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Abstract: Recently, many farmers have started using robots to help with labour-intensive harvest-
ing operations and deal with labour shortage that was also a negative consequence of the recent
COVID-19 pandemic. Intelligent harvesting robots make farming more efficient and productive.
However, and like any other technology, intelligent harvesting robots come with a security risk,
as threats can damage the robotic system and wreak havoc before the farmer/operator realizes it.
This paper focuses on analysing the threats against the security of harvesting robots alongside with
the safety implications that may rise if the robotic system is compromised. We analysed an actual
asparagus harvesting robot and looked at others in the literature. We identified several security
threats which we classified into five categories: network, hardware, software, Artificial Intelligence
(AI) and cloud security issues. We selected three interesting attack scenarios for a deeper analysis.
Our results suggest that these robots have a large attack surface that can lead to exploits with immense
financial and operational impacts.
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1. Introduction

In the last few years, there has been a growing effort to deploy robots in our envi-
ronment to perform our daily tasks. From assistance and entertainment robots used in
homes [1], to those working in assembly lines in industry [2] and all the way to those
deployed in military [3] and professional facilities. For industrial applications, data show
that the operational stock of industrial robots has tripled over the past decade, with more
than three million robots in use across various industries [4]. In agriculture, robots are
used due to their efficient and increased performance in reducing manpower and resource
consumption [5]. This is interesting as worker shortage became a significant issue with
COVID-19: travel restrictions, lock-downs and soaring wage costs pushed many farmers to
turn to machines as an alternative, as is the case in Italian vineyards [6].

This increased reliance on agricultural robots in the post-COVID-19 era comes with
security implications that need to be considered. On one hand, while there has been a
decent effort in the research community to assess security in robotics [7,8], data show that
there is still work to be conducted in this area. A recently published technical report about
adversarial activity per section in 2021 [9] shows that most security researchers focus on
assessing vulnerabilities in websites (96%), APIs (50%) and android (29%) amongst other
technologies. On the other hand, existing research only looks at security in robotics on
a general setting deployed in a general environment. While this will certainly lead to
identifying threats, the complexity and impact of each threat varies from one environment
to another. In other words, the same vector will have a significantly different impact
if the targeted robot is used to carry out teleoperated surgical operations compared to
another used for manufacturing [10]. Finally, research in intelligent farming tends to focus
more on physical threats, IoT threats and, more generally, threats against information
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and communication technologies without considering the presence of intelligent robots
in this ecosystem [11]. This paper examines the security threats to intelligent harvesting
robots while considering all the key components involved in this operation. It presents the
following main findings:

• an overview of the key components of intelligent harvest architecture and an in-depth
analysis of safety and security challenges;

• presentation of potential adversarial scenarios as use cases that link between sys-
tem vulnerabilities, AI-specific vulnerabilities and hardware challenges in intelligent
harvesting robots;

• an assessment of the potential impact of the identified use cases from an operational
and financial perspective.

The remainder of this paper is structured as follows: Section 2 examines the related
work of the security and safety issues of robots in other fields. In Section 3, we present
the architecture of intelligent harvesting robots with the key components. In Section 4, we
present the identified security and safety threats in robots used in intelligent harvesting.
Finally, we conclude the paper in Section 6.

2. Related Work

Security and safety has always been an important factor to consider when using
robots in any field. The aim of security is to protect the assets and services in the robotic
environment from disruption, theft, or exploitation by unauthorized users. Safety on the
other hand focuses on protecting the workeres around the robots, particularly employees
who interact with a robot during programming, maintenance, testing, setup or adjustment.
It is important to note that while employee safety is the main concern, robots are just as
much a danger to a business’s bottom line as they are to workers. Although in research,
there has been much more interest in safety than security to reduce incidents that can
lead to serious injury or even devastating results such as loss of human lives, many
researchers have begun to investigate more incidents caused by malicious attacks as they
represent a very challenging issue [12,13]. Hacking and controlling robots usually result in
serious economic and financial losses, but the impact depends on the task at hand and the
environment in which the robot operates.

