
Citation: Ma, Y.; Han, Y.; Chen, M.;

Che, Y. Study on Dynamic Evaluation

of Sci-tech Journals Based on Time

Series Model. Appl. Sci. 2022, 12,

12864. https://doi.org/10.3390/

app122412864

Academic Editor: Luigi Portinale

Received: 19 November 2022

Accepted: 13 December 2022

Published: 14 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Study on Dynamic Evaluation of Sci-tech Journals Based on
Time Series Model
Yan Ma 1,* , Yingkun Han 1, Mengshi Chen 2 and Yongqiang Che 1

1 State Grid Shandong Electric Power Research Institute, Jinan 250003, China
2 School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and

Telecommunications, Beijing 100876, China
* Correspondence: yanpony@126.com

Abstract: As science and technology continue to advance, sci-tech journals are developing rapidly,
and the quality of these journals affects the development and progress of particular subjects. Whether
sci-tech journals can be evaluated and predicted comprehensively and dynamically from multiple
angles based on the current qualitative and quantitative evaluations of sci-tech journals is related
to a rational adjustment of journal resource allocation and development planning. In this study, we
propose a time series analysis task for the comprehensive and dynamic evaluation of sci-tech journals,
construct a multivariate short-time multi-series time series dataset that contains 18 journal evaluation
metrics, and build models based on machine learning and deep learning methods commonly used
in the field of time series analysis to carry out training and testing experiments on the dataset. We
compare and analyze the experimental results to confirm the generalizability of these methods for
the comprehensive dynamic evaluation of journals and find the LSTM model built on our dataset
produced the best performance (MSE: 0.00037, MAE: 0.01238, accuracy based on 80% confidence:
72.442%), laying the foundation for subsequent research on this task. In addition, the dataset
constructed in this study can support research on the co-analysis of multiple short time series in the
field of time series analysis.

Keywords: time series; machine learning; deep learning; sci-tech journals; dynamic evaluation;
multivariate; multi-series; a new dataset

1. Introduction

With the continuous development of science and technology, sci-tech journals, as
carriers of academic content, have also developed rapidly, and their importance as links
in the national innovation system has increased. The quality of sci-tech journals affects
the development and progress of subjects; thus, the development of subjects requires the
scientific and systematic evaluation of journals. The evaluation and analysis of scientific
journals can not only improve the quality and influence of scientific journals but can also
facilitate researchers in understanding current research priorities and hot spots.

In sci-tech journal evaluation research, compared with qualitative evaluation [1]
methods, which are more heavily influenced by subjective coloring, methods for calculating
multiple metrics for quantitative evaluation based on the derivation of mathematical
formulas have gradually become the mainstream direction of journal evaluation research.
Quantitative evaluation methods initially focused on single metrics, with metrics such as
the Price Index [2], the law of literature concentration [3], and the impact factor [4] being
developed, which would then be combined with single metrics such as the H-index [5]
and impact factor and assigned metric weights by principal component analysis [6] and
the entropy weighting method [7] to obtain comprehensive evaluation metrics. At present,
some studies focus on the scenario of “data-based evaluation at the time” and introduce
artificial intelligence into journal evaluation, such as through the application of artificial
intelligence to assign metric weights and for the effective selection of evaluation methods
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to assist in journal evaluation tasks [8]. We focus on the task of “comprehensive dynamic
evaluation of sci-tech journals based on historical journal evaluation metrics”, build a
new sci-tech journal evaluation metrics dataset, and try to analyze the possible future
influence of sci-tech journals by comprehensively analyzing various metrics through using
artificial intelligence in journal evaluation studies to guide the future development of
sci-tech journals.

In this study, we construct a new time series dataset with 18 journal evaluation metrics;
propose applying machine learning and deep learning methods commonly used in the
field of time series analysis to the task of sci-tech dynamic journal evaluation based on
this dataset; construct models based on each of the nine mainstream methods in the field
of time series analysis to conduct training and testing experiments on our multivariate
short-time multi-series dataset; and provide evaluation metrics for these models. The
final results confirm the generalizability of these methods for the comprehensive dynamic
evaluation of sci-tech journals and show the LSTM model built on our dataset produces
the best performance (MSE: 0.00037, MAE: 0.01238, accuracy based on 80% confidence:
72.442%). Based on the results of this study, a variety of practical application strategies
can be extended, which can serve as a guide for rational resource allocation and for the
subsequent development planning of sci-tech journals.

Contributions:

1. We propose a sci-tech journal evaluation task for the dynamic evaluation of scientific
journals based on time series analysis.

2. Based on the collection and analysis of data from sci-tech journal publishing platforms,
such as WanFang and ZhiWang, we construct a time series dataset of journal metrics,
which is a multivariate short-time multi-series time series dataset. Our dataset pro-
vides data support and certain challenges to the field of multi-series time series data
collaborative analysis.

3. We build models using nine mainstream time series data analysis methods of machine
learning and deep learning to conduct various experiments on the task and dataset
proposed in this study, and the results are compared and analyzed in detail.

