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Abstract: The applications of computer networks are increasingly extensive, and networks can be
remotely controlled and monitored. Cyber hackers can exploit vulnerabilities and steal crucial data
or conduct remote surveillance through malicious programs. The frequency of malware attacks
is increasing, and malicious programs are constantly being updated. Therefore, more effective
malware detection techniques are being developed. In this paper, a convolutional fuzzy neural
network (CFNN) based on feature fusion and the Taguchi method is proposed for malware image
classification; this network is referred to as FT-CFNN. Four fusion methods are proposed for the
FT-CFNN, namely global max pooling fusion, global average pooling fusion, channel global max
pooling fusion, and channel global average pooling fusion. Data are fed into this network architecture
and then passed through two convolutional layers and two max pooling layers. The feature fusion
layer is used to reduce the feature size and integrate the network information. Finally, a fuzzy neural
network is used for classification. In addition, the Taguchi method is used to determine optimal
parameter combinations to improve classification accuracy. This study used the Malimg dataset to
evaluate the accuracy of the proposed classification method. The accuracy values exhibited by the
proposed FT-CFNN, proposed CFNN, and original LeNet model in malware family classification
were 98.61%, 98.13%, and 96.68%, respectively.

Keywords: malware image classification; convolutional neural network; fuzzy theory; Taguchi
method; feature fusion

1. Introduction

With the rapid development of information technology, the progress of network tech-
nology has made our lives more convenient. However, malware can penetrate information
technology devices through loopholes in program security, which can cause system dam-
age, limited network bandwidth, and the theft of crucial files. The frequency of malware
attacks has been increasing. For example, antivirus company Kaspersky Lab detected
69,277,289 unique malicious objects in 2016 [1]. McAfee Labs reported that 670 million
malware samples were detected in 2017 [2]. According to Malwarebytes’ annual malware
report, more than 50 million cyber threats were detected separately in 2018 and 2019 [3,4].
The 2020 Trend Micro Cybersecurity Report stated that 119,000 cyberattacks occur every
minute [5]. Because of the wide variety of malware and the increasing number of malware
attacks, various malware classification methods have been proposed by researchers.

Malware analysis can be broadly categorized into static analysis and dynamic analysis.
Static analysis involves parsing and extracting the features of malicious programs without
executing code. Common static analysis is a signature-based method that involves search-
ing a signature database for matching signatures to determine whether the program is
malware. A local signature database is required to store signatures extracted from malware
by experts. The signature database must be regularly manually updated to effectively

Appl. Sci. 2022, 12, 12937. https://doi.org/10.3390/app122412937 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122412937
https://doi.org/10.3390/app122412937
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8709-2715
https://doi.org/10.3390/app122412937
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122412937?type=check_update&version=1


Appl. Sci. 2022, 12, 12937 2 of 14

prevent new malware attacks. However, this approach has major limitations. Researchers
and malware authors have demonstrated that malware can evade signature-based detec-
tion through new program encryption or obfuscation techniques [6–9]. Chen et al. [10]
proposed the use of four easily extractable small-scale features to classify malware families
and used machine learning methods to search for the best model and hyperparameters for
each feature and parameter combination. Kazuki et al. [11] developed a malware analysis
system that conducts control traffic analysis, antisink editing, feature extraction, and simi-
larity calculation. Peyman [12] proposed the use of heuristic-based malware detection and
simultaneous byte analysis based on static features.

In dynamic analysis, malicious programs (such as virtual machines or sandboxes) are
executed in a controlled environment. Malware detection results are obtained from the
collection and analysis of the system operating behavior, network packets, file storage, and
download items [13]. Mohaisen et al. [14] proposed a malware classification technology
called the automated malware and labeling scheme (AMAL), which is based on automated
behavior analysis. AMAL primarily uses AutoMal and MaLabel to monitor the file system
and network behavior. MaLabel classifies similar malware through extracted behavioral
monitoring. Support vector machine (SVM), decision tree, and K-nearest neighbor (KNN)
algorithms are used to classify specific malware families. Galal et al. [15] proposed a
dynamic analysis method based on malware behavior. In this method, application pro-
gramming interface (API) hooking technology is used to determine the parameters of the
malware and collect relevant information; from the extracted API features, parameters, and
sequences, the unique malware behavior is inferred. The decision tree, random forest, and
SVM algorithms are then used to classify malware. Kolosnjaji et al. [16] used a recurrent
neural network and convolutional neural network (CNN) for feature extraction and an
n-gram for malware detection. Fahade and Wei [17] proposed the use of the longest com-
mon substring and longest common subsequence for character matching to detect malware.
Damodaran et al. [18] used numerous malware samples for the comparison of static and
dynamic malware analysis.

