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Abstract: In this paper, an energy-management strategy based on fuel economy is presented to
achieve a further range increase for range-extended light commercial vehicles. Estimation of the
energy-management strategy was carried out using a neural-network-based surrogate model for
an range-extended vehicle. Surrogate-based optimization plays an important role in optimization
problems, which are based on complex structures with uncertainties in data sets due to various
conditions. Neural networks have advantages in creating surrogate-based models in cases of complex
problems with uncertainties in data sets to evaluate the process and estimate the outputs. This study
discusses additional power-unit applications and vehicle integration for a light commercial electric
vehicle. It provides preliminary design work and techniques for identifying NVH problems in partic-
ular. SIMULINK and neural-network-based surrogate models are established, and the changeable
parameters of the vehicle, such as mass, battery/fuel-tank capacity, internal combustion engine power
and electric motor power units are simulated in different dynamic and static conditions to determine
an energy-management strategy for a range-extended vehicle based on fuel economy under various
conditions. It was seen that APU parameters and an energy-management strategy significantly
affected the fuel consumption of REX. A neural-network-based surrogate-model approach gave
high-precision results in predicting the operating strategy according to different loading conditions to
reduce fuel consumption. In some cases, it can be required to determine the fuel consumption results
in various conditions with the variables, which may be out-of-boundary conditions. It was seen
that the proposed neural-network-model also offers higher prediction ability in cases of unexpected
results in data sets of various conditions compared to regression analysis. The results show that
estimation and optimization of energy management using a neural-network-based surrogate model
can be achieved by adapting the operating strategy according to different loading conditions to reduce
fuel consumption. This study presents an approach for future new vehicle projects by transforming a
prototype light commercial electric vehicle to REX. The proposed approach was developed to design
the most efficient range-extended vehicle by changing all variables without costly computations and
time-consuming analysis. It is possible to generate variable data sets and to have reference knowledge
for future vehicle projects.

Keywords: range-extended vehicle; energy management; fuel economy; neural networks; surrogate
model

1. Introduction

In recent years, the emission regulations of the European Commission, have become
more challenging in the automotive industry. Reducing CO2 emissions has become increas-
ingly relevant to hybrid and electric vehicles due to the need to reduce fuel consumption.
Although the range capabilities of electrified powertrain-based vehicles (EVs) are lower
than conventional powertrain-based vehicles, electric vehicles are faced with many dis-
advantages, such as driving range, long charging time, short battery life and high prices.
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Despite significant technological improvements, batteries are quite expensive and currently
much heavier than petroleum-based fuels with the same energy content. Zander et al. [1]
worked on different range-extending support systems such as fuel cells, in-use REX and
back-up REX for heavy truck transportation. As a result of the comparison between these
systems, back-up REX is an optimum solution for heavy trucks. ICE is installed on the
electric motor of the battery electric vehicle (BEV) powertrain and the electric machine
works as a generator. The main difference in the present study is the installation of an
independent electric motor working as a generator.

Wu et al. [2] prepared a study to propose a design to extend the range with an
intelligent hydrogen fuel cell range extender for BEVs. According to the proposed design,
the range of the vehicle can be extended by more than 50% for small BEVs and 25% for
large BEVs. The main advantage of the present study was to extend the range of the light
commercial EV by more than 200% with REX. Wahono et al. [3] focused on developing fuel
efficiency and exhaust emissions of engines for the REX in various operating conditions.
The engine data were collected from powertrain-simulator software in order for it to be
used in the vehicle simulator. In the present study, the engine data were collected from the
physical model as experimental test results and transferred to Matlab/Simulink.

There have been many research studies focused on overcoming these limitations,
especially based on battery life, fast charging systems and auxiliary unit applications, to
increase the range and reduce the charging time of electric vehicles [4]. REX are designed
with APU and a small-capacity battery pack as an optional alternative solution to electric
vehicles to overcome range limitations [5].

