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Abstract: This paper aims at analyzing the performance of reinforcement learning (RL) agents when
trained in environments created by a generative adversarial network (GAN). This is a first step
towards the greater goal of developing fast-learning and robust RL agents by leveraging the power
of GANs for environment generation. The RL techniques that we tested were exact Q-learning,
approximate Q-learning, approximate SARSA and a heuristic agent. The task for the agents was to
learn how to play the game Super Mario Bros (SMB). This analysis will be helpful in suggesting which
RL techniques are best suited for augmented experience training (with synthetic environments). This
would further help in establishing a reinforcement learning framework using the agents that can
learn faster by bringing a greater variety in environment exploration.

Keywords: reinforcement learning; generative models; generative adversarial networks; Q-learning;
SARSA; Super Mario Bros

1. Introduction

Reinforcement learning techniques are usually experience-based rather than data-
based. Hence, to train RL agents, they should be left to explore either in a sandboxed
real environment or a simulation. While sandboxed real environments might not always
be made available, simulations are an optimal solution [1]. However, this itself requires
explicit effort to be made at times. It might not be possible to bring in a variety in the
training environment for RL agents. These environments are only as good and as varied
as the mind(s) behind the environment design can fathom. Generative models are useful
for this, particularly generative adversarial networks. generative adversarial networks
(GANs) were originally used as generative models for unsupervised learning. However,
they have now found use cases in semi-supervised learning and fully supervised learning,
as well as reinforcement learning. GANs have been conventionally used to generate new
plausible examples for data sets and related tasks, majorly revolving around images and
text. Generative adversarial networks, developed and launched in 2014, are a part of neural
networks that do not require any supervision for learning. GANs have a system structure
comprising two neural networks models, which are the generator and discriminator. The
communication between these two models helps them to analyze the variations in the data
set provided. The generator makes an attempt to mislead the discriminator by generating
fake data samples (Figure 1). The discriminator tries to demarcate between the fake and
real data samples. This is a repetitive process and hence improves the efficiency of the
generator and discriminator. Some of the real-world applications of GANs include: creating
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new image samples from existing samples, text or image translation, image editing and
applications in the field of AI for generating video games scenes.

Figure 1. Working of GANs.

We recognize the use of GANs in reinforcement learning as an area of opportunity for
training environment synthesis and augmentation. Augmented experience training refers to
training RL agents by augmenting their environment exploration experiences. Technically,
this translates to an RL agent being trained on variations in a domain environment so
that the agent can converge with a good decision strategy sooner and can be more robust
when variations and exceptions occur in real time in the actual environments. For example,
imagine the case of autonomous driving. Some training environments would be:

1. A straight road with a starting point and ending point;
2. A curved road with a starting point and ending point.

It seems obvious to also train the agent for sharp turns as well as gentle turns. One
way to achieve this could be by developing environments manually for each use case: sharp
turns as well as gentle turns. However, for a more creative solution, GANs can be used to
introduce variations in our environments. This is more scalable than a manual solution.