4. We confirm that these nine methods are generalizable to the task of the comprehensive
dynamic evaluation of scientific journals and find the LSTM model built on our dataset
produces the best performance, laying the foundation for the subsequent optimization
of algorithms and serving as a directional guide for this task.

The remainder of the article is organized as follows: Section 2 briefly introduces the
development status of journal evaluation, classical time series datasets, and time series
data analysis methods; Section 3 presents the details of the new time series dataset we
propose in this study, the processing of experimental input data, and the metrics for our
models; in Section 4, we introduce the details of the selected methods and the construction
of the model for training and testing experiments. In Section 5, we present a detailed and
comprehensive comparison and analysis of various results. Finally, in Sections 6 and 7, we
discuss the possible applications and development directions of subsequent research and
conclude the study.

2. Related Works
2.1. Evaluation of Sci-tech Journals
2.1.1. Development of Sci-tech Journals

After the first scientific journals were produced in 1665, the concept of core journals
was first introduced by British bibliographers in 1934, giving strong impetus to the devel-
opment and growth of sci-tech journals. The theoretical basis of sci-tech journal evaluation
consists of three classical theories of bibliometrics: The “law of literature dispersion”,
the “law of literature aging metric and citation peak”, and the “law of citation concentra-
tion”. The law of literature dispersion divides journals into core, relevant, and peripheral
zones [9]; the metric of literature aging reflects the development rate of the subject in
which the literature is located; the law of citation peaks provides important theoretical
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support for constructing impact factors [10]; and the law of citation concentration verifies
the law of document dispersion from the perspective of citation and further extends it to
the distribution law of journals based on citations, thereby providing a key theoretical basis
for the selection of core journals [11].

2.1.2. Evaluation Methods of Sci-tech Journals

At present, there are two main ways in which to evaluate sci-tech journals: Qualitative
evaluation and quantitative evaluation.

Qualitative evaluation is often based on peer review, which ensures the subjective
nature of the journal evaluation process. At present, UTD24 in the US, ABDC in Australia,
ABS, FT50 in the UK, and CNRS in France are some of the more prominent lists of peer-
reviewed journals.

Single metrics related to the publishing behavior of journals represent some of the
most important quantitative evaluation methods. Common classifications include citation
metrics represented by the journal impact factor (JIF), citation metrics represented by
the H-index, citation metrics represented by page rank, citation metrics represented by
‘altimetric’ [12], etc. At present, the main evaluation metrics are the journal impact factor,
the 5-year impact factor, the total number of citations, and the citation half-life of the journal.
The final dependent variable of this study is the extended impact factor.

2.1.3. Current Status of Studies on Sci-tech Journal Evaluation Metric Analysis

Based on the current situation of the qualitative evaluation of scientific journals, the
research on journal evaluation metric analysis mainly includes two categories: Individual
journal metric research and overall journal metric research. For individual journal metrics,
scholars at home and abroad currently pay more attention to the volume of articles, mainly
focusing on the relationship between academic influence and trend changes. For example,
the authors of [13–15] studied the relationship between article volume and the influence of
different journal types, etc. As for the overall study of journal metrics, the research mainly
focuses on the relationship with journal influence. On the other hand, it is mainly related
to the application of source metrics to the evaluation system. The authors of [16] studied
the relationship between the citation evaluation metrics of sci-tech journals from several
perspectives through comparative analysis. The authors of [17] proposed a nonlinear aca-
demic evaluation research method based on the backpropagation artificial neural network,
and their results better verified its applicability.

In summary, there are few journal evaluation metric analysis studies that use artificial
intelligence methods to learn journal metric time series data in order to build dynamic
evaluation models, and there are few datasets available in this field. To improve this
situation, this study proposes the use of artificial intelligence methods in the field of journal
evaluation to try to solve the task of the comprehensive dynamic evaluation of journals,
build a time series dataset of journal metrics after collecting and analyzing journal metric
data, select a variety of artificial intelligence methods to learn journal metric time series
data to build dynamic evaluation models, and then test and evaluate the models in order
to verify their feasibility. Finally, the feasibility and applicability of the research directions
are verified.

2.2. Time Series Dataset

We define time series data as data received at different times, describing changes in one
or more characteristics over events. There are two main types of datasets commonly used
in the field of time series data analysis: Univariate time series datasets and multivariate
time series datasets. Univariate time series datasets are simpler to understand as they can
be easily plotted, and a method can be quickly tried and evaluated; multivariate time series
datasets can carry richer information content for method mining analysis but are therefore
more challenging. In the following, we will briefly describe several datasets for comparison
with the new dataset constructed in this paper.
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2.2.1. Univariate Time Series Datasets

Daily minimum temperature dataset. This dataset describes the minimum daily
temperature in degrees Celsius for each day over the course of 10 years (1981–1990) in the
city of Melbourne, Australia, with 3650 observations, comprising data from the Australian
Bureau of Meteorology. The dataset has a strong seasonal component.

Shampoo sales dataset. This dataset describes the number of shampoos sold per month
from sales counters over a three-year period, with 36 observations, and was provided
by Makridakis, Wheelwright, and Hyndman (1998). The dataset as a whole shows an
increasing upward trend and may contain a seasonal component.