The aforementioned static and dynamic analyses have many limitations. Although
static analysis is fast and safe, it cannot be used to classify unknown malware. Dynamic
analysis can be used for accurately identifying the code and determining the functionality
of a malicious program; however, this method might affect the application of the computer.
Therefore, some researchers have advocated the conversion of malware from binary files to
grayscale images and then utilizing various algorithmic techniques to classify these mal-
ware images [19]. In contrast to static and dynamic analysis, malware image classification
does not require strong malware domain knowledge, and it bypasses the need for malware
fine-tuning to overcome obfuscation techniques. Malware image classification thus allows
for fast classification applicable to various malware types [20].

Machine learning technology has been widely used to address the malware detection
problem. Narayanan et al. [21] used principal component analysis to extract features, and
artificial neural networks (ANN), KNN, and SVM were then used to complete the classifi-
cation of malware images. Garcia and Muga II [22] used random forest to classify malware
images, and they reported satisfactory classification results. Gao et al. [23] proposed a
malware classification framework based on malware visualization and semisupervised
learning. This framework mainly includes three parts: the parts for malware visualization,
feature extraction, and classification. Feature fusion methods are used to fuse local and
global features to save time and improve feature correlation. Nataraj et al. [24] proposed a
classification method based on standard image features. This method is simple and efficient
and requires neither disassembly nor code execution. The above-mentioned methods
require the user to define the features in advance.

In recent years, many scholars have conducted in-depth research with deep learning
approaches on malware detection. Lin et al. [25] used LeNet for malware family clas-
sification. They used convolution operations to automatically extract malware features.
Kalash et al. [26] proposed a deep learning architecture to classify malware samples. Qi
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et al. [27] used an adversarial learning framework for unsupervised domain adaptation to
enable gradient boosting decision trees to learn domain-invariant features and to mitigate
performance degradation in the target domain. Because CNNs have too many parameters
and require high-performance hardware, Lin and Jhang [28] employed convolution oper-
ations with fuzzy neural network to reduce the number of network parameters in breast
cancer classification and obtained good performance. Because CNNs require numerous
parameters and these parameters are difficult to determine, the trial-and-error method
is widely used for parameter selection. To reduce the time and cost of experiments, the
Taguchi method [29] can be used to statistically optimize parameter selection by using an
orthogonal array of influencing factors and their levels.

In this paper, a convolutional fuzzy neural network (CFNN) based on feature fusion
and the Taguchi method (FT-CFNN) is proposed for malware image classification. The
FT-CFNN comprises two parts: a CFNN and Taguchi-method-based optimal parameter
combinations. The CFNN comprises convolutional, pooling, feature fusion, and fuzzy
neural network (FNN) layers. Four feature fusion methods, namely global max pooling
(GMP) fusion, global average pooling (GAP) fusion, channel global max pooling (CGMP)
fusion, and channel global average pooling (CGAP) fusion, are proposed to reduce the
feature size and integrate the network information. An FNN is used for classification.
In addition, the Taguchi method is used to determine the affecting factors and the best
parameter combination for achieving optimal accuracy. In this study, we focus on improving
deep learning methods that require a large number of learning parameters and improving
classification accuracy by optimizing parameter combinations. The major contributions of
this study are as follows:

• An efficient FT-CFNN is proposed for malware image classification.
• Four feature fusion methods, namely GMP fusion, GAP fusion, CGMP fusion, and

CGMP fusion, are proposed to reduce the feature size and integrate network information.
• The size of the adjustable parameters can be reduced by replacing a fully connected

network with an FNN.
• To reduce the number of experiments required for the various parameter combinations,

the Taguchi method is used to determine the affecting factors and levels.

The rest of this paper is organized as follows. Section 2 describes the structure of the
proposed FT-CFNN and the Taguchi method. Section 3 presents the experimental results
obtained when using the proposed FT-CFNN. Finally, Section 4 details the conclusions of
this study and recommendations for future research.