2. Motivation and Related Work

Our main motivation is to validate the possibilities of developing fast-learning and
more robust RL agents using environment augmentation with GANs. While there has been
work concerning improving the performance of RL agents and GANs, the feasibility of envi-
ronment augmentation via GANs seems to be slightly unexplored. Vincent Huang et al. [2]
proposed the enhanced training of RL agents by using EGANs to initialize the agents in
order to make them learn faster. The EGAN approach could be used to speed up the early
training phases for real-time systems with sparse and slow data sampling. Consequently,
agents trained with EGAN and GAN achieved faster increases in rewards, and both could
provide more modalities in data space. We identified that suitability is only mentioned
for wireless communication. Exploration is required for applying the technique to other
domains. Further work is needed to verify and fine-tune the system to achieve an optimal
performance. Thang Doan et al. [3] proposed using the GAN environment for GAN-Q-
learning to analyze its performance and provide a novel distributional RL method. This is
an alternative to the traditional models. The end results state that Q-learning goes along
with the benchmarked algorithms, such as GAN-Q-learning. A CNN was suggested in or-
der to use rewards, and a high priority for the stability of future iterations should be carried
out. Tim Salimans et al. [4] provided many training techniques that generate realistic human
images. The methods provided can train RL agents, which were previously untrainable.
Using the methods proposed, we can use them for training RL agents, reducing the training
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time. Saldanha, J. et al. [5] presented their effort to synthesize pulmonary sounds of various
categories utilizing variations in variational autoencoders, such as multi-layer perceptron
VAE (MLP-VAE), convolutional VAE (CVAE) and conditional VAE. They compared the
impact of supplementing the unbalanced dataset on the performance of different lung
sound classifiers. To identify and categorize dementia into different groups based on its
prominence and severity in the available MRI images, Jain V. et al. [6] suggested a unique
DCGAN-based augmentation and classification (D-BAC) model technique. They suggested
using a new GAN-augmented dataset to study the early detection of dementia, also known
as mild cognitive impairment (MCI) and referred to as MCI. Machine learning, especially
reinforcement learning, has recently found widespread use in wireless communications in
the prediction of network traffic, identifying the quickest and shortest path while sending
the data over the networks [7,8]. The model-free methodology known as Q-learning has
been acknowledged as promising, mainly when used for complex decision-making pro-
cesses. Excellent learning capabilities, successful outcomes and the ability to integrate with
other models are just a few advantages of Q-learning [9]. According to Saeed Kaviani et al.,
DeepCQ+ routing [10], which innovatively integrates emerging multi-agent deep rein-
forcement learning (MADRL), achieves a consistently higher performance across various
MANET architectures when training on only a small number of network parameters and
conditions. Xinyu You et al. created a novel packet routing architecture based on multi-
agent deep reinforcement learning in a completely decentralized setting. Each router in
this system is equipped with a recurrent neural network (RNN) for training and decision
making and an independent long short-term memory (LSTM) [11]. The Q-values associated
with each potential course of action for a given input state serve as the targets of an input
state in deep Q-learning. Q-values are the current estimates of the total future rewards
obtained for each activity. These Q-values are determined via the temporal difference
formula [12].

Ruiqi Wu et al. [13] trained a model to write “Chinese Calligraphy” via images from
calligraphy books to eliminate the human involvement in the training and learning process
of the robot. They were successful in creating a model that writes calligraphy strokes
using images of calligraphy. The approach used to train the model had the following
characteristics:

• An accurate reward algorithm was used to make the learning process efficient and
take less time to train.

• In the algorithm proposed, the training actions used were simplified by making use of
continuous values, which decreases the learning complexity, and the trained model
produced actions directly without considering the time taken for writing the actions.

Guillermo Caminero et al. [14] proposed that we can detect intrusion by using ad-
versarial reinforcement learning. In addition, according to them, the training time for
adversarial reinforcement learning is less compared to other algorithms. Hence, adversarial
reinforcement learning is a relative fit for performing predictions online, and is mainly
suitable for data sets with unbalanced data and in situations where a high prediction accu-
racy is required. Chelsea Finn et al. [15] demonstrated equivalence between a maximum
entropy inverse reinforcement learning (IRL) algorithm and a GAN model to evaluate
the generator density. An equation was derived that used a form of discriminator that
supports the values from the generator, leading to an unbiased estimation of the underlying
energy equation. Justin Fu et al. [16] proposed adversarial inverse reinforcement learning
(AIRL), which is a pragmatic and scalable IRL calculation, in view of an adversarial reward
learning formulation. They showed that AIRL can regain reward works that are resilient
to variations in the environment when training. AIRL is a functional and adaptable IRL
calculation that can learn released rewards and significantly improves upon both prior
imitation learning and IRL calculations. Karol Hausman et al. [17] proposed a multi-modal
imitation learning framework that can segment and imitate skills from unlabelled and
unstructured demonstrations. They came up with a method of imitation learning that
learns a multimodal theoretical policy and successfully imitates automatically segmented
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tasks. The imitation learning method performs this with the help of unstructured and
undefined demonstrations. Ali Taleb Zadeh Kasgari et al. [18] proposed a GAN approach
that helps in pretraining deep-RL with the use of synthetic and real data, thus developing
an evolved deep-RL framework by exposing it to broad network conditions. The outcome
was that, during extreme conditions, the proposed, experienced deep-RL agent can recover
instantly, while a conventional deep-RL, under data rate restriction, considers epochs of
high reliability and low latency. Michal Uricar et al. [19] proposed GANs to be applied in
autonomous driving and advanced data augmentation. In the paper, the generator was
trained in such a way that, after some cycles of epochs, it started to identify which part of
the image was soiled. They trained a generator model that is capable of “de-soiling” the
image as well as introducing some soiling to the image. Some gaps in the study were that it
was not a diverse data set and that over-fitting was observed.