One of the solutions to the range-anxiety problem is the use of range extenders [6]. EVs
with inbuilt range extenders are currently available. The new models of some automobile
companies are an example of the recent efforts of the automotive industry to bring the range-
extender technology to the EV market. In recent years, the range-extender approach has also
been considered as an interesting solution to solve range problems by many researchers. [7].
Although internal combustion engines are widely used as the range-extender source, there
are many research studies on fuel cell and micro gas turbine applications [2,8]. Tan et al. [9]
worked on a micro gas turbine as a range extender for an electric vehicle. Experimental
and simulation data were obtained as a result of this study. The peak shaft power of the
micro gas turbine was measured as 9.5 kW. In the present study, the maximum back EMF
obtained from the ICE was 8 kW. Tran et al. [10] investigated five different hybrid models
by using Matlab/Simulink in order to find the best performance for fuel consumption and
emissions. As a result of the simulations, one powertrain design was found to achieve
the best performance. The design was a P4 hybrid powertrain, which had a 2.5 L engine
with a 150 kW electric motor and a 133 kWh battery pack. The study was not about
REX, but it included a similar approach to the present study for Matlab/Simulink models.
Borghi et al. [11] presented a comparison between the 2-stroke and 4-stroke engine. The
2-stroke engine was 35% lighter and mechanical loads 40% lower than the 4-stroke engine.
However, the emission level of the 2-stroke engine should be improved with the help
of an after-treatment system. Li et al. [12] worked on a REEB (range-extended electric
bus) to extend driving ranges and reduce internal combustion engine fuel consumption.
There are two principal driving control modes: blended (BL) and charge-depleting/charge-
sustaining (CD-CS). A charge-depleting/charge-sustaining (CD-CS) driving control has
been commonly used in a range-extended electric vehicles (RE-EVs). However, the CD-CS
mode can decrease the fuel efficiency in case of the system efficiency is low.

It was seen that the vehicle mass plays an important role in designing range-extended
vehicles and determining the energy-management strategy in the case of light commercial
vehicles. Total vehicle mass is variable due to various loading conditions, especially in
light commercial vehicles. Load values in light commercial vehicles can frequently change
during the day. Vehicle weight is a crucial parameter for the range of electric vehicles.
Therefore, there are variations in the power consumption of the vehicle. In this research,
we aimed to produce the electrical power corresponding to the consumed power with
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the lowest fuel consumption under various loading conditions. Rolling resistance and
acceleration resistance change depend on the vehicle total mass. For this reason, power
consumption will be different according to the load of the vehicles. Power consumption
and range can be simulated and calculated depending on variable loads to optimize vehicle
ICE operation points to reduce fuel consumption and increase the range of the vehicle.

Estimation of parameters of sub systems is often difficult in practice and necessitates
expensive sensors, monitoring and control. Therefore, the estimation and optimization
of energy-management strategies has become an expanding research area for hybrid and
electric vehicles [13].

Jingfu et al. [14] compared dynamic programming (DP) and the δSOC control strategies
on the Harbin urban bus driving cycle. The analysis showed that the δSOC strategy was an
ideal energy-management strategy for REX. You [15] focused on a driving control strategy
for a REX, in which both route information and the driver’s characteristics were included.
The route information was collected, according to the target route, in order to obtain the
optimal engine on/off threshold power. A linear regression model was obtained and
considered in route-based control (RBC). Chen [16] focused on three types of strategy—
thermostat control strategy (TCS), power-follower control strategy (PFCS) and equivalent-
consumption-minimization strategy (ECMS). As a result of 12 NEDC cycles. ECMS had
the best SOC tracking performance among these controls. A comparative study and
validation of state estimation algorithms for battery-management systems were determined
for model-based estimation algorithms. It was shown that a simple estimation method
with Kalman-based methods required less computational time and memory usage [17].
Mark et al. [18] focused on cell balancing of the battery as a main function of the battery-
management system. Different battery-management systems were investigated to increase
the life of the battery.

Although there are many studies on range-extended vehicles, to the best of our knowl-
edge, neural-network-based prediction models have not been widely researched. Further
work is needed to apply artificial-intelligence techniques in the case of range-extended-
vehicle design to predict response variables. In this research, an energy-management
strategy based on fuel economy is presented to achieve further range increase and to esti-
mate the parameters of sub systems for the range-extended light commercial vehicle under
variable loads to reach the targeted range using an artificial neural network. The power
consumptions were calculated under different load and speed conditions and also within
unexpected cases of various data. Optimum fuel consumption values were also computed
according to the different power values produced by the generator.