Daily female birth dataset. This dataset describes the number of female births on each
day in California in 1959, with 365 observations, and was provided by Newton (1988).

Monthly sunspot dataset. This dataset describes the monthly counts of the number of
sunspots observed for the last 200 years, with 2820 observations, comprising data provided
by Andrews and Herzberg (1985). This dataset has large differences between seasons and
exhibits seasonality.

2.2.2. Multivariate Time Series Datasets

Room occupancy detection dataset. This dataset describes 20,560 min of observations
of whether a room is occupied every minute, with seven attributes, including room lighting,
climate, and other attributes, providing a classification prediction problem. The data were
provided by Luis Candanedo of UMONS.

Ozone level detection dataset. This dataset describes ground-level ozone concentration
observations for each day over the course of 6 years in order to predict whether a particular
day is an “ozone day” or not. The dataset contains 2536 observations and 73 attributes and
provides a classification prediction problem.

EEG eye state dataset. This dataset describes the EEG data of individuals and whether
their eyes are open. The goal of the problem is to predict eye states based on EEG data,
with a total of 14,980 observations and 15 covariates.

It is worth noting that the commonly used datasets described above are single series,
while the time series dataset of journal metrics constructed in this study provides multi-
variate, short-time, and multi-series data. Multivariate data can carry more information
for mining and short-time data require the method employed to have a stronger implied
information mining ability, while multi-series data require the method to have a certain
data association analysis ability. Therefore, the dataset constructed in this study will pose a
greater challenge than a multivariate time series dataset.

2.3. Time Series Analysis Methods

Based on time series datasets, the time series analysis method is intended to analyze
and predict possible future data by mining and analyzing the implied correlation between
data of multiple dimensions and their correlation characteristics over time, using historical
data [18].

Time series analysis methods can all be regarded as regression problems, but there are
some differences in regression methods, which can be divided into traditional statistical
methods, machine learning methods, and deep learning methods. These three types of
methods are briefly introduced below.

2.3.1. Traditional Methods

The traditional methods, represented by ARMA/ARIMA [19] methods, can only
model and predict using smooth data and therefore need to differentiate the data first. The
traditional methods are still simple linear models based on the derivation of mathematical
formulas and statistical laws for time series analysis and prediction, which require the
forms of the data themselves, which must also be high quality. When dealing with a
univariate time series to analyze and predict problems, the traditional method performs
well; however, if there are too many variables, it is not applicable.
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2.3.2. Machine Learning Methods

Machine learning methods, represented by LightGBM [20] and XGBoost [21] methods,
often convert the time series problem into a supervised learning problem and use machine
learning methods to analyze and predict the time series after processing the data through
feature engineering. These methods can solve most complex time series analysis problems
and can support complex data modeling, multivariate co-regression, nonlinear problems,
etc.; however, the more complex feature engineering aspect needs to be performed manually,
and feature engineering determines the upper limit of machine learning methods. When
feature engineering is completed, the machine learning method is fast and accurate in
terms of computation. It does not possess high requirements for problems such as missing
data values.

2.3.3. Deep Learning Methods

Deep learning methods are able to design a variety of deep learning method architec-
tures based on practical problems due to the fact that the network structure can be freely
designed. Among them, LSTM/GRU [22], as a variant of RNN [23], has been designed for
solving time series problems, while WaveNet [24], Conv-1D [25], and other CNN-based
methods have been developed and can also be applied to time series data. In addition,
recent research has been carried out in relation to collaborative analysis and the prediction
of multi-series data. In general, deep learning methods are more suitable for problems
with large amounts of data, support online training, do not require manual feature engi-
neering, and can learn deeper semantic and relative relationship information from data;
however, their requirements with regard to input data are higher than machine learning
methods, and require data pre-processing, such as missing value filling and normalization,
in advance.

The time series dataset of journal metrics constructed in this study contains multiple
series and multiple covariates, and each time series is short. Based on the characteristics
of the dataset, it is difficult to apply traditional methods to the dataset, while machine
learning methods and deep learning methods can be applied to it via their powerful
adaptability to perform experimental analysis in relation to the dynamic evaluation task
of journals proposed in this paper. In addition, the multivariate short-time multi-series
dataset constructed in this study can also support the recent research on multiple-series
co-analysis in the field of time series analysis.

3. Dataset and Metrics
3.1. Dataset

The journal metric time series dataset contains 5425 journals, and each journal corre-
sponds to a time series consisting of five consecutive years of metric records for the same
journal, with each metric record consisting of 21 categories of elements. To ensure diversity
of the data sources in the dataset, metric records of journals for five consecutive years were
collected from a total of 152 subdivisions, with 12 broad subject categories.