3. Problem Specification

For our analysis, we opted for Super Mario Bros (SMB) as our domain of concern.
Super Mario Bros’ aim is fairly straightforward: to start from one side of the stage and
reach the target while making progress in the rewards earned. Our aim was a comparison
of RL agents that are given the task of successfully navigating through an augmented
environment. Mario usually needs to move right to achieve success. However, only moving
right is not an ideal strategy. The goal of the Mario agent is to overcome each of the
challenges in the form of obstructions in the path of its target while collecting coins. These
kinds of issues make the job at hand considerably more complex. The attributes that must
be necessarily specified for the formulation of Super Mario Bros as a reinforcement learning
challenge are: state, action and reward spaces.

3.1. State Representation

A network of thirteen × sixteen tiles was used to represent the state of the agent. The
numeric representation corresponding to the tile network is shown in Table 1.

Table 1. Representation of Mario’s state.

Number in Tile Grid Representation in SMB

0 Empty space

1 Entity (coin, field, pipe, etc.)

2 Enemy

3 Mario

3.2. Action Space

The NES game controller consists of six buttons that can either be hit or not. Though
there can be various possible combinations of these buttons, only a few of the combinations
are useful in the game. We can take the example of pressing the move forward and move
backward together, which is as good as no action. The useful actions that we can perform
via NES controller are represented in the form of a discrete action space with the mapping
as shown in Table 2:
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Table 2. Discrete action space with mapping.

Key Action Description

3 [0, 1, 0, 0, 0, 0] Move Backward

4 [0, 1, 0, 0, 1, 0] Jump Backward

5 [0, 1, 0, 0, 0, 1] Sprint Backward

6 [0, 1, 0, 0, 1, 1] Sprint + Jump Bk

7 [0, 0, 0, 1, 0, 0] Move Forward

8 [0, 0, 0, 1, 1, 0] Jump Forward

9 [0, 0, 0, 1, 0, 1] Sprint Forward

10 [0, 0, 0, 1, 1, 1] Sprint + Jump Fw

11 [0, 0, 0, 0, 1, 0] Jump

3.3. Reward Function

Agents obtain a reward or a positive value when the agents perform certain actions
correctly. In the Gym environment, their basic gain is based on the distance covered by the
agent. The amount of distance covered by the agent determines the award for the agent. It
all depends on distance (δ).

R(s) = δ(s)− δ(s− 1) (1)

The agent is rewarded a unit positive for moving in the direction of progress and unit
negative for moving backward. No reward is given to the agent if no movement is detected.

R(s) = δ(s)− δ(s− 1) i f δ(s)− δ(s− 1) > 0 (2)

R(s) = δ(s)− δ(s− 1)− 1 i f δ(s)− δ(s− 1) ≤ 0 (3)

Along with the calculation of the distance rewards, customized rewards are also given
based on the occurrence of certain events. The values of these rewards consist of random
parameters, which are adjusted for further use.

• When the agent is killed, 100 is deducted.
• When the score of an agent increases by x as a result of gaining points or overcoming

an obstruction, the scoring factor is multiplied to x and then added.
• If there is a large gap occurring mid-way through the level and Mario crosses it, then

500 is added.

4. Approach
4.1. GAN Model

A corpus of Super Mario Bros is used for the training of the GAN model [20]. The
trained GAN model is then able to generate new SMB segments upon feeding the numeric
input from the corpus. These segments together make up a SMB level that is given to the
RL agent for exploration via Gym. This process is elaborated on as follows:

• With the help of some given reference, the GAN model generator will generate some
environment.

• The generated environment is now fed into the discriminator.
• If the discriminator succeeds in recognizing the environmental fake-ness, then the

cycle is complete and the environment is reconsidered, and the generator produces a
new, possibly more realistic environment.

• If the discriminator is unable to differentiate between the real environment created
and the synthetic environment, then the synthetic environment will be used more.

• In these synthetic environments, the reinforcement learning agent is trained.
• Different RL agents are trained on the environment, and a comparison between their

performance is made.
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GAN Implementation

GANs, being deep neural networks, fall into the category of unsupervised learning,
which return phenomenal results in producing images from an existing set of images. In
addition, by applying a covariance matrix adaptation evolutionary strategy, also known as
CMAES, the levels generated by GANs are searched for, these levels having certain specific
attributes. The flow of the process is shown in Figure 2.

Figure 2. Proposed workflow for classification and validation of plant.

The approach is divided into two phases:

1. The GAN was trained on real levels of Mario that were converted from graphical
representation into vector character representation, where each tile of the level is
represented with a unique character.