Simulink- and neural network-based surrogate models were established, and the
changeable parameters of the vehicle, such as mass, battery/fuel-tank capacity, internal
combustion engine power and electric motor power units were simulated at different
dynamic and static conditions in order to determine an energy-management strategy for a
range-extended vehicle based on fuel economy under various conditions. Surrogate-based
optimization played an essential role in the optimization problems, which were based
on complex structures with uncertainties in data sets due to various conditions [19,20].
Neural networks have advantages in creating surrogate-based models in case of complex
problems with uncertainties in data sets to evaluate the process and estimate the outputs.
The main objective was to increase the efficiency of the engine and decrease the fuel
consumption using 1D analysis, experimental tests and Levenberg–Marquardt neural
network algorithms to define the surrogate model. It was seen that APU parameters and the
energy-management strategy significantly affected the fuel consumption of range-extended
vehicle. The results show that the estimation and optimization of energy management
using a neural network-based surrogate model can be achieved by adapting the operating
strategy according to different loading conditions to reduce fuel consumption.
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2. Design of Range-Extended Vehicle and Energy-Management System

The range-extender (REX-type series hybrid vehicle) is one of the best examples of im-
proving the range capability of conventional engines. Additional power-unit applications
are used for powertrain systems to improve the range capability. Estimation and optimiza-
tion of energy-management strategies are important topics for range-extended vehicles.
The range capability is directly affected by the optimization of energy management. In
literature, modeling and experimental investigations, the layout and design of engines have
been investigated for range-extender applications [21,22]. A comprehensive overview of
the hybrid-electric vehicles is given for the powertrain configurations, powertrain control
techniques and electronic control units by Bayindir et al. [23]. Internal combustion engines
are examined in terms of their acoustic behavior when used as range extenders [24]. Range-
extender concepts, regarding small engine technologies, designs and implementation of
battery-management systems, are evaluated with alternative concepts for the application
in a range-extended vehicles [25]. The internal combustion engine, generator and inverter
are integrated into a pure electric vehicle in order to transform the vehicle from EV to
REX [23,26].

There is a need for experimental investigations due to the structure and load change
to determine auxiliary power unit (APU) performances with specific NVH characteristics,
especially to achieve low NVH applications [27–29]. In this study, the NVH performance of
the internal combustion engine was evaluated first as single-cylinder engines work noisily.
Data sets were obtained from a system consisting of a prototype light commercial electric
vehicle for the design of a range-extended vehicle. In the first stage, the noise and vibration
levels were determined by the NVH tests. According to NVH tests, the maximum engine
speed for an acceptable noise level is determined as 3000 rpm. In the experimental tests
at 3000 rpm engine speed, it was determined that the engine knocked above the 8 kW
generator back-emf value. Therefore, the APU boundary operating points were determined
as the maximum 3000 rpm engine speed and maximum 8 kW back EMF of the generator.

According to these boundary conditions, the fuel consumption of the engine was
measured and the experimental fuel consumption value obtained. Many researchers have
presented a minimum level of discharging of around 20% and a maximum level of charging
between 80% and 90% [30]. Batteries of electric vehicles process usually with a SOC ranging
from 10% to 90% and at a temperature ranging from −25 ◦C to 60 ◦C [16].

In this study, battery SOC was a minimum at 10% and a maximum of 90%. The
capacity of the light commercial prototype vehicle battery was 21 kWh. Due to the vehicle
having a low-capacity battery, the blended mode was determined as a battery management
strategy. The vehicle did not have enough electric power to sustain high speeds and high
weights without the help of the internal combustion engine. For this reason, when the
battery SOC dropped below 80%, the APU must be ON in order to sustain the power. The
maximum load capacity of the vehicle was 400 kg. For light commercial vehicles, load
and speed values may vary during the day. For this reason, simulation results are needed
according to different load and speed values.

For commercial vehicles carrying variable loads, larger batteries must be used since
EV mode and APU have to work together. However, this is not possible due to high battery
costs. Power demand is variable and it must be covered. Therefore, it is important to
choose the appropriate engine for future projects and to estimate the operating strategy for
different loading conditions to reduce the fuel consumption of the REX.