2. Proposed FT-CFNN

In this section, the classification method of the proposed FT-CFNN is described in
detail. Figure 1 shows a flowchart detailing the process of malware image classification with
the aforementioned network. First, the Taguchi method is used to select the affecting factors
and their levels. Next, the training image set is input into the FT-CFNN to implement
the Taguchi experiment. The network then determines whether the experimental results
meet the requirements of users. If the results do not meet the requirements of users, the
affecting factor and its level are reselected. If the results meet the requirements of users, the
experiment is concluded. Finally, the malware images are classified into their corresponding
categories.

2.1. Convolutional Fuzzy Neural Network

The architecture of the CFNN of the FT-CFNN is displayed in Figure 2. It comprises
convolution, pooling, feature fusion, and FNN layers. Two convolution layers and two
pooling layers are used in this network. Four feature fusion methods, namely GMP fusion,
GAP fusion, CGMP fusion, and CGMP fusion, are proposed to reduce the feature size and
integrate the network information. To reduce the size of adjustable parameters, an FNN is
used to replace a fully connected network.
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2.1.1. Convolution Layers

The convolutional layers of the CFNN contain multiple convolution kernels. A convo-
lution kernel is used to extract the features of an image by moving it from left to right and
from top to bottom through a sliding action. The inner product operation is performed on
overlapping positions to obtain the feature values for these points.
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2.1.2. Pooling Layers

The main function of a pooling layer is to reduce the size of input image features
and retain only important features. Commonly used pooling operations are of two types:
maximum pooling and average pooling. Maximum pooling is used to determine the
maximum value in a convolutional kernel. Average pooling is used to compute the average
value in a convolution kernel.

2.1.3. Feature Fusion Layer

In this study, four feature fusion methods (GMP fusion, GAP fusion, CGMP fusion,
and CGMP fusion) were used (Figure 3). Figure 3a illustrates the global pooling fusion
method. First, two feature maps are completed, and each feature map (width and height)
is then fused separately. Finally, a feature point is obtained. Figure 3b illustrates channel
global pooling fusion. All channels between feature maps are fused (depth) in this method.
The operations used in the aforementioned methods are of two types: maximum value
operations and average value operations.
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2.1.4. FNN Layer

An FNN combines the logical reasoning of humans and the learning abilities of
neural networks. FNNs have been successfully used in classification systems [30,31].
Figure 4 illustrates the architecture of an FNN, which primarily contains a fuzzification
layer, fuzzy rule layer, and defuzzification layer. Fuzzy rules are inferred using IF–THEN
representations. These rules are expressed as follows:

Rulej : IF x1 is A1j and x2 is A2J . . . and xn is Anj, THEN yj is wj
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In the aforementioned rule, xi is the input, Aij is the membership function, and wj is
the output of the jth rule.

In the fuzzification layer, the Gaussian membership function used by each input
is fuzzified to obtain the corresponding membership values. The relevant formula is
as follows:

µij(x) = exp

(
−
[
xi − mij

]2
σ2

ij

)
(1)

where xi is the input, mij is the mean value, and σij is the deviation.
Subsequently, the AND operation is completed for the attribution values correspond-

ing to each input to obtain the excitation intensity of each fuzzy rule. The most commonly
used AND operations are minimum and product. To facilitate the derivation of the back-
propagation algorithm, the product operation is used in this study. The excitation intensity
of each fuzzy rule is calculated as follows:

Rj =
n

∏
i=1

µij (2)

where µij is the excitation value of each membership function.
Finally, each rule is input into the defuzzification layer to obtain a crisp output. The

relevant formula is as follows:

yk =
r

∑
j=1

Rjwjk (3)

where yk is the kth output, Rj is the excitation intensity of the jth fuzzy rule, r is the number
of fuzzy rules, and wjk is the weight of the jth fuzzy rule and kth output.