Data collection, cleaning, and collation. As shown in Figure 1, we collected the contents
of the dataset from a total of 152 subdivisions (e.g., the medical field, the engineering field,
etc.), with 12 disciplinary categories. The proportion of journals belonging to each of
the 12 disciplinary categories in the dataset is shown in Figure 2. The dataset contains
5425 journals, each journal corresponds to a time series with five timesteps, and the contents
comprise 21 types of metric records for each journal, for a total of 5 years, from 2017 to
2021. We first collected a large number of journal metric records by year from journal
platforms such as WanFang and ZhiWang and used Excel records; then, we filtered the
journals containing five consecutive years of records based on journal names and unique
identifiers, stitched them according to journal names and unique identifiers, and sorted
them according to journal names and years of records. Finally, we performed cleaning
operations such as missing value filling and text transformation on the stitched data: For
missing values, we used the more common mean-fill method, i.e., we used the mean value
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of the category metric for the rest of the year of a journal, or directly filled it with 0 if all five
years were missing; for text, we converted this into numerical elements as model inputs.
The result of these steps is the time series dataset of journal metrics presented in this paper.
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Metric record categories. Each journal metric record contains three categories of journal
overview attributes (journal name, journal subject classification, and metric record year) and
18 categories of journal evaluation metrics (regional distribution, grant ratio, the average
number of authors, average number of citations, citation half-life, extended H metric,
extended other citation rates, extended immediate-year metric, extended disciplinary
impact metric, extended disciplinary diffusion metric, extended number of cited journals,
extended total citation frequency, extended citation half-life, literature election rate, number
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of institutional distribution, volume of source literature, overseas paper ratio, and extended
impact factor). Among them, the overview attributes are used to distinguish between the
data for detailed analyses in this study; the journal evaluation metrics are used as core
time series data for training and testing the models constructed by various time series
analysis methods.

Time series characteristics. Multiple multivariate, short-time series are included in
the journal metrics time series dataset. Each journal in this dataset contains metric records
for each of the last five years and thus can be viewed as a sample of 5425 time series of
5 time-step 18-dimensional variables, which can support experiments using multiple time
series prediction methods. Since the variables in this dataset are evaluation metrics for
journals by year, it is difficult to show obvious seasonality as a time series, and its multiple
time series and multiple covariates make certain demands on the mining learning ability
and association learning ability of the modeling algorithm. Therefore, there are some
difficulties in the research of modeling algorithms for this dataset.

Normalization. To support both machine learning and deep learning time series
prediction methods and to facilitate the comparison and weighting of metrics of different
units or magnitudes, we changed the various metrics in the time series dataset of journal
metrics from dimensioned expressions to dimensionless expressions, i.e., we normalized
the data for each column according to Equation (1), a more comprehensive normalization
equation referring to scikit-learn (a Python library) feature-scaling methods [26].

Xscaled =
X− X.min

X.max− X.min
× (Max−Min) + Min (1)

where Xscaled is the final normalized result, X represents the data to be normalized,
X.max /X.min are the maximum and minimum values of the columns in which the data are
located, and Max /Min are the maximum and minimum values of the mapping interval.
The essence of normalization is the operation of mapping data points to a given interval:
For an element in a column, first, we must find the ratio of the difference between the
minimum value and the maximum value of the column and then use the ratio to obtain
the value in the given mapping interval. It is worth noting that if we set the normalization
mapping range to [0, 1] and set Max to 1 and Min to 0, then Equation (1) can be transformed
into the most general normalization equation.

Experimental data processing. To construct inputs that can be applied to the time
series prediction method and to ensure a consistent data size, we processed the dataset in
the form of 3 + 1, with the extended impact factor as the target, i.e., the extended impact
factor of the fourth year was predicted using the time series data of the last three years,
and—finally—8680 training samples and 2170 test samples were generated.

For the machine learning method, which receives one-dimensional inputs of inde-
pendent variables, as shown in Figure 3, we stitched 18 types of evaluation metrics of the
same journal in three years in one dimension to obtain an input length of 54. For the ANN
method in deep learning, the input is processed in the same way as machine learning.

For the rest of the deep learning methods, the received independent variable input
is two-dimensional with the dimension of the timesteps × and the number of features as
shown in Figure 4. We used 18 categories of evaluation metrics from the same journal for
three years for two-dimensional stitching to obtain the 3 × 18 input.

At this point, the training and test preparation for the experimental phase are complete.
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3.2. Metrics

In time series prediction tasks, the diversity of evaluation metrics can provide a multi-
faceted reference for assessing model performance. Considering that each method has
its corresponding advantages and disadvantages, we chose five commonly employed
evaluation metrics to evaluate the effectiveness of the time series prediction model con-
structed based on this study’s journal metrics dataset in the dynamic journal evaluation
task: MSE (mean squared error) [27], MAE (mean absolute error) [28], RMSE (root mean
square error) [29], MAPE (mean absolute percentage error) [30], and NRMSE (normalized
root mean square error) [31]. The smaller the value, the higher the accuracy of the model.
We evaluated each method in our experiments using all of the above-mentioned metrics
and analyzed the applicability of the methods by comparing them with one another.

Among them, the mean absolute error (MAE) reflects the actual situation of the error
of the predicted value but relies on a scale, while the mean absolute percentage error MAPE
overcomes the disadvantage of relying on a scale, but we did not include a test sample with
an actual value of 0 in the calculations during processing; the mean square error (MSE),
root mean square error (RMSE), and standardized root mean square error (NRMSE) are all
measures that reflect the degree of difference between the actual value and the predicted
value, which are increasingly sensitive to outliers.