In order to transform the prototype light commercial electric vehicle from EV to REX,
a one-cylinder 44 hp ATV engine and generator were integrated into the vehicle as APU,
as shown in Figure 1. The new total weight of the prototype vehicle was 1690 kg (with a
driver, no load).
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According to NVH tests, the highest speed at which the internal combustion engine
could operate comfortably was determined as 3000 rpm. Microphones were placed on
sound source location in order to measure noise level, as shown in Figure 2.
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As a result of the NVH tests, the noise levels measured on the left side of the engine
were 83.01 dB (decibel) at 1200 rpm, 83.65 dB at 1500 rpm, 86.49 dB at 2000 rpm and 93.06 dB
at 3000 rpm, as shown in Figure 3.
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For the right side of the engine, the noise level is measured was 83.49 dB at 1200 rpm,
84.89 dB at 1500 rpm, 86.85 dB at 2000 rpm and 92.17 dB at 3000 rpm, as shown in Figure 4.
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For the upper side of the engine, the noise level is measured as 78.14 dB at 1200 rpm,
79.95 dB at 1500 rpm, 82.83 dB at 2000 rpm and 88.72 dB at 3000 rpm, as shown in Figure 5.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 23 
 

For the right side of the engine, the noise level is measured was 83.49 dB at 1200 rpm, 
84.89 dB at 1500 rpm, 86.85 dB at 2000 rpm and 92.17 dB at 3000 rpm, as shown in Figure 
4. 

 
Figure 4. Engine right-side noise level at constant rpm. 

For the upper side of the engine, the noise level is measured as 78.14 dB at 1200 rpm, 
79.95 dB at 1500 rpm, 82.83 dB at 2000 rpm and 88.72 dB at 3000 rpm, as shown in Figure 
5. 

 
Figure 5. Engine upper-side noise level at constant rpm. 

The power−torque curve of the internal combustion engine is shown in Figure 6. Ac-
cording to the power curve, the engine produced maximum horsepower at 7000 rpm and 
maximum torque at 6000 rpm. 
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The power−torque curve of the internal combustion engine is shown in Figure 6.
According to the power curve, the engine produced maximum horsepower at 7000 rpm
and maximum torque at 6000 rpm.

As a result of NVH tests, 3000 rpm was determined as the maximum speed of the
ICE, and all simulations has to be performed with that boundary value. It was seen that
due to the very noisy and vibrating operation of the selected engine, the engine could not
be operated at high speeds. For this reason, high energy could not be obtained from the
generator. Due to the low battery capacity, it was not possible to charge the battery by going
into electric mode for a long time and then starting the engine. Therefore, a charge-depleting
(CD)/charge-sustaining (CS) strategy was not applicable for this vehicle. Normally, the
targeted situation is to drive the vehicle with electrical energy, which is cleaner energy. But
the prototype vehicle used in this study could not fulfill this requirement. The EV mode
and APU had to work together. For commercial vehicles carrying variable loads, larger
batteries must be used. Therefore, it is important to choose the appropriate engine for
future projects and to estimate the operating strategy for different loading conditions to
reduce the fuel consumption of Rex.
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3. Modeling of APU and Range-Extended-Vehicle Control: Simulation Model

An ICE, generator and inverter are placed in the cargo area of the vehicle for APU
unit, as shown in Figure 7. All mechanical and electrical connections were structured on
the light commercial electric vehicle.
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Experimental fuel consumption values were obtained from fuel-consumption tests.
The fuel-consumption monitoring device and the experimental setup are shown in Figure 8.
The test device consisted of an analog signal receiver with a display and an apparatus that
measured the fuel flow. The fuel flow meter was mounted on the fuel pipe of the engine.
The apparatus was mounted between the fuel pump and the fuel injector and all of the
measured fuel gave the fuel consumption value as L/h (liter/hour). Fuel consumption
data is displayed with the help of a monitoring device.

The reverse engineering method was used to determine the placement on the vehicle
on the 3D data, and the ATV engine and its components were scanned, modeled and
transferred to the virtual environment, as shown in Figure 9. In this way, the current
situation was observed and necessary actions determined before physical modifications on
the electric vehicle.