2.2. Taguchi Method

The Taguchi method is a statistical method for experimental design. This method is
a low-cost, high-efficiency, and high-quality engineering method. In a complete factorial
experiment design, the number of experiments to be conducted increases as the number of
factors increases. Therefore, an orthogonal array (OA) is developed to analyze the signal-
to-noise (S/N) ratio of various parameter combinations by conducting the least number of
experiments. The S/N ratio is selected as the indicator of quality optimization and is used
to analyze the experimental effect of each factor and level to achieve quality optimization.
In this study, the measured values constitute the experimental evaluation index. When the
measured value is higher, the quality loss is lower. The relevant formula is as follows:

S/N = −10log

(
1/n

n

∑
i=1

1
y2

i

)
(4)

Because orthogonal tables are reliable, they are widely used in several fields [32].
The Taguchi method reduces the required number of experiments to be conducted and
the time required to complete an experiment, thereby reducing engineering costs and
enabling a reliable impact factor to be obtained. From the various types of orthogonal
tables, an appropriate orthogonal table is selected according to the number of factors and
the number of levels. The notation used for orthogonal tables is Lx(yz), where L represents
the abbreviation of the orthogonal table (a Latin square), x represents the number of
experiments, y represents the number of levels, and z represents the maximum number of
factors that can be accommodated.

3. Experimental Results

We designed experiments to evaluate the accuracy of malware image classification with
the developed FT-CFNN. In this section, the source of the dataset is stated, and the selection
of FT-CFNN parameters and the network settings are then described. The Taguchi method
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was used to determine the optimal parameter combination. The experimental results of the
proposed FT-CNN were then compared with those obtained using other methods.

3.1. Dataset

The Malimg dataset, which is a public database obtained from Virus-Share.com, was
adopted in this study. Currently, samples on approximately 47 million types of viruses are
available on this website. A total of 9339 images of 25 types of viruses [33] were used in
this study (Table 1).

Table 1. Numbers of images of various types of viruses adopted in this study [33].

Type Virus Species Number of Images

1 Adialer.C 122

2 Agent.FYI 116

3 Allaple.A 2949

4 Allaple.L 1591

5 Alueron.gen!J 198

6 Autorun.K 106

7 C2LOP.gen!g 200

8 C2LOP.P 146

9 Dialplatform.B 177

10 Dontovo.A 162

11 Fakerean 381

12 Instantaccess 431

13 Lolyda.AA1 213

14 Lolyda.AA2 184

15 Lolyda.AA3 123

16 Lolyda.AT 159

17 Malex.gen!J 136

18 Obfuscator.AD 142

19 Rbot!gen 158

20 Skintrim.N 80

21 Swizzor.gen!E 128

22 Swizzor.gen!I 132

23 VB.AT 408

24 Wintrim.BX 97

25 Yuner.A 800

Total number of images 9339

3.2. Experimental Results Obtained with the CFNN

In the adopted CFNN, four fusion methods (GMP fusion, GAP fusion, CGMP fusion,
and CGAP fusion) are used to perform malware image classification. This network contains
two convolutional layers and two pooling layers, and an FNN is used in it to replace a
fully connected network. Therefore, the CFNN has a small architecture, a small number of
parameters, and a high operation speed. Table 2 presents the learning parameter settings
of the CFNN, and Table 3 presents the network architecture parameter settings of the
CFNN. The test loops of TensorFlow and Keras were used for deep learning in this study.
The parameters of the CFNN were the same in the experiments conducted using the four
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fusion methods. The adopted dataset contained 9339 malware images, 80% of which were
randomly used as the training set, and the remaining 20% of the images were used as the
test set. In the first convolution and pooling layers, the filter size was 32, the size of the
convolution kernel was 3 × 3, and the stride was 2. In the second convolution and pooling
layers, the filter size was 64, the size of the convolution kernel was 3 × 3, and the stride was
2. The feature fusion layer was used to reduce the dimensions of the feature layer. Finally,
the FNN was used for classification.

Table 2. Learning parameter settings of the CFNN.

Image Size 224 × 224 × 3

Epochs 50

Learning rate 0.001

Batch size 64

Image Size 224 × 224 × 3

Epochs 50

Table 3. Network architecture parameter settings of the CFNN.

Layer Kernel Size Number Layer Kernel Size

Convolution_1 3 × 3 32 2 0

Max_pooling_1 2 × 2 - 2

Convolution_2 3 × 3 64 2 0

Max_pooling_2 2 × 2 - 2

Feature fusion - 64 -

Fuzzy Rule Layer - 64 -

DeFuzzify Layer - 25 -

Accuracy was used as the evaluation index of the proposed network. This parameter
is determined as follows:

Accuracy =
(TP + TN)

(TP + FN) + (FP + TN)
(5)

where TP, FP, TN, and FN represent the numbers of true positives, false positives, true
negatives, and false negatives, respectively. Table 4 presents the accuracy achieved with
the four fusion methods. The accuracy values achieved by the CFNN with the GMP, GAP,
CGMP, and CGAP fusion methods were 96.68%, 97.86%, 98.13%, and 97.64%, respectively.
The experimental results indicate that the proposed CFNN achieved the highest accuracy
with the CGAP fusion method.