The evaluation metrics are calculated in Equations (2)–(6), where n is the number
of samples in the test set, yi is the actual value of the target for the i-th sample, ŷi is the
predicted value of the target given by the prediction model after receiving the input of the
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i-th sample, and ymax / ymin are the maximum and minimum values of the target columns
in the test set samples, respectively.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (4)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (5)

NRMSE =

√
1
n ∑n

i=1(yi − ŷi)
2

ymax − ymin
(6)

In addition, we designed an accuracy metric based on the idea of confidence in order
to support the analysis and allowed the number of samples in the test set to be n. For the x
confidence level, when the absolute error range between the predicted value of i-th sample
ŷi and the actual value yi does not exceed (1− x), it should be considered that the sample
is correctly predicted, and vice versa. Finally, we calculated the accuracy metric according
to Equation (7).

score =

∑n
i=1

{
1, i f |ŷi−yi |

yi
0, else

< 1− x

n
(7)

4. Methods

We selected the most mainstream methods in the field of machine learning and deep
learning for general time series analysis tasks, including multiple linear regression, random
forest, XGBoost, LightGBM, ANN, Conv-1D CNN, WaveNet, LSTM, and GRU, and then
built and trained the corresponding models to conduct tests on our dataset.

The predictions of traditional time series prediction methods are based on the explo-
ration of mathematical–statistical laws for univariate long-time single-series time series
data, which are difficult to apply to a multivariate short-time multi-series time series dataset
of journal metrics, so traditional methods such as ARMA, ARIMA, and Prophet were not
introduced or experimented upon in this study.

In Table 1, we briefly discuss how existing studies apply these methods to time series
forecasting tasks.

In the subsequent part of this chapter, we will introduce the principle of each method
and its modeling under our new time series forecasting task and new time series dataset.

4.1. Machine Learning Methods

As shown in Figure 3, we processed the journal metrics time series dataset into a
one-dimensional input vector with a single target in the form of supervised learning in
order to train the prediction model built by the machine learning method.
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Table 1. Brief discussions of how existing studies apply these methods to time series forecasting tasks.

Methods Existing Studies of Time Series Forecasting Tasks

Multiple Linear Regression Ng K Y, Awang N use Multiple Linear Regression time series model to forecast PM10
concentrations in Peninsular Malaysia [32].

Random Forest Kane M J, Price N, Scotch M, et al. use Random Forest time series model to predict avian
influenza H5N1 outbreaks [33].

XGBoost Shehadeh A, Alshboul O, Al Mamlook R E, et al. use machine learning models (XGBoost and
LightGBM) to predict the residual value of heavy construction equipment [34].LightGBM

ANN Alzain E, Alshebami A S, Aldhyani T H H, et al. use ANN to predict housing prices [35]; Ecer
F, Ardabili S, Band S S, et al. train ANN to predict stock price index [36].

Conv-1D CNN Cai M, Pipattanasomporn M, Rahman S. use Conv-1D CNN model in deep learning to
forecast day-ahead building-level load [37].

WaveNet Borovykh A, Bohte S, Oosterlee C W. use WaveNet to forecast conditional time series [38].

LSTM Ahmed A A, Deo R C, Ghahramani A, et al. integrate LSTM and Random Forest to estimate
soil moisture [39].

GRU Yamak P T, Yujian L, Gadosey P K. use GRU to forecast time series data with Bitcoin’s price
dataset as their time series dataset [40].

4.1.1. Multiple Linear Regression

When there is a linear relationship between the independent and dependent variables,
the method of building a prediction model for correlation analysis of two or more indepen-
dent variables with one dependent variable is called linear regression. Its general form is
as follows:

ŷi = θ0 + θ1Xi
1 + θ2Xi

2 + . . . + θnXi
n (8)

In Equation (8), θ0 is a regression constant, θn is the regression coefficient, and Xi
n is the

nth variable of the i-th set of observations, for which exact measurements can be obtained
from data collection. It is usually referred to as the independent variable or covariate in
time series prediction tasks. ŷi is the predicted value of the i-th set of observations, which
is called the dependent variable [41].

This method is arguably the simplest in machine learning, but it is computationally
simple and effective, so we include it in our experiments with ∑n

i=1(yi − ŷi)
2 as the loss

function, m as the number of samples, and yi as the actual value of the i-th set of obser-
vations. The training is performed by using the journal metrics time series dataset. We
consider the training of the multiple linear regression model complete when the value of
the loss function is below the set threshold, or the reduction in multiple training periods is
below the set threshold.

For the dynamic evaluation task of the journals in this study, the model is set as
y = f (x), the evaluation metrics of a journal for three years are stitched into a one-
dimensional vector as the input, and the dynamic evaluation of the journal is completed
when we obtain the corresponding ŷi+1.

4.1.2. Random Forest

The method is essentially an integrated learning method; it integrates many decision
trees into a forest and uses the average values of the predicted results to predict the final
outcome. The random forest method is insensitive to multivariate covariance, is more
robust to missing data and unbalanced data, and can predict the effects of up to several
thousand explanatory variables well, even when the input data are not normalized [42].