In medical fields for example, some attacks can evade robot security controls to cause
unexpected and sudden robot behaviors. This is dangerous for robots used to perform
surgery, as it can cause patient injury, robot damage, or system unavailability in the middle
of the surgery [14]. Although safety measurements are important for all types of robots, the
problems and solutions are different. For example, safety in industrial robots is acheived
via keeping humans out of the robot’s workspace. However for surgical robots, the surgical
team enter the workspace and physically interact with the robot that is also attached to the
anesthetized patient [15]. This difference in the environment can also contribute to early
detection by only focusing on certain physical features and the behaviour of the robot [16].

In another robot application, attacks on home-based robots can have a significant
impact on user privacy and safety. Attackers can use hacked robot’s cameras and
microphones to spy on family members [17]. The link between home-based robots and
voice-based assistants such as Alexa or Siri further widens attack surface, as the latter also
poses security and privacy concerns [18]. If the robot can talk or allow an attacker to talk
through its speaker, it could tell voice-based assistants to unlock doors and disable home
alarms to allow burglars free access, which also raises a safety concern.

Industrial robots are generally larger, more powerful and have a precise movement.
Due to these characteristics, attacks against industrial robots can have more dangerous
scenarios with direct safety implications [19]. The authors in [20] highlighted four main
threat scenarios that have impact on the accuracy, integrity and safety requirements of
industrial robots. Moreover, the financial impact is on a large scale. Building industrial
robots is more expensive and the loss will be more drastic if the number of compromised
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robots is high. Disruption of production due the unavailability of robots will also lead to
huge financial losses.

Note that all research in security of intelligent agriculture tends to focus more on
physical threats such as weather conditions and climate change [21] and threats against IoT
and heavy machinery connected online [11]. Other researchers focused on robotic security
deployed in general setting [22], but no work has been conducted on the security and safety
of intelligent harvesting robots. The authors in [23] claims that threats against robotics, IA
and IoT can lead to disaster in crop harvesting which would lead to food shortage. In this
work, we examined an actual robot for harvesting asparagus. As a result, we managed to
identify safety and security issues of agricultural robots used for intelligent harvesting. The
document begins by analyzing the environment in which the intelligent harvesting robot
operates, then identifies and analyzes the security threats. Table summarizes the related
work discussed in this section.

Table 1 summarizes the related work discussed in this section.

Table 1. Summary of related work.

Reference Description

[12]
Highlights bot security threats, including communication and software.
The authors claimed that there was not enough effort to prepare cyber-
safe robots.

[13]

The authors performed a security vulnerability analysis of programmable
robotic systems written in java and python and reported the main secu-
rity findings. The work indicates that traditional access control systems
cannot detect recent vulnerabilities or defend against the latest evolv-
ing cybersecurity and physical attacks on the availability, integrity and
confidentiality of robotic systems.

[14]

The proposed work demonstrated cyber-physical attacks on the control
system of surgical robots in the event when the attacker is able to install
a malware to strategically inject faults into the control system at critical
junctures during surgery. The results suggest that successful attacks can
cause sudden jumps and unpredicted behaviours on surgical robots.

[15]

The paper proposes a safety design approach for computer-assisted
surgery systems after performing a risk assessment to identify potential
hazards. At the end, the authors proposed safety strategies to follow
to prevent injury even in the event of component failures of computer-
assisted surgery systems.

[16]

This paper investigates how a cyber-attack on a rescue robot can ad-
versely affect its operation and impair an emergency response operation.
They launched several attacks and analysed the behaviour of the rescue
robot. Results suggest that using physical indicators can contribute to
early detection and decision making.