Table 4. Accuracy of the CFNN with various fusion methods.

Method Fusion Methods Accuracy

CFNN

GMP 97.86%

GAP 96.68%

CGMP 97.64%

CGAP 98.13%

3.3. Experimental Results Obtained with the FT-CFNN

As presented in Table 4, the accuracy obtained with CGAP fusion was higher than that
achieved with the other three fusion methods. Because the network architecture parameters
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could not be easily determined, the Taguchi method was used to determine the impact
factor and optimize the parameter combinations. Therefore, the developed FT-CFNN uses
the CGAP fusion method to apply the Taguchi method.

In the conducted experiment, six factors were selected: Conv1-Filter (F1), Conv1-
Kernel size (K1), Conv1-Padding (P1), Conv2-Filter (F2), Conv2-Kernel size (K2), and
Conv2-Padding (P2). Four of these factors (F1, K1, F2, and K2) are three-level factors, and
the other two factors (P1 and P2) are two-level factors. The affecting factors and their
levels are presented in Table 5. According to the total number of factors and levels in
the experiment, we used the L36 orthogonal table, which is composed of different factors
and levels.

Table 5. Affecting factors and their levels.

No. Abbreviation Affecting Factors Level 1 Level 2 Level 3

A F1 Conv1-Filter 8 16 32

B K1 Conv1-Kernel size 3 × 3 5 × 5 6 × 6

C P1 Conv1-Padding 0 1

D F2 Conv2-Filter 16 32 64

E K2 Conv2-Kernel size 3 × 3 5 × 5 6 × 6

F P2 Conv2-Padding 0 1

The selected three- and two-level factors required 22 × 34 = 324 traditional experiments.
After the Taguchi method was applied, only 36 experiments were required. Therefore, the
Taguchi method reduced the number of experiments required. To ensure the stability of
the experiments, three experiments were performed for each parameter combination in the
OA, and the average of the three accuracy values was used to calculate the S/N ratio, as
presented in Table 6.

Table 6. Accuracy values and S/N ratios for different parameter combinations.

No. F1 K1 P1 F2 K2 P2 Expt. 1
Accuracy

Expt. 2
Accuracy

Expt. 3
Accuracy Average S/N

Ratio

1 8 3 0 16 3 0 0.9791 0.9823 0.9759 0.9791 −0.1836

2 16 5 0 32 5 0 0.9818 0.9850 0.9807 0.9813 −0.1534

3 32 6 0 64 6 0 0.9813 0.9721 0.9818 0.9784 −0.1899

4 8 3 0 32 3 0 0.9786 0.9754 0.9796 0.9779 −0.1945

5 16 5 0 64 5 0 0.9855 0.9807 0.9829 0.983 −0.1487

6 32 6 0 16 6 0 0.9818 0.9796 0.9823 0.9812 −0.1646

7 16 3 0 64 3 0 0.9802 0.9780 0.9764 0.9783 −0.1915

8 32 5 0 16 5 0 0.9778 0.9754 0.9802 0.9778 −0.1951

9 8 6 0 32 6 0 0.9767 0.9695 0.9839 0.9767 −0.2052

10 32 3 0 32 3 1 0.9636 0.9630 0.9657 0.9647 −0.3176

11 8 5 0 64 5 1 0.9711 0.9668 0.9363 0.9581 −0.3755

12 16 6 0 16 6 1 0.9689 0.9802 0.9738 0.9743 −0.2264

13 32 3 0 16 5 1 0.9716 0.9764 0.9614 0.9698 −0.2669

14 8 5 0 32 6 1 0.9813 0.9754 0.9743 0.977 −0.2022

15 16 6 0 64 3 1 0.9673 0.9689 0.9700 0.9681 −0.2759

16 32 3 0 32 5 1 0.9668 0.9673 0.9663 0.9668 −0.2933

17 8 5 0 64 6 1 0.9786 0.9839 0.9818 0.9814 −0.1628
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Table 6. Cont.