The parts were modeled by scanning in detail after the ATV disassembly. In this
way, virtual verifications to determine the placement on the vehicle could be made on a
component basis. In addition to the internal combustion engine, the fuel tank, radiator, fan,
exhaust pipe and carcass were among these components.
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In order to create the range-extender operating system, the following control chart
was created considering that the internal combustion engine, generator and battery charge
status would provide input as the main parameters, as shown in Figure 10. In the next stage,
the operating strategy of the internal combustion engine will be determined depending on
the state of charge by determining the parameters on this scheme. In addition, optimization
work will be carried out in order to provide optimum working conditions to tolerate the
variations in driving style and consequently in electricity consumption.

All parameters were taken from the vehicle and transferred to SIMULINK, as shown
in Figure 11. The boundary conditions of the ICE such as maximum rpm of the ICE and
maximum value of the generator back EMF were determined with the help of NVH tests.

There are many variables that affect the range of the vehicle, such as battery capacity,
rolling resistance of the tires, aerodynamic coefficient and total vehicle mass. Another
important point is the reduction of the power demand of the vehicle. The aerodynamic
coefficient of the vehicle and tire specification can be changed in order to reduce air
resistance and rolling resistance to design the most efficient vehicle by making changes on
all variables.
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In order to calculate power requirement of the vehicle in variable conditions, the
following equations are used to design the simulation model. The road load can be
formulated, as given below [32]:

Fw = Fro + Fs f + Fad + Fcr (1)

The rolling resistance force Fro related to flattening of the tire on the road contact
surface can be expressed, as given below:

Fro = µmgcosα (2)

The rolling resistance can be reduced by increasing the tire pressure. The friction force
can be expressed, as given below:

Fs f = kAV (3)

Aerodynamic drag, Fad, is the viscous resistance of air acting on the vehicle, as given below:

Fad =
1
2
ξ Cw A f (V + V0)

2 (4)

The climbing resistance and the downgrade force can be expressed as given in
Equation (5). The positive processing sign is for the climbing resistance and the nega-
tive processing sign is for the downgrade force, as given below:

Fcr = ±mg sinα (5)
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The tractive force is provided by the electric motor to overcome the road load in EVs
and the equation of motion is as follows:

kmm
dV
dt

= F − Fw (6)

km = 1 +
ηi2 jm + 2jw

mR2 (7)

Vehicle specifications were transferred to Matlab/Simulink in order to generate new
data on the simulation model, such as vehicle mass, aerodynamic coefficient, tire specifica-
tions and fuel-consumption data, as shown in Figure 12. Variable input parameters were
defined as vehicle mass, vehicle speed and back EMF of the generator.

The inputs of the constant and variable parameters in each of the vehicle dynamics
equations were made into a block diagram, as shown in Figure 13.

Tire specifications, aerodynamic coefficient, gear ratio, vehicle mass, fuel tank capacity
and all other parameters are included in block diagram. The NEDC driving cycle is
referenced to understand that the simulation model gives correct results as shown in
Figure 14.

When the Rex runs under NEDC driving cycles, it is always expected that the battery
SOC will be reduced to the threshold at the end of the driving cycles [33]. In this study,
firstly, based on the NEDC driving cycle, the range of the electric vehicle was calculated
with the help of simulation model with battery power only. As a result of one NEDC driving
cycle in the simulation model, 2.05 kWh energy consumption was calculated. Considering
that one cycle is approximately 11 km, the range in EV mode was calculated as 118 km
according to the current battery capacity, as shown in Figure 15a. The simulation model
result was very close to experimental test result of the EV vehicle. As a result, it was proven
that the simulation model worked correctly. It is possible to work with all driving cycles
with the simulation model. The sensitivity of the model has been verified by comparing
the experimental data with the simulation results using the experimental data according to
the NEDC cycle.

When the internal combustion engine was running at a constant 3000 rpm and the
generator was loaded with 8 kW back EMF, the vehicle’s range was calculated as 365 km
when all 17 L fuel and battery capacity was used, as seen in Figure 15b. The accuracy of
the model was confirmed as a result of the verification with reference to a standard cycle.
However, for a light commercial vehicle in which conditions of use and load status are
constantly changing, more variables need to be predicted. Therefore, an artificial neural
network (ANN)-based surrogate model approach was applied in order to predict data for
fuel consumption and battery SOC. Input data was generated using LHS (Latin hypercube
sampling) within determined boundaries for 1D analysis on SIMULINK.