2. In the second phase, we used a covariance matrix adaptation evolution strategy
(CMAES) to find the latent vector suitable for us with certain attributes and properties,
as certain vectors of the levels generated are unplayable.

This means that we trained our GANs model on the original Super Mario Bros,
available as part of the Video Game Level Corpus (VGLC) and then used CMA-ES for
finding ideal vectors that were again fed to the trained model that generates playable
Mario levels.

Level representation. The levels of Mario are represented in different ways all over
VGLC and AI frameworks, which have tile representations in common. The levels present
in the Video Game Level Corpus are represented using a character symbol for every tile
and aspect of the level, i.e, the bricks are represented with one character, and then enemies
are represented with another character. By following this convention, VGLC processed
the graphical level (Figure 3) into character representation, which can be further used in
training RL algorithms or other usages.
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Figure 3. Level representation of Mario Bros in VGLC.

Furthermore, as we need to feed these levels into the GAN model for training, we
converted this character representation into an integer representation, where the tiles are
represented as an integer, and then converted this integer-level representation into a single
encoded integer vector that was provided as an input to the discriminator of GAN. The
output by the generator was also a single vector of integers in which, as discussed above,
all of the tiles of the level generated were represented as an integer. Then, this obtained
vector was given in AI Gym in order to render it into graphical representations.

As discussed earlier, the above Figure 4 shows the character-symbol-to-integer con-
version representation. This conversion was performed in order to feed the levels into the
GAN model, and was also required for the AI framework to produce the level’s graphical
representations.

Figure 4. Tile encoding used for conversion into vector.

Custom OpenAI Gym Implementation. The official SMB Gym could not be used
as we were feeding the synthetic environments from our GAN module to our RL agents.
Hence, a custom Gym was required to be developed. Custom environments can be created
in OpenAI Gym (Figure 5) by structuring the source for the custom Gym as a git repository
for an installable pip package. The minimal required directory structure that enables Gym
to recognize and provision custom environments is shown in Algorithm 1.

After the customization of the environment, the environment picked up a synthetic
level from the GAN module and returned 16 × 13 integer arrays as state representations
of the game states to the RL agent throughout the game play. Visualizing it would render
something similar to the following pixelated level (Figure 6).
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Figure 5. Custom OpenAI Gym implementation.

Figure 6. A visual of the initial state returned by the custom Gym.
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4.2. RL Agents

We used three different techniques of reinforcement learning, namely Q-learning-exact,
Q-learning-approx and SARSA-approx.

4.2.1. Q-Learning-Exact

In this technique, we know that, at one point in time, it will definitely stop making
any improvement in the performance, but the sheer size of the state–action space makes it
unsatisfactory for our problem. A back-of-the-envelope calculation shows that the number
of state–action pairs is extraordinarily high. If we try to calculate the different state–action
pairs, then it would be

number o f state− actionpairs = 416∗13 ∗ 9 ≈ 1.52 ∗ 10126 (4)

However, practically, the agent comes across only a fraction of these pairs (Figure 7).

Figure 7. The algorithm used for Exact Q Learning.

4.2.2. Q-Learning-Approx

In order to narrow down the number of different state–action pairs, we designed an
attributes set, from which, various attributes can be combined to specify a state (Figure 8).
The action value can then be expressed in the form of these attributes as follows:

Q(s, a) = w1 f1(s, a) + ... + wn fn(s, a) (5)
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Figure 8. The algorithm used for approx Q-learning.

The attributes that we used are described below:

• Speed: This attribute is used for determining the distance and the direction, i.e., if
the agent is making forward progress or not.

• Action for Running: This attribute returns if the action performed is for sprinting or
not. Sometimes the agent sprints in order to overcome an obstruction.

• Action for Jumping: This attribute tells if the action performed by the agent is jump-
ing. The knowledge of this can be of great help in picking up and overcoming obstacles
and enemies in the way.

• Forward/Backward: This attribute tells if the action performed involves the pressing
of forward or backward on the NES controller.

• No Movement: This attribute specifies if the agent is not able to make any movement
in the forward direction. If this attribute is true, then the agent is forced to take certain
actions.

• Distances in all directions: This attribute helps the agent to decide which is the best
moment to cross an empty space.

• Presence of adversary: The agent might get killed because of an obstruction, or it
might fetch rewards by overcoming an obstruction.