In the journal metrics time series dataset, the X vector is the independent variable of
the input model (a journal with three years of metrics data stitched together with a length
of 54), Y is the dependent variable to be predicted, the training set ϕ is randomly generated
in (X, Y), the predicted result is set to f (X), and the mean square generalization error is
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Ex,y[Y− f (X)]2. The final regression function of the random forest method is shown in
Equation (9).

Y = Eϕ f (X, ϕ) (9)

In our experiments, we set the maximum number of iterations of the weak learner to
500 and could use all of the feature values for partitioning when generating the decision tree.
We also used the bootstrap method to randomly select the sample set with a release (the
random forest is a bagging type algorithm), and each sample set grew into a single decision
tree with each leaf node containing one prediction. We chose to use the mean square error
(MSE) metric 1

n ∑n
i=1(yi − ŷi)

2 with the L2 regularization term as the loss function and a
measure of branch quality, and the selection of features was based on the difference in the
value of this function between the father and leaf nodes.

Considering that the dynamic journal evaluation task can be understood as a regression
task under supervised learning, we divided the whole feature space X into many non-
overlapping regions and used its mean value as the predicted result for all samples in
the same region, hoping to find a way in which to divide the regions so that the loss
was as low as possible. For the partitioning scheme, we used recursive slicing to exhaust
the possible partitioning thresholds for each feature when branching in order to find the
optimal slicing feature and the optimal slicing point threshold. We stopped when the
branching reached the preset terminating conditions (e.g., the upper limit of the number of
leaves, loss threshold, etc.). When making predictions, the means of all the results of the
decision tree predictions on the input variables were used as the final prediction results.

As described above, we trained a regression model built by the random forest method
based on a time series dataset of journal metrics for the dynamic evaluation task of journals.

4.1.3. EXtreme Gradient Boosting (XGBoost)

XGBoost (eXtreme gradient boosting) is an optimized distributed gradient boosting
algorithm based on the boosting framework. Compared with random forest with a put-
back random sampling bagging strategy, the boosting framework uses the whole dataset
in generating each decision tree. This method is very powerful in terms of its parallel
computational efficiency, missing value handling, control of overfitting, and prediction
generalization performance, and it has wider applications in time series prediction tasks.

The basic component of XGBoost is also a decision tree, but unlike the random forest
method, there is a before-and-after dependency between the decision trees in XGBoost, and
the generation of the latter decision tree combines the deviation of the previous one so that
the predicted value of the kth tree for the input sample is the sum of the predicted value of
the previous k-1 decision trees and the predicted value of the kth tree [21].

In the experiment, for the kth decision tree, we set the loss function as the MSE metric
between the predicted result and actual value of the dataset in the kth decision tree and the
complexity of the kth tree (consisting of the number of leaf nodes and the L2 regularization
factor of the node weights). In generating the decision tree, the leaf nodes were set to
the value that minimized the objective function of the tree. For each input sample of
journal metrics, we used the weighted partitioning method proposed by XGBoost to rank
the 54 feature values to obtain the appropriate cut points, and then, based on the greedy
algorithm, we attempted to use the cut points at each node to generate a new tree in order to
obtain the optimal division with the smallest loss function value and with fewer overheads.
At the same time, after one iteration, we multiplied the weights of the leaf nodes by a
reduction factor to reduce the impact of each tree, in order to create more learning space.
We set the maximum number of iterations of the weak learner to 1000, and the model was
considered to be trained when the value of the loss function was below the set threshold.

In summary, we built and trained an XGBoost model that can perform regression
prediction on a journal metrics time series dataset, which can be used for dynamic journal
evaluation tasks.
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4.1.4. LightGBM

LightGBM, proposed by Microsoft, is a lightweight gradient boosting algorithm that
continues the integrated learning approach of XGBoost and optimizes XGBoost based on
problems related to the existence of too many split points, too many samples, and too many
features. This method can perform regression prediction for time series analysis tasks.

Compared with XGBoost, LightGBM uses the HistoGram algorithm for feature selec-
tion, which constructs a histogram of width k by discretizing continuous floating-point
features into k values, and then traverses the training data to calculate the cumulative
statistics of each discretized value in the histogram. For the decision tree growth strategy,
LightGBM adopts a leaf-wise strategy with a depth limit, finding the leaf with the largest
splitting gain from all the current leaves each time to split, and then continues this process
cyclically. Therefore, LightGBM has a smaller memory footprint and is faster but is also
more prone to overfitting [20].

In our experiments, we used the same loss function for training as XGBoost in
Section 4.1.3, and the model was considered trained when the value of the loss function
was below a set threshold. We conducted time series data prediction experiments using
this model on the journal metrics time series dataset and recorded the results.

4.2. Deep Learning Methods

As shown in Figure 4, we processed the journal metrics time series dataset into a
two-dimensional vector of timesteps × several eigenvalue dimensions with a single target
to train the predicting model built by the deep learning methods.

4.2.1. Artificial Neural Network (ANN)

The Artificial Neural Network (ANN) is the most basic neural network, also called a
multilayer perceptron. It is characterized by modeling and predicting through the process
of learning training data without the need for complex mathematical models. Based on the
fact that ANN can approximate arbitrary nonlinear mapping relations, it can be applied to
the field of time series analysis for experiments [43].