[17]

Authors analysed the cyber security problems in modern robots. To do
this, they applied a risk assessment and threat modelling methodology
on robots from multiple vendors. Results state that there are several
security and privacy issues that have consequences in many areas of
applications such as home, military, health and industry.

[18]

The authors proposed a comprehensive systemic security assessment of
voice-based assistant in used robots used in homes. The work considers
several factors in the design of the technology that widens the attack sur-
face. The authors also discussed some countermeasure to the identified
threats and presented some open questions that still further research.
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Table 1. Cont.

Reference Description

[19]

This chapter summarises approaches to the coordinated assurance of
safety and security of collaborative industrial robots. The work specifi-
cally focuses on human-robot interaction and collaboration in manufac-
turing from a security perspective. The use-case focus a robot named
COBOT in which the performed threat modelling and risk assessment to
identify and prioritise threats. The identified challenges are not limited
only to technical factors, they only considered socio-technical factors.

[20]

Focusing on industrial robots as use case, this work provides a holistic
view of the security issues that arise in designing and securely deploying
controlled manufacturing systems. The work focused on four threat
scenarios that helped the authors analyse the attack of surface of con-
trolled systems and the security risks that arise from their interconnection,
operation and expansion with accompanied IIoT devices.

[21]
The work details the factors that have impact on food shortage and
agriculture. The authors focus on more as climate change is it has the
highest impact when compared to others.

[22]

Focusing on machine vision systems, this work focuses on presenting
several types of adversarial threats against deep learning-based computer
and presents several approaches to protect against such threats. The
work studies a specific model and looks at threats against several use
cases such as: human action recognition, crown counting and person
reidentification.

[23]

Focusing on machine vision systems, this work focuses on presenting
several types of adversarial threats against deep learning-based com-
puter, specifically a framework called INFRASTRESS. The authors also
presented several defending mechanisms.

3. Intelligent Harvesting Machines

In order to identify the key components of intelligent harvesting robots, we examined
an actual asparagus harvesting robot and also analyzed the architectural design of several
harvesting robots in the literature [24–27]. The common elements identified are and
summarized in Figure 1:

Figure 1. The intelligent harvesting robot system and its key components.

• Crop : A trivial component, which might include apple, litchi, citrus, grape, toma-
toes, etc. They vary significantly in shape, size, colour texture and other physical,
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chemical and nutritional properties. This information is used by the Machine Vision
System in the Intelligent Harvesting Robot in order to identify and locate the crop in
complex situations.

• Intelligent Harvesting Robot (IHR): The robot is designed to pick fruits/vegetables
automatically under certain environmental conditions. It uses a Machine Vision
System to accomplish the task of picking the crop under the guidance of visual
information. A typical harvesting operation is linked to two sub-tasks:

1. Automatic Crop Recognition: Also referred to as the Machine Visions System, it
means identifying and locating the crop in a natural complex scene.

2. Eye–Hand Coordination: It focuses on the interaction between the robot visual
perception of the work-space and its actuators.

• Autonomous Mobile Basket (AMB): A basket that provides storage to carry the
harvested crop. In some cases, the basket is attached to the IHR. In other cases, there
is a separate autonomous truck (full of baskets) which follows the robot and supplies
empty baskets. Wireless communication is used in both cases.

• On-Site remote surveillance: In order to manage and improve the quality of the
harvest operation, the farmer can tele-operate both the farming robot and the basket
by sending commands through a client application installed on a intelligent device
(tablet, smartphone, etc). An example of such commands could be to set the robot to
avoid an obstacle or to send the mobile basket to the warehouse to store the harvested
crops.

• Intelligent robot cloud service provider: The harvesting robot uses cloud services
where most of the AI modules and intelligent features reside for further analysis to
improve the tasks it performs.

• Base station: A GPS receiver that collects GPS measurements of the field. It consists
of an antenna, a GPS receiver, and a device (often a personal computer) to which
the GPS data is logged. Note that the robot also has a GPS module that collects GPS
coordinates from the satellite in order to control its movement, but the difference is
that a base station provides reference data that can be used to increase the accuracy
(to within a few centimeters or less) of GPS data collected in the field.