• Opponent Destroyable: This attribute tells the agent if the upcoming opponent can
be destroyed or not, which basically depends on its closeness to the agent.

• Opponent ahead/behind: This feature helps the agent to decide the direction of the
movement.

4.2.3. SARSA-Approx

Although we thought that approx Q-learning was an appropriate technique, we
explored a minor variant. Except for one minor variation, approx SARSA is nearly similar
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to approx Q-learning. The approx SARSA agent learns relative to the policy it follows,
whereas the approx Q agent learns relative to the greedy policy (Figure 9).

Figure 9. The algorithm used for approx SARSA.

4.3. Function for Exploration

We used this function in the reinforcement learning algorithms with the objective of
maintaining an equilibrium between taking a decision on the basis of policy and taking
unexplored actions. In order to merge the action values of the agent and utilize the
behaviour, we added some random decision acts in its gameplay. With a probability starting
from 1 and decreasing until it reaches 0.05, the agent will consider random decisions on
the basis of the following priorities, as shown in Table 3 with forward sprinting being the
topmost priority.

Table 3. Distribution of priorities.

Distribution of Priorities

Backward 1

Backward Jumping 1

Backward Sprinting 1

Backward Jump + Sprint 1

Move Ahead 3

Forward Jumping 3

Forward Sprinting 10

Forward Jump + Sprint 5

Jumping 1
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Our derived function for exploration is:

g
(

εi, argmaxa′Q[s′, a′] +
k

Nsa[s′, a′] + 1

)
=

{
argmaxa′Q[s′, a′] + k

Nsa [s′ ,a′ ]+1 with probability

1− εia′ ∈ PRIOR, with probability εi
(6)

4.4. Attribute Updation

All of the attributes that we used for approximate algorithms are specified in Section 4.2.2.
Now, we will understand how and when we updated the weights associated with each of
those attributes. Whenever the agent gains any reward, the approx algorithm updates the
importance (weights) associated with each of the attributes that are active at that particular
moment. As we know that one state can only lead to a different state sequentially, credit
must be given to both of the states, i.e., the present state as well as the state before that
led us to this particular state. Thus, to sort this out, we included “eligibility traces” in our
approx algorithms. Therefore, the approx Q-learning algorithm was converted to approx
Q(λ), and the approx SARSA algorithm was converted to approx SARSA(λ). Therefore,
now, the updating of weights associated with the attributes not only takes place on the
basis of present state attributes, but the weights are also adjusted iteratively on the basis of
the attributes associated with all of the states that our agent came across before the current
state. λ was used for determining the magnitude corresponding to the update. Consider
W ′[it] as the default update for the weight of feature i at time t. Then, our equation is:

W ′[it]←W ′[it]← λW ′[it−1]← λ2W ′[it−2]← ..← λnW ′[it−n] (7)

Here, n represents the number of latest timesteps.

5. Experiment

We wanted to analyze how an agent developed by a particular technique, in its
nascent form, would perform in the synthetic environment. Therefore, we developed each
algorithm—exact Q-learning, approx Q-learning and approx SARSA—from scratch. The
agents of these techniques were deployed in our synthetic environment and observed for
100 training iterations. Notwithstanding our computational limitations, it was conclusive
that the number of training phases chosen by us was enough for a comparative study
of our agents. The agents would converge within 100 iterations. Running the agents
for 1000 agents, as carried out, did not obtain any significant improvements in order to
declare the performance of one agent better than the other. However, exact Q-learning
performed otherwise. With more iterations, it ended up performing better. The model
hyperparameters for each agent were selected qualitatively. Below in Table 4, we enlist the
main model hyperparameters used, along with their initialization values. We also mention
the reasoning behind selecting the specific values. Some more hyperparameters were used
to capture information about instances such as scoring points by the collection of items and
Mario dying. This was to be added in the reward function.

• α (rate of learning):

Table 4. α (rate of learning).

Agent Value

Exact Q Learning 0.101

Approx Q 0.010

Approx SARSA 0.010

Avoid overlearning and divergence of weights by keeping the values low.
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Actions should be chosen while also considering future states shown in Tables 5–7.
A high value would be suitable, owing to the causal dependency between state se-
quences and 30 FPS in game runs.

• γ (factor for discount):

Table 5. γ (factor for discount).

Agent Value

Exact Q -earning 0.950

Approx Q 0.950

Approx SARSA 0.950

• ε-min (probability of minimum random moves):

Table 6. ε-min (probability of minimum random moves).