As shown in Figure 5, an ANN network model containing 3 hidden layers was built
for the dynamic journal evaluation task in this study. Both the ANN model and the machine
learning method inputs were one-dimensional vectors obtained by the one-dimensional
stitching of journal metric values in 3 timesteps, so the input layer had 54 neurons, the
3 hidden layers had 64, 128, and 64 nodes, and the output layer had only 1 node to output
the predicted results of dynamic journal evaluation. Each layer is set with a corresponding
partial coefficient. The network was optimized using the Adam algorithm, using the MSE
metric as the loss function, and we set the initial learning rate of the model to 0.1, the decay
rate of the first-order moment estimation to 0.9, the decay rate of the second-order moment
estimation to 0.999, and the batch size to 32. In total, 90% of the data in the training set
were taken for training, and 10% of the data were used to validate the network.

The ANN model is essentially a nonlinear mapping transformation of input samples
to output samples, and the ANN model built in this study has the function of mapping
past time series observations of journal metrics (each journal metric in the past three years)
to future predicted values (possible future impact factors of journals). In this study, the
ANN network model was constructed as a typical method of time series prediction in deep
learning to perform one-step prediction and complete the task of the dynamic evaluation
of journals.
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4.2.2. Conv-1D Convolutional Neural Network (CNN)

Convolutional neural networks (CNNs) can better identify simple features in data
by convolution operations and can generate more complex features using these simple
features by multi-layer convolution, pooling, and other operations, and finally, conduct
regression prediction by using fully connected layers. Based on the characteristics of CNN,
one-dimensional convolution (Conv-1D) is often applied to the analysis of time series, such
as sensor data and signal data. For the journal metrics dynamic evaluation time series
analysis task in this study, we implemented a Conv-1D CNN model for experiments on the
journal metrics time series dataset [25].

As shown in Figure 6, a Conv-1D CNN model containing mainly 3 one-dimensional
convolutional layers and 2 fully connected layers was built for this experiment. Each input
data contained 18 journal evaluation metrics for each of the 3 years of a certain journal, so a
3 × 18 input matrix with 3 timesteps was obtained.
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In this model, each convolutional layer was equipped with 128 convolutional kernels
of size 2, 2, and 1, and we uniformly set the convolutional step size to 1 and used ReLU as
the activation function. Since the convolution is intended to extract and learn features from
the input of the layer, the simple features of the journal index time series can be gradually
extracted and combined to form complex and comprehensive features after three layers of
convolution. After obtaining the final extracted features from the convolution layer, they
are fed into the fully connected layer for analysis, and the final output is a prediction of the
possible impact factor values of the periodicals in the next time step.

We used the MSE metric as the loss function and trained the model using 90% of the
data from the training set and 10% of the data for validation. We considered the training of
the model complete when the loss value of a training epoch was below a set threshold or
when the decrease in the loss value was too small after multiple training epochs, and we
were able to complete the dynamic journal evaluation task using this model.

4.2.3. WaveNet

WaveNet is slightly different from ordinary one-dimensional convolution and is a
model based on the atrous convolution style, which can also be called a temporal-based
convolution, proposed by DeepMind in September 2016.

WaveNet’s core architecture is atrous convolution, which ensures that the model is
not exposed to information from future timesteps at each timestep. As shown in Figure 7,
atrous convolution simply means skipping the input values by a certain step size and
applying the convolution kernel to the region beyond its own size, thus achieving the goal
of expanding the perceptual field and preserving the input resolution without increasing
the computational cost significantly. Atrous convolution doubles the expansion factor of
the convolution kernel in each layer until the cycle repeats from 1 after an expansion factor
of 512 is reached [24].

In this study, we built a WaveNet model containing 9 convolutional layers, 1 flattened
layer, and 1 fully connected layer structure, where the first 8 convolutional layers were
atrous convolution modules with ReLU activation function, considering that each input
data of the journal metrics time series contained only three timesteps containing 18 features,
so each layer had 20 one-dimensional convolution kernels of size (2 × 18) and causal
padding. We set the expansion factors to no more than 8. Each expansion factor was
applied to 2 convolution layers; 10 one-dimensional convolution kernels of size (1 × 18)
were set for the last convolution layer to extract the final features for input to the fully
connected layer.

In the model training process, the training and validation sets were divided equally
at 9:1, and the MSE metrics were used as the loss functions for convergence. The model
had a large feeling field, and the network structure based on atrous convolution could
automatically extract periodical information on different time scales, so it could extract
time series features based on the journal metrics time series dataset to accomplish the task
of dynamic journal evaluation.



Appl. Sci. 2022, 12, 12864 15 of 26

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 26 
 

atrous convolution simply means skipping the input values by a certain step size and ap-
plying the convolution kernel to the region beyond its own size, thus achieving the goal 
of expanding the perceptual field and preserving the input resolution without increasing 
the computational cost significantly. Atrous convolution doubles the expansion factor of 
the convolution kernel in each layer until the cycle repeats from 1 after an expansion factor 
of 512 is reached [24]. 