The Operator in Figure 1 can interact with the IHR and the AMB by accessing their
physical interfaces (this communication is depicted in Figure 1 with dashed lines and
labelled (C1) and (C11)) or remotely by sending commands through a client application
or a smartphone app (C2 + C3). The IHR essentially executes two tasks in parallel: it
collects localisation data from the base station and the GPS satellite (C5 + C6) and also
uses image processing to identify crops that are ready for harvesting using the Automatic
Crop Recognition task. As soon as a mature plant is detected, access to GPS coordinates
is immediately cut off. The robot then moves to the crop to start the harvesting process.
Harvesting is conducted by sending a signal to the motor controlling the harvesting blades
using the Eye–Hand Coordination task. The blades start as well as the conveyor belt. When
the crops are harvested, they are also being transferred into a basket simultaneously. The
AMB follows the harvesting robot and continuously checks the IHR’s basket (C4). Once the
basket is full, the AMB removes it and provides an empty basket. Finally, the AMB will
transfer the full basket to the warehouse.

Most of the IHR’s intelligent features are developed and maintained in the cloud. For
example, the performance of the Automatic Crop Recognition task mentioned before is
improved by sending crop images to the Machine Vision System (C12 + C10) in the cloud
to train the AI-based model that the robot is using, which then generates the model weights
and sends them back to the IHR for inference. The intelligent cloud service provider could
also use third party cloud services to enhance the performance of its intelligent modules
(C11). An example could be sending the images collected by the IHR to a third-party cloud
tool to improve their quality or perform data labeling before sending them to the Machine
Vision System.
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4. Security and Safety Issues

In this section, we present a classification of the main security and safety issues of
intelligent harvesting robots. We use this classification together with the communication
labels and components in the architecture described in Section 3 to later categorize current
attacks and countermeasures in the next sections.

4.1. Hardware Security Issues

The physical aspect of the robot is probably the first attack vector that attackers or
malicious users will try to explore.

4.1.1. Unprotected External/Internal Communication Ports

Robots with unprotected external or internal ports can lead attackers in physical
proximity to perform a variety of attacks and serve as an entry point to the robot’s file
system. Especially if the robot’s file system is not encrypted which could leave the average
user to be able to recover sensitive or proprietary data off of a storage device or even be
able to change code/data of the robot [28]. The attacker could also use the external ports,
such as USB ports or an Ethernet port to gain access over IHR or AMB through executing
arbitrary commands. There are many examples of USB dongles being used to steal sensitive
data or even cause critical to damage the hardware [29]. Another entry point is targeting
the unprotected internal communication ports by unplugging sensors, actuators or any
robot-related components used in the intelligent harvesting robot. These ports could give
the attacker access to the robot’s internal network where they can eavesdrop on or disrupt
all of the robot’s internal communications.

4.1.2. Untrusted Third Party Hardware

In most cases, companies built harvesting robots using hardware that is designed by
third party manufacturers. This raises a security and trust issue for the robot itself as some
malicious manufactures could purposely leave a backdoor into the robotic system to track
and monitor the activities of the robot and its operator without the owner’s knowledge.
In some cases, they could infect the robot with malware that exploits a deliberate design
flaw or configuration to gain unauthorized access to robot data [14]. Another threat is the
unauthorised access to the robot’s logging system which could contain private data. In
this case, this threat takes advantage of inappropriate or missing access control rules in
the IHR operating system. The malicious manufacturer could send data to a remote server
for example.