Agent Value

Exact Q-Learning 0.051

Approx Q 0.051

Approx SARSA 0.051

It is important to take a random action irrespective of the frequency of the exploration
of a particular state. This also ensures that the Mario agent is not stuck at some point.

• λ (updated attributes decay):

Table 7. λ (attributes decay).

Agent Value

Exact Q-Learning N/A

Approx Q 0.800

Approx SARSA 0.800

We need to assign some credit to recent earlier states, owing to the dependency
between game states. Hence, there is a high value for this parameter.

6. Results

We measured over 100 iterations of the mean distance and maximum distance reached
by each agent. Following each iteration, progress through the level was reset. However,
after the Mario agent reached a checkpoint, the next iterations, instead of a reset, started at
the checkpoint. It should be noted that our agents reliably reached the checkpoint midway.
We can see that, among all agents, only the heuristic agent was able to reach the end of the
level (Figure 3).

After evaluating the results initially, our only concern was if the Q-learning agents had
actually converged within the selected number of iterations for training into a good agent
policy. We wanted to test for a much larger number of iterations for training, but, in terms
of the computational resources available to us, it was the best we could carry out. Thus, we
set out to quantify each agent’s learning for evaluating the convergence (Figure 10). We
can look at the number of new states acquired during 200 training iterations by the exact
Q-learning agent in Figure 6. We find an approximately linear increase in this number for
approx. 200 iterations. We understood that 100 iterations was indeed not enough for the
exact Q-learning agent (Figure 11).
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The weights for each feature usually converged for the approx Q-learning agent in
under 100 iterations. This could possibly be due to Mario dying in between relatively
frequently. It depicts notable fluctuations in the initial cycle of learning. A long stabilization
then follows. From these findings, we concluded that additional training iterations for the
approx Q-learning agent would not likely have provided a substantial improvement in the
performance (Figure 12).

We ran the approx Q-learning agent for 1000 consecutive training iterations, as further
proof of this theory. However, there was no significant enhancement in the performance.
The weights converged, as predicted, after less than 100 iterations. Nine times out of ten,
the gap after the checkpoint would still not be cleared by the agent.

∗The approx SARSA learning agent’s graph was almost identical to the approx Q-learning
agent’s plot above as shown in Figure 9.

Figure 10. Performance comparison plot—depicts mean distance (blue colour) and maximum dis-
tance (orange colour) after 100 iterations.
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Figure 11. Exact Q-learning agent: Number of distinct states learnt vs. number of iterations. Model
converges around 200 iterations.

Figure 12. Approx Q-learning agent: Plot for convergence of weight. Notable fluctuations before
convergence at around 80 iterations.

7. Future Work

A major drawback with approx Q-learning is the assumption of linearity wherein
a linear weight mix is presumed for the values of Q. Correlating with the negative and
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positive incentives while feature designing, relevant state facets were picked up. However,
even after converging within 100 iterations, the approx Q-learning agent was not able to
develop a better strategy, which is worth exploring. Whenever Mario took an action that
helped him to progress, the right action function was activated. This almost always yielded
a positive reward. However, it is not always correct to give a positive reward, and is in fact
contextual. If Mario were to collide with an enemy, that should be a negative reward and
not positive. However, if Mario would instead stomp the enemy, that is a positive reward.
This, in general, is dependent on the state of the game. Therefore, optimum weights should
be assigned to the functions. Making progress in the game often requires complex action
sequences, such as start running to clear tall pipes, jump for nearly 25 sequential states
along with right action and so on. Designing the reward mechanisms that could promote
such action sequences is challenging. One way would be to provide higher rewards for
clearing pipes. This might lead the agent to fiddle and explore around various actions
sequences. However, the positioning of various obstacles should be considered within the
state when carrying this out.

8. Conclusions

Of all of the agents, the heuristic agent slightly outperformed the rest. The other agents
did not even reach the end of the level. Q-learning agents were unable to clear large gaps,
especially the one after mid way checkpoint, with distances of around 1400. There is much
variance that feature-based learning, such as approx Q-learning, can bring in. This can
be an explanation as to why it was outperformed by exact Q-learning. In addition, since
exact Q-learning does not use features, given enough time, it would perform even better.
However, if a more consistent and comprehensive set of features can be designed, the exact
Q-learning agent will be outperformed by the approx Q-learning agent by a notable margin.
Based on our knowledge, ours is the first effort made to solve an augmented Super Mario
environment. We hope that this proves to be helpful for others who approach this task in
the future.
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