No. F1 K1 P1 F2 K2 P2 Expt. 1
Accuracy

Expt. 2
Accuracy

Expt. 3
Accuracy Average S/N

Ratio

18 16 6 0 16 3 1 0.9646 0.9588 0.9689 0.9641 −0.3178

19 8 3 1 64 5 0 0.9813 0.9684 0.9759 0.9752 −0.2185

20 16 5 1 16 6 0 0.9780 0.9818 0.9754 0.9786 −0.1898

21 32 6 1 32 3 0 0.9684 0.9721 0.9770 0.9703 −0.2424

22 16 3 1 64 5 0 0.9762 0.9770 0.9754 0.9758 −0.2092

23 32 5 1 16 6 0 0.9754 0.9732 0.9764 0.975 −0.2199

24 8 6 1 32 3 0 0.9721 0.9796 0.9834 0.9784 −0.1903

25 16 3 1 16 6 0 0.9777 0.9780 0.9775 0.9776 −0.1954

26 32 5 1 32 3 0 0.9788 0.9802 0.9775 0.9788 −0.1857

27 8 6 1 64 5 0 0.9791 0.9668 0.9823 0.9761 −0.211

28 16 3 1 32 6 1 0.9561 0.9614 0.9545 0.9573 −0.3789

29 32 5 1 64 3 1 0.9649 0.9663 0.9636 0.9649 −0.3099

30 8 6 1 16 5 1 0.9689 0.9652 0.9689 0.9677 −0.2855

31 32 3 1 64 6 1 0.9644 0.9625 0.9663 0.9644 −0.3149

32 8 5 1 16 3 1 0.9614 0.9604 0.9695 0.9638 −0.3208

33 16 6 1 32 5 1 0.9759 0.9668 0.9796 0.9741 −0.2283

34 8 3 1 32 6 1 0.9534 0.9738 0.9593 0.9622 −0.336

35 16 5 1 64 3 1 0.9641 0.9679 0.9695 0.9672 −0.29

36 32 6 1 16 5 1 0.9754 0.9780 0.9480 0.9754 −0.2929

The S/N ratio for each factor and level combination was obtained from the results of
the 36 experiments based on larger-the-better characteristic. Table 7 presents the difference
of S/N ratio, significance ranking, optimal level, and optimal parameter combination for
each factor. If the difference value of S/N ratio for each factor was higher, the corresponding
factor had a stronger influence. The significance ranking represents the ranking of the
influence degree of each factor. A higher difference of S/N ratio for P2 indicated that a
factor had a stronger influence (Table 7). The final optimal parameter combination was as
follows: F1 = 16, K1 = 5, P1 = 0, F2 = 16, K2 = 6, and P2 = 0.

Table 7. Results obtained for each factor.

Level F1 K1 P1 F2 K2 P2

1 −0.2405 −0.2582 −0.2258 −0.2382 −0.2517 −0.1938
2 −0.2338 −0.2295 −0.2567 −0.244 −0.2399 −0.2887
3 −0.2494 −0.2359 −0.2415 −0.2322

Difference 0.0147 0.0281 0.03 0.0057 0.0194 0.0937
Significance ranking 5 3 2 6 4 1

Best level 2 2 1 1 3 1
Optimal parameter

combination 16 5 0 16 6 0

The results of analysis of variance (ANOVA) are presented in Table 8, and these results
indicate whether the screened experimental factors are significant with respect to the
experimental results. In Table 8, the degree of freedom is the number of levels minus 1, SS
is the error sum of squares, the size of the F value determines the significance of the factors
affecting the overall experiment, and the contribution degree represents the proportion of



Appl. Sci. 2022, 12, 12937 11 of 14

each factor to the overall experimental results. Table 8 indicates that the factor P2 (i.e., the
padding in second layer) has the strongest influence on and highest contribution to the
experiments.

Table 8. Results of ANOVA.

Factor Degree of Freedom SS F Contribution Rate

Conv1-Filter (F1) 2 0.001479 0.43 1.5%
Conv1-Kernel size (K1) 2 0.005514 1.54 5.6%

Conv1-Padding (P1) 1 0.008557 4.81 8.7%
Conv2-Filter (F2) 2 0.000047 0.01 0%

Conv2-Kernel size (K2) 2 0.002313 0.64 2.3%
Conv2-Paddinjg (P2) 1 0.080943 45.53 81.9%

Error 25 0.044441

Total 35 0.143294 100%

Table 9 presents the optimal parameter combinations obtained using the Taguchi
method. These parameters were set for the FT-CFNN, which was then used for malware
image classification. The accuracy and sensitivity values obtained with the CFNN and
FT-CFNN are presented in Table 10. Experimental results show that the accuracy and
sensitivity of the proposed FT-CFNN with CGAP fusion method are 98.61% and 97.96%,
which are 0.48% and 0.45% higher than CFNN, respectively.