4.2. Network Security Issues

This category includes threats that target the external network the IHR use to com-
municate with external devices (Control Tablet, AMB, etc.). The operator uses short range
communication to remotely send commands to both the IHR and the AMB. This is usually
conducted via a Wi-Fi access point created by the IHR. Knowing that the wireless commu-
nication channel is also used to send storage related data, attackers could launch many
attack vectors to break the Wi-Fi network by targeting many areas:

• Attacks targeting communication between IHR/AMB and the Control Tablet: The
most critical threat is hijacking the entire communication between the robots and the
control table which enables the attacker to connect to the unprotected network and
starts eavesdropping information. After sufficient reconnaissance, an attacker then
inject new, malicious packets into the network, in order to impact the harvesting oper-
ation. The authors in [10] investigated the impact of exploiting wireless vulnerabilities
on the actions of tele-operated surgical robots. The study showed that the hijacking,
disruption and interception of data on the wireless communication channel can have
serious consequences on the robot and the safety of patients and surgeons. For the
IHR, this could cause a significant degradation in performance or even unavailability
of the system.
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• Attacks targeting communication between IHR and the AMB: The Autonomous
Mobile Basket constantly or periodically checks the storage state of the portable
basket integrated into the Intelligent Harvesting Robot. This also requires a short
range communication between both robots. Attackers can disrupt the communication
channel by sending special wireless deauthentication packets to both robots (or one of
them) to temporarily or even permanently disable them from being able to connect
back to the storage system targeting the availability of systems and data. Attackers
can also target the confidentiality of data by simply analysing the traffic between both
robots. This could be conducted by either passively monitoring the transmitted robotic
traffic over encrypted and un-encrypted open communication channels. The aim is
to extract sensitive data about the robotic system. Another approach is to actively
intercept storage related data and altering it by injecting false data, which deviates the
robots from performing their intended activity in an accurate manner, or leave them
prone to response delays.

• Attacks targeting communication between IHR/AMB and the Base Station: This
set of attack vectors target the localisation and mobility systems of both robots by
launching jamming and spoofing attacks. An adversary can jam the wireless sensor
and communications producing radio interference to disrupt wireless networks so that
the sensors cannot receive GPS related data. Additionally, an adversary can also spoof
communications by emitting false signals (e.g., GNSS-like signals, with the intention of
producing false location-based information in the victim receiver). Malicious signals
can also be exploited to negatively affect the communication channels of wireless
sensors. For example, the goal in the latter case may be to deplete battery life or even
block the communication channel so that the sensors cannot return their readings.
Both examples have a direct impact on availability. This will cause problems to the
Automatic Crop Recognition which depend on the target sensor and therefore the
associated functionality of IHR/AMB [30].

4.3. Cloud Security Issues

The use of cloud storage and processing services redefines how and where the robotic
data are stored and accessed. While cloud technologies offer the advantage of having
readily available virtually unlimited resources, they also come with security issues and
challenges [18]:

• Unauthorised cloud data access: Cloud services usually offer multiple ways of ac-
cessing data (e.g., app- or web-enabled access) which widens the attack service. An
attacker can exploit an undiscovered vulnerability and gain access to cloud robot data
and then they can read, modify, or even delete any robotic data.

• Third party access: Another important issue is how the developers who create the
cloud services connected to IHR/AMB, and who have direct access to any communi-
cation channel of the intelligent harvesting machine architecture, protect users from
external parties who do not have access to any of these communication channels.
In this context, some companies use third-party cloud services that offer additional
data processing and analysis to improve the performance of robot services during
the harvesting operation. This of course raises another question about how data are
shared by those involved in intelligent harvesting machines and what kind of controls
and security mechanisms are implemented by third parties to protect shared data.

4.4. System/Software Security Issues

These category involved threats that target systems and software used by IHR to
perform daily harvesting operations. An example of these include libraries (for transfor-
mation, labelling, etc.), machine learning platforms, visualisation tools and cloud, and the
web application used for remote control. Some of these software and tools are internally
developed by the company that is building the harvesting robots or belong to a third-party
actor. From a security perspective, applications that are not tested and evaluated can have
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performance issues and present security vulnerabilities that could be exploited by hackers.
Another issue is the lack of constant software and firmware updates that keep the robotic
system updated and secure. This could result into having configuration and database
vulnerabilities. Additional attack vectors could also be created if AI-based frameworks are
not well configured and implemented or managed in the cloud, as this adds an additional
layer of complexity.