Output parameters were defined as fuel consumption and remaining SOC of the bat-
tery. The boundary conditions of the variables to be entered as input to the Matlab/Simulink
model are given in Table 1.

Table 1. Boundary conditions of Matlab/Simulink model.

Boundary Conditions Value

Vehicle speed 10–110 km/h
Total mass 1690–2090 kg

Generator Back EMF 4–8 kW
Battery SOC 10–90%
Engine speed ≤3000 rpm

Fuel tank 17 L
Battery capacity 21 kWh
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4. Results

In this study, a prototype light commercial range extended electric vehicle design
was studied to estimate energy-management strategy and achieve the minimum fuel
consumption also considering NVH targets. Experimental tests were carried out according
to the maximum 3000 rpm engine speed, it was seen that the engine ran with knocks
above 8 kW back EMF of generator. For this reason, the maximum back EMF of the
generator was determined as 8 kW. Experimental fuel-consumption tests were performed
with these boundary conditions. All boundary conditions and test results were transferred
to Matlab/Simulink model together with the other specifications of the vehicle. The light
commercial vehicle was driven at different loads and speeds during the day as it was
necessary to run simulations according to different values. Therefore random samples were
run in the simulation model with the help of the Latin hypercube samples (LHS) method to
obtain various data [34]. The fuel consumption and battery charge status values obtained
as a result of the simulations run at a range of 150 km are shown in Table 2.
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Table 2. Data samples generated with LHS method.

Input Output

LHS No Vehicle Speed (km/h) Total Mass (Kg) Generator Back EMF(kW) Remaining State of Charge Fuel Cons. (L)

1 80.7 1813.8 7.4 86% 6.02
2 53.0 1740.7 4.8 90% 6.65
3 15.4 1981.9 4.2 88% 3.83
4 77.6 2087.3 7.9 90% 6.31
5 40.2 1935.5 4.1 90% 6.30
6 55.6 1728.5 4.3 89% 6.60
7 30.4 1712.6 5.4 90% 3.26
8 34.3 1791.9 7.0 87% 2.49
9 37.1 1859.3 5.6 88% 3.51
10 97.2 1907.1 5.9 56% 5.58
11 76.5 2003.9 5.2 75% 6.31
12 44.3 1827.2 6.1 87% 3.48
13 86.4 2073.7 6.8 73% 5.99
14 101.9 2025.5 4.6 40% 5.46
15 108.6 2014.5 4.4 30% 5.26
16 23.7 2048.5 7.2 86% 2.22
17 12.3 1714.7 7.5 90% 1.95
18 93.4 1758.6 5.1 57% 5.62
19 104.2 1972.6 5.9 46% 5.37
20 23.0 1965.1 6.2 87% 2.61
21 91.7 2040.5 7.6 72% 5.80
22 47.4 1771.7 5.6 88% 4.22
23 17.5 1897.4 7.9 88% 1.91
24 28.2 1805.4 7.2 88% 2.26
25 72.0 2067.2 6.4 88% 6.53
26 61.9 1918.9 4.9 88% 6.73
27 65.0 1946.9 6.5 93% 6.13
28 89.7 1879.9 6.6 70% 5.78
29 58.2 1869.3 5.0 90% 6.76
30 66.9 1843.5 6.8 90% 5.70

Farmann and Saurer [35] presented a comprehensive review of on-board state-of-
available-power prediction techniques for lithium-ion batteries in electric vehicles. An
ANN was used to estimate the state of charge for battery voltage prediction, SOC estimation
was taken into consideration with neural networks and bias correction techniques for the
battery degradation by some authors [36–38]. State-of-charge estimation of batteries using
deep neural networks were given with machine learning approach by Chemali et al. [39].
Energy-management systems were also introduced using neural networks [40,41].

In this study, estimation of the energy-management strategy was carried out using a
neural-network-based surrogate model based on fuel economy under various conditions.
The surrogate model based on neural network was structured with input, hidden and
output layers, as shown in Figure 16 [42]. The feedforward neural network (FNN) is a
widely used algorithm. Any nonlinear continuous function may be approximated precisely
using a three-layered feed-forward neural network [43,44].

