanakkanavar et al. [35] Patch-wise Mnet 95.17% 94.32% 93.60%
Proposed method 96.41% 96.23% 94.37%

Although the alternative update of the model is time-consuming, our proposed algo-
rithm improved the DSC score up to 2% more than the model with DSC alone as a loss
function. While comparing the single update of the model and the alternative update, we
found that the alternative update outperformed in the axial and coronal planes. The scores
are improved by up to 1%. However, in the sagittal plane, the performance is not signifi-
cantly enhanced, but overall performance is similar to the single update. We visualized
and checked the extracted slices for the sagittal plane. We found that the training and
testing slices obtained are not identical as we sliced the MRI scan from a manually defined
range. The slices need to be extracted dynamically and uniformly rather than defining a
fixed range.

5. Conclusions

We have described an algorithm to update the GAN generator using the newly pro-
posed dissimilarity coefficient, used along with DSC. The aim is to update the model to
not only focus on the true positive area but also on the false positive and false negative
area, which will improve the performance. Our method comprises two updates, the first
one is based on the true positive, and the second one makes the correction based on the
false positive and false negative area. We tested our model with the ideal condition which
follows the traditional weight update. From the comparison we found that our model
outperformed the others. Also, we have compared our method with the previous methods
used for brain tissue segmentation. Again, in this comparison our method outperformed
previous approaches. We have highlighted the limitations of a DSC loss function and
introduced the dissimilarity coefficient as a new loss function. However, there are a few
drawbacks of our method as it is time-consuming and resource-consuming. Despite this, in
terms of the DSC scores, our model is the best one. By using segmentation in the different
planes for different subjects, we have confirmed that using the dissimilarity coefficient
and the alternative update of the generator is, by a considerable margin, more robust and
accurate than DSC only. We evaluated and demonstrated the better performance of our
model with DSC scores and the VOE scores. In the future work, we will try to study and
overcome the drawbacks of our model and try to improve it to be the best in all planes.
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