4.5. AI Security Issues

Depending on the design, the field robots use at least two machine vision systems
based on deep learning. The former is used for crop detection, and the latter is used for
route planning/obstacle avoidance. Figure 2 illustrates the details of the general machine
vision system workflow.

Figure 2. Machine vision system workflow.

As explained earlier, the AI-based systems used by IHR are developed, tuned and
maintained in the cloud. The image data collected by the robot is sent to the cloud to
improve the performance of the Automatic Crop Recognition module. Note that the quality
of these images is evaluated by an intermediate engineer (Remote Dev Machine) before
sending it to the MVS. In some cases, companies could also use third-party cloud tools
for image cleaning and labeling before training the AI-based system. Additionally, this
standard workflow for intelligent harvesting machines have many security concerns that
could negatively impact the performance of the AI-based systems. It is wise to keep in mind
that AI techniques and systems using AI can lead to unexpected results and can be modified
to manipulate the expected results. Decent research has been conducted in identifying the
threats to AI-based systems [22,31] and they can be summarised as detailed below:

• Adversarial AI: The aim is to target the inference phase of the ML and deep learning
systems in the machine vision system by including perturbations to the crop images
that are undetectable to the human eye but maximizes the model’s prediction error,
forcing it to make wrong predictions.

• Data Poisoning: This involves injecting erroneous/falsified/bad cropping images into
the training/validation set by gaining legitimate or illegitimate access by exploiting
poor authentication/authorization mechanisms. The purpose is to affect the operation
and performance of the machine vision system.

• Input Tampering: By deliberately or unintentionally manipulating crop images in sev-
eral stages stage of the AI life cycle. Actors such as AI/ML engineers can manipulate
data during the storage procedure and using some processes such as feature selection
or image labelling. This could interfere with model inference and introduce bias into
training data and affect the performance of the machine vision system.

• Model Extraction: These attacks aim to duplicate a machine learning model through
query access to a target model. The typical setup for a model extraction attack is an
API, such as the ones provided by MLaaS platforms [32]. In the literature, protecting
the confidentiality of DLs can be conducted by:
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– Change the API to limit the number of user queries and also to ignore incomplete
queries,

– Introducing random and controllable noise to the model to maximise the loss of a
stolen model while preserving its prediction accuracy. This deceptive perturba-
tion can degrade or slow down the model stealing process.

4.6. Security Gap in Cyber-Physical Systems

During our threat assessment in intelligent harvesting robots, we noticed that the
common threat sources provided and recommend by international standards and the
community [33–35] do not fully apply to robots and cyber-physical systems. This is because
there are certain threat scenarios that cannot be classified into a single category: loss of
information systems due to physical damage to the hardware is an example of such threats
as it is a combination of a physical and a cyberthreat source. Another example is launching
an attack vector that result in physical damage to the robot. Due to the nature of cyber-
physical systems, standard threat assessment methods often miss such complex scenarios
that can significantly impact robot operation.

5. Impact of the Security/Safety Issues

Lack of appropriate security controls that address the identified threats might have a
significant impact on intelligent harvesting companies. This section assesses what would
be the impact that would result from threats materialising by focusing on specific use cases.

The use cases will also consider a generic internal design of a intelligent harvesting
robot as depicted in Figure 3. This figure also highlights some of the key communication
channels with internal and external components:

IHR Critical Assets:
Before assessing the impact of the identified security issues in the use cases, it is

necessary to highlight the critical assets in intelligent harvesting architecture described in
Figure 1. Assets represent any user, resource (for example, disk space) or property (for
example, the physical security of users) of the system. They also have properties that can
be linked to the achievement of IHR’s business goals. For example, IHR data stores are
a resource/asset of the system, and the confidentiality of that data is a system property
and a business goal for companies in intelligent harvesting. Table 2 highlights the IHR’s
critical assets and their corresponding CIA (or Confidentiality, Integrity and Availability)
attributes that must be maintained.
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Figure 3. Data Flow Diagram of the IHR.