The surrogate-based method is usually used to evaluate the processes, especially if
the model is designed with costly simulations and physical experiment tests [19,45]. In
this study, neural-network-based surrogate model was constructed to solve the data fitting
of a range-extended vehicle since NN has the advantage of providing better estimations
in process parameters [20,46,47]. The Matlab tool was used to create and train the neural
network model with the following three main steps [6]:

1. Input and output variables are defined and data is imported to train NN model;
2. Data is split into parts with training, validation and test sets;
3. NN model is trained with LM and BR algorithms based on Pearson correlation

coefficient and mean square error.
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The Levenberg−Marquardt (LM) algorithm was used to train the ANN model with
75% of the data set. The rest of the data set was taken into account in the validation and
testing process. In this research, the data was divided into subsets using the hold-out
method for testing, validation and training [42]. This technique is usually used if the data
set is small, such as 30 data. In this study, 75%, 15% and 10% of data was used for training,
validation and testing.

The R-values were computed as training: R = 0.994, validation: R = 0.925 and test:
R = 0.989 for 30 times simulation results, as shown in Figure 17. In order to be close the
R-value to 1, the number of simulations can be increased to 90 times. The present neural
network architecture has a minimum R-value of 0.99. The results of the vehicle simulation
test and NN predicted results are given in Table 3. The neural network model has high
predictive ability.
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Table 3. Vehicle simulation test and ANN predicted results comparison.

Simulation Results Fuel Cons. (L) ANN Results Fuel Cons. (L) Error%

6.02 5.99 0.00
6.65 6.04 0.09
3.83 3.72 0.03
6.31 6.30 0.00
6.30 6.28 0.00
6.60 6.42 0.03
3.26 3.29 −0.01
2.49 3.36 −0.35
3.51 4.12 −0.17
5.58 5.79 −0.04
6.31 6.28 0.00
3.48 3.44 0.01
5.99 6.86 −0.15
5.46 5.40 0.01
5.26 5.38 −0.02
2.22 2.70 −0.22
1.95 1.95 0.00
5.62 5.65 −0.01
5.37 5.39 0.00
2.61 2.58 0.01
5.80 6.08 −0.05
4.22 4.45 −0.05
1.91 1.89 0.01
2.26 3.00 −0.33
6.53 6.48 0.01
6.73 6.99 −0.04
6.13 6.12 0.00
5.78 5.77 0.00
6.76 6.07 0.10
5.70 5.47 0.04

MLR models were used to define the relationship between the input data set and
output variables with regression function. They are widely used to predict the responses of
variables in case of various input data sets using regression function [48]. In this study, NN
and MLR were used to predict the fuel consumption response for the required specifications.
The MLR prediction performance is shown in Figure 18. R-values for RMSE and R-squared
were 0.52 and 0.90 and the accuracy of the prediction model was lower than ANN model.
ANN gave better and more accurate results compared to regression-based methods due to
its ability to learn from previous situations. A comparison of the response-variable results
for each method is given in Table 4. It can be seen that ANN prediction-based model is a
better approach to predicting the response variables compared to the MLR regression-based
model especially in case of various conditions.

It was shown that when the battery SOC dropped below 80%, the APU started in order
to sustain the power. The effects of the vehicle speed, generator back EMF and weight
on the fuel consumption and remaining battery SOC level can be seen in Figure 19. The
values of the vehicle speed, generator back EMF and weight were defined as “normalized
value” on the abscissa from 0 to 1. As the vehicle weight increased, the power requirement
increased due to the increasing of rolling resistance. Since the battery SOC drops faster, the
APU must be started in early kilometers of the total distance. At the end of 150 km distance,
when the weight of the vehicle increases at constant speed, fuel consumption increases.
As the vehicle speed increases, the air resistance increases, so the power requirement also
increases. In order to supply this required power, the generator back EMF is increased. In
this case, the engine is loaded and fuel consumption increases.
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Table 4. Comparison of Simulation, ANN and MLR results to predict the responses.