Table 9. Optimal parameter combination for the FT-CFNN.

Layer Kernel Size Number of Filters Stride Padding

Convolution_1 5 × 5 16 2 0

Max_pooling_1 2 × 2 - 2

Convolution_2 6 × 6 16 2 0

Max_pooling_2 2 × 2 - 2

Feature fusion - 64 -

Fuzzy Rule Layer - 64 -

DeFuzzify Layer - 25 -

Table 10. Accuracy and sensitivity values obtained with the CFNN and FT-CFNN.

Method Fusion Method Accuracy Sensitivity

CFNN
CGAP

98.13% 97.51%

FT-CFNN 98.61% 97.96%

3.4. Comparison of the Results Obtained with Various Methods

To verify the effectiveness of the FT-CFNN, we compared its accuracy with the ac-
curacy values reported in other studies [22–27] conducted on the Malimg dataset. In this
experiment, Garcia and Muga II [22], Gao et al. [23], and Nataraj et al. [24] classified mal-
ware images using traditional machine learning methods such as random forest, KNN,
and logistic regression. Although these methods require only a small number of learning
parameters and obtain good malware image classification results (Table 11), the user is
required to define the malware image features in advance. Lin et al. [25], Kalash et al. [26],
and Qi et al. [27] used deep learning technology to obtain good malware image classifi-
cation results. However, these methods require a large number of learning parameters
(Table 11). The experimental results indicated that the proposed FT-CFNN is more accurate
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than the methods used in the previous relevant studies [22–27] (Table 11). Furthermore, the
proposed FT-CFNN requires only 13,609 parameters and achieves 98.61% accuracy.

Table 11. Accuracy values obtained by various methods and the number of parameters required by
these methods.

Methods Fusion Method Accuracy Parameters

Garcia and Muga II [22] 95.62% <1000

Gao et al. [23] 97.95% <1000

Nataraj et al. [24] 97.18% <1000

Lin et al. [25] 97.05% 5,408,561

Kalash et al. [26] 98.52% 134,362,969

Qi et al. [27] 93.37% 555,329

Proposed
method

CFNN

GAP 96.68% 29,209

GMP 97.86% 29,209

CGAP 98.13% 22,681

CGMP 97.64% 22,681

FT-CFNN CGAP 98.61% 13,609

4. Conclusions

In this paper, an FT-CFNN is proposed for malware image classification. This network
comprises two parts: a CFNN and Taguchi-method-based optimal parameter combinations.
Four feature fusion methods (GMP, GAP, CGMP, and CGMP) are proposed for the CFNN
to reduce the feature size and integrate network information. An FNN is used to replace a
fully connected network to reduce the size of adjustable parameters. The proposed CFNN
achieved accuracy values of 96.68%, 97.86%, 98.13%, and 97.64% with the GMP, GAP,
CGMP, and CGMP fusion methods, respectively, for the Malimg dataset. The experimental
results indicated that the CFNN achieved the highest accuracy with the CGAP fusion
method. To reduce the number of experiments for parameter combinations, the Taguchi
method was used to determine the affecting factors and levels. The experimental results
indicated that the accuracy of the FT-CFNN, proposed CFNN, and original LeNet model in
malware family classification was 98.61%, 98.13%, and 96.68%, respectively.

Because the Malimg dataset only contains 9339 images, generative adversarial net-
works can be used in the future to increase the number of images and thus improve stability.
Indicators such as accuracy, sensitivity, and specificity have been widely used by scholars
for comparing the classification and identification performance of deep learning networks.
However, these parameters have different values in each network learning training step;
therefore, the use of a single value or index average to assess a network’s image classifica-
tion performance might lead to inaccurate assessments. Therefore, future research should
address this problem by using statistical methods to define a performance recognition
index. Furthermore, in this study, we only use the existing malware database for analysis
and classification, and do not apply the proposed method to actual cyberattack problems.
Therefore, we will also apply the proposed method to practically any malicious programs
that steal crucial data in future research.
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