Table 2. Critical Assets of IHR from a Security Perspective.

Asset/Resource CIA Triad

Type Description

C
on

fid
en

ti
al

it
y

In
te

gr
it

y

A
va

il
ab

il
it

y

Sensors and
camera data

Any data produced by the sensors should be ac-
cessed and available to the authorised actors. X X

IHR Data Stores IHR persistent data (logs, software, etc.) must be
accessible to only authorised actors. X X

Physical safety IHR system must not harm its users or environment X

IHR Behaviour The robotic system must not allow attackers to dis-
rupt its tasks X

Compute Capabilities

Robot embedded and distributed (e.g., cloud ser-
vices) compute resources. The unavailability the
compute resources of IHR and the MVS will pre-
vent the robot from operating correctly

X

IHR The IHR must not damage itself and must respond
to commands within a reasonable time. X X

5.1. Use Cases

This section presents three use cases that are carefully selected after analysing several
threats in the intelligent harvesting environments. The aim is to give the reader a deeper
insight into the type of critical threats that can harm intelligent harvesting robots and even
their operators.

Use case 1: adversarial perturbation against the machine vision system
The first use case is about introducing physical disturbances to the crop to deceive the

sensors of the intelligent harvesting robot into perceiving erroneous information about the
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environment. The adversarial attacks are crafted after performing several experiments to
successfully confuse the MVS. An example of these changes could be:

• placement of objects;
• deformation of the crop;
• changing external environmental factors (projection of light on the crop).

The attack steps are summarized as follows:

1. The attacker starts by analysing the capabilities of the targeted versions of the cameras
and the MVS.

2. The adversary designs an adversarial attack capable of altering the outputs. This is a
trial-and-error phase it requires many physical experiments and disturbance models
to increase the success rate of the attack.

3. The attacker launches the attack by performing the alteration on the crop to cause
misclassification by IHR.

4. When IHR arrives at the targeted location, it will erroneously classify it into the at-
tacker’s chosen class (e.g., interpret a ripe asparagus as unready) and react accordingly
(e.g., ignores instead of harvesting).

Use case 2: Sensor/communication jamming and GPS spoofing
An attacker can disrupt wireless sensor communication by producing radio interfer-

ence. The aim is to prevent sensors from receiving GPS positioning and correction messages.
The attacker can also spoof communications by emitting false signals (e.g., GNSS-like sig-
nals, with the intention of producing false location-based information in the victim receiver).
Malicious signals can also be exploited to negatively affect the communication channels of
wireless sensors. The attack steps are summarized as follows:

1. Security vulnerabilities in sensors and GPS signals are identified.
2. Taking advantage of the vulnerable sensors, the adversary remotely injects unwanted

signals into the communication channel or disables sending/receiving messages.
3. The attacker will use the compromised sensor to block or disrupt the dara transmis-

sion, which will affect the functionality of the decision algorithms that IHR uses to
perform its normal operation. If the GPS is spoofed, the intelligent harvesting robot
will receive erroneous data which will confused its Machine Vision System.

Use case 3: Swapping or using malicious hardware components
The last use case is when attackers utilize malicious hardware components in the

IHR/AMB. The hardware is specifically designed to support attacks by attaching a virus or
a trojan that is programmed to send personal data to the remote attacker for example. The
attack steps are summarized as follows:

1. Attacker starting by analysing the robot hardware design to identify internal hardware
that is accessible from outside such as sensors, actuators, computation units, user
interfaces, etc.