Vehicle Speed
(km/h) Total Mass (Kg) Generator Back

EMF (kW)
Simulation Results Fuel

Cons. (L)
ANN Results
Fuel Cons. (L)

MLR Results
Fuel Cons. (L)

ANN
Error%

MLR
Error%

120 2200 10 4.94 4.78 4.71 0.032 0.046
130 2400 13 4.72 4.81 4.09 −0.019 0.133
140 2500 15 4.5 4.67 4.04 −0.037 0.102

In some cases, it can be required to determine the fuel consumption results in various
conditions with the variables, which may be out-of-boundary conditions. There is a need to
predict the outcomes in case of out-of-boundary and various conditions. In these cases, the
NN model may act efficiently to predict the results since NN can learn from previous cases.

The results of three simulation and NN prediction tests were obtained for the variables
due to out-of-boundary conditions, as given in Table 4. It can be seen that the proposed
neural network model also has high predictive ability in the case of out-of-the boundary
conditions as compared to regression analysis.
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In this way, predicted values can be obtained with the ANN method in cases of
out-of- boundary conditions in future projects. It can be stated that prediction of an energy-
management strategy using a neural-network-based surrogate model can be achieved by
adapting the operating strategy according to different loading conditions to reduce fuel
consumption for REX.

5. Conclusions

In this research, an approach based on a NN-based surrogate model was developed for
new vehicle projects by transforming the prototype light commercial electric vehicle to REX.
The proposed approach was developed to design the most efficient range-extended vehicle
by changing all variables without costly computations and time-consuming analysis. The
results show that the estimation of energy management using a neural-network-based
surrogate model can be achieved by adapting the operating strategy according to different
loading conditions to reduce fuel consumption. It is possible to start the optimization after
an acceptable neural-network-based surrogate model has been developed.

The neural-network-based surrogate model approach gave high precision results,
as presented in the above Results section, to predict the operating strategy according to
different loading conditions to reduce fuel consumption without further need for costly
computations and time-consuming analysis. The results also showed that APU parameters
and an energy-management strategy significantly affect the fuel consumption of REX. It was
seen that the present approach helps to generate variable data sets and to have reference
knowledge for future vehicle projects.

It can be required to determine the fuel consumption results in various conditions
with the variables which may be out-of-boundary conditions. The proposed NN approach
is also preferable in estimating the outcomes in case of uncertainties in data sets without
the need for design space evaluations as in the regression method. The results showed
that the NN model is a better approach to predict the response variables compared to
MLR regression-based model, especially in case of various conditions within unexpected
input data cases since NN can learn from previous cases. It may act efficiently in cases
of estimations for new data sets under various conditions. This plays an essential role in
evaluating the processes and defining the operating strategy according to different loading
conditions to reduce fuel consumption for REX.
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Factory Bursa, Türkiye, which offered its software and hardware infrastructure.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

F Tractive force
Fw Road load
Fro Rolling resistance force
Fs f Stokes friction force
Fad Aerodynamic drag force
Fcr Climbing and downgrade resistance force
µ Tire rolling resistance coefficient
m Vehicle mass
g Gravitational acceleration constant
α Grade angle
kA Stokes coefficient
V Vehicle speed
V0 Head-wind velocity
ξ Air density
Cw Aerodynamic drag coefficient
A f Vehicle frontal area
km Rotational inertia coefficient
jm Electric motor inertia
jw Wheel inertia moment
R Wheel radius
ANN Artificial neural network
REX Range extender
BEV Battery electric vehicle
NVH Noise, vibration and harshness
APU Auxiliary power unit
EV Electric vehicle
REEB Range-extended electric bus
CD Charge-depleting
CS Charge-sustaining
BL Blended
SOC State of charge
RE-EV Range-extended electric vehicle
ICE Internal combustion engine
DP Dynamic programming
RBC Route-based control
FNN Feedforward neural network
TCS Thermostat control strategy
PFCS Power-follower control strategy
ECMS Equivalent-consumption-minimization strategy
NEDC New European driving cycle
UDC Urban driving cycle
EUDC Extra urban driving cycle
LM Levenberg−Marquardt
EMF Electromagnetic field
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LHS Latin hypercube samples
ATV All-terrain vehicle
MSE Mean-squared error
Fig Figure
LCV Light commercial vehicle
MLR Multiple linear regression
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