2. Attacker disable or remove accessible components and plug malicious new ones
3. Attacker implement back-doors to gain unauthorized access to the robots

5.2. Threat Impact Assessment

This subsection assess the technical (Table 3) and financial impacts (Table 4) of the
identified uses cases. The degree of the impact depends on many factors such as the severity
of the vulnerability, the value of the assets, etc.
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Table 3. Technical impact of the studied use cases.

Use Case Impact

Impacted Asset
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s
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R

Use Case 1

Missclassification of images which might results to
ruining, crushing, or ignoring crops X X X X X

Unstable navigation function in the drive unit if
perturbations were introduced to the path of IHR X X X X

Integrity of data is compromised in case of poison-
ing images with adversarial data sets X X X X

Use Case 2

Battery life is depleted due unstable situational
awareness and the robot’s navigation function X X

Communication channels are blocked due jamming
and denial of service attacks X X X X

Use Case 3

IHR and users are under constant surveil-
lance, monitoring, and tracking due to an
installed backdoor

X X

Malicious and dangerous behaviour of IHR: the
intelligent harvesting drives through farmers or
throws itself into into a hedge or a ditch because of
a remote access attack

X X X

Generally speaking, attacks on intelligent harvesting robots can either have an imme-
diate (operational) effect or a future (business) effect that includes financial and market
consequences. Examples of each impact is described in the table below:
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Table 4. Financial and operational impacts of the studied use cases.

Impact Type Example

Business

Direct

The financial replacement value of lost (part of) asset.

The cost of acquisition, configuration and installation of the new
asset or backup.

The cost of suspended operations due to the incident until the
service provided by the asset(s) is restored.

Impact results in an information security breach.

Indirect

Opportunity cost (financial resources needed to replace or repair
an asset would have been used elsewhere);

The cost of interrupted operations.

Potential misuse of information obtained through a
security breach.

Violation of statutory or regulatory obligations.

Violation of ethical codes of conduct.

Long term

Loss of reputation (Trustworthiness).

Loss of public confidence (Trust).

Tarnished image of PSA and of the Government.

Potential legal action if privacy legislation is breached.

Privacy Loss if it is possible to correlate identities across processes
or make inferences from aggregated data sets

Operational Field Robot

Significant degradation in performance of the machine vision
system and AI-based modules (e.g., crop detection, path planning,
etc.)

Unexpected behaviour of IHR/AMB

Delays in decision making and unavailability of data and services

Exposure of data-sets and sensitive information

Loss of data/code of the harvesting robot.

6. Conclusions

Using intelligent robots in farms to help with crop planting and harvesting comes
with great benefits to the farmer. However, as robotic systems pose an increased risk
of several security issues that can be exploited to launch dangerous attacks, intelligent
farming will also suffer from dramatic consequences ranging from economic losses to loss
of human lives.

In this context, we examined a real asparagus harvesting robot and evaluated its
security; the proposed architecture was the result of our threat analysis and from studying
other intelligent harvesting architecture systems in the literature and industries. This
paper identified all security and safety threats that surround each key component in the
architecture and classified them into five categories: network, hardware, software, AI and
cloud security issues. For example, the category of network security issues describes several
attacks on the confidentiality, integrity and availability of robotic data and services. We also
pointed out that some attack vectors cannot be categoried into a single category due to the
complex nature of cyber-physical systems. At the end of the article, we look at three specific
use cases and analyze the stages of attacks and the impact of each scenario. These attacks
target the machine vision system, GPS communication channels and hardware use by the
robot. A successful attack on the machine vision system will cause the robot to engage in
unpredictable behavior that can lead to human injury. That is why we considered the first
two cases as one of the most serious threats to intelligent harvesting robots. As part of
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our future work, we plan to analyze more attack scenarios on the intelligent harvesting
system with more emphasis on countermeasures to mitigate the risks of compromising the
integrity, confidentiality and availability of intelligent harvesting robots.
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