 
Figure 7. Example of atrous convolution. The circles represent the data of each layer, and the dotted 
lines represent the convolution operations between layers. The solid lines reflect atrous convolution, 
with different expansion factors between layers. 

In this study, we built a WaveNet model containing 9 convolutional layers, 1 flat-
tened layer, and 1 fully connected layer structure, where the first 8 convolutional layers 
were atrous convolution modules with ReLU activation function, considering that each 
input data of the journal metrics time series contained only three timesteps containing 18 
features, so each layer had 20 one-dimensional convolution kernels of size (2 × 18) and 
causal padding. We set the expansion factors to no more than 8. Each expansion factor 
was applied to 2 convolution layers; 10 one-dimensional convolution kernels of size (1 × 
18) were set for the last convolution layer to extract the final features for input to the fully 
connected layer. 

In the model training process, the training and validation sets were divided equally 
at 9:1, and the MSE metrics were used as the loss functions for convergence. The model 
had a large feeling field, and the network structure based on atrous convolution could 
automatically extract periodical information on different time scales, so it could extract 
time series features based on the journal metrics time series dataset to accomplish the task 
of dynamic journal evaluation. 

4.2.4. Long Short-Term Memory Network (LSTM) 
The long short-term memory network (LSTM) is a recurrent neural network (RNN) 

specifically designed to solve the problem of gradient disappearance and gradient 

Figure 7. Example of atrous convolution. The circles represent the data of each layer, and the dotted
lines represent the convolution operations between layers. The solid lines reflect atrous convolution,
with different expansion factors between layers.

4.2.4. Long Short-Term Memory Network (LSTM)

The long short-term memory network (LSTM) is a recurrent neural network (RNN)
specifically designed to solve the problem of gradient disappearance and gradient explosion
caused by the existence of long-term dependence in general RNN, which introduces a
gating unit with 3 gates (as shown in Figure 8), where ht−1 represents the output of the
previous cell, Ct−1 represents the previous cell state, xt represents the input of the current
cell, C̃t represents the information to be updated into the cell state by the current cell, ht
represents the output of the current cell, Ct represents the current cell state, and σ represents
the sigmoid layer (capable of mapping data in the 0–1 range and acting as a gating signal).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 26 
 

explosion caused by the existence of long-term dependence in general RNN, which intro-
duces a gating unit with 3 gates (as shown in Figure 8), where ℎ𝑡𝑡−1 represents the output 
of the previous cell, 𝐶𝐶𝑡𝑡−1 represents the previous cell state, 𝑥𝑥𝑡𝑡 represents the input of the 
current cell, 𝐶̃𝐶𝑡𝑡 represents the information to be updated into the cell state by the current 
cell, ℎ𝑡𝑡 represents the output of the current cell, 𝐶𝐶𝑡𝑡 represents the current cell state, and 
σ represents the sigmoid layer (capable of mapping data in the 0–1 range and acting as a 
gating signal). 

 
Figure 8. Example of LSTM cell, after inputting 𝑥𝑥𝑡𝑡 and processing, obtaining the output ℎ𝑡𝑡. 

The LSTM model cell can be roughly divided into two lines, with the top line con-
trolling long-time memory and the bottom line controlling short-time memory. 

In the oblivion gate, 𝑓𝑓𝑡𝑡 reads ℎ𝑡𝑡−1 and 𝑥𝑥𝑡𝑡 and outputs a number from 0–1 with the 
previous cell state 𝐶𝐶𝑡𝑡−1 in the previous cell, and the value determines which information 
is discarded from 𝐶𝐶𝑡𝑡−1. 

In the input gate 𝑖𝑖𝑡𝑡, the results obtained by multiplying the results of the sigmoid 
layer with the vectors generated by the tanh layer are used to determine which new infor-
mation 𝐶̃𝐶𝑡𝑡 is added to the cell state, and the final combination of the results of the forget-
ting gate and the input gate causes the cell state to be updated to 𝐶𝐶𝑡𝑡. 

In the output gate 𝑜𝑜𝑡𝑡, the cell state is processed using the tanh layer  𝐶𝐶𝑡𝑡 and multi-
plied with the sigmoid layer result to obtain the final output of this cell, ℎ𝑡𝑡; then, ℎ𝑡𝑡 and 
𝐶𝐶𝑡𝑡 are passed to the next cell [44]. 

We can abstract the LSTM model as a function with three inputs and one output, as 
shown in Equation (10). 

ℎ𝑡𝑡 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥𝑡𝑡，𝐶𝐶𝑡𝑡−1，ℎ𝑡𝑡−1) (10) 

In this study, the dynamic journal evaluation task only required a one-step prediction 
of the possible future impact factors of journals. To simplify the network structure, we set 
only one layer of LSTM and one layer of fully connected layers when building the LSTM 
model. In the LSTM layer, the matrix dimension of the hidden layer was set to 50, the 
activation function was set to ReLU, the inputs were the spliced (3 × 18) journal metrics 
time series data, and only the output of the last time series was returned. The fully con-
nected layer processed the 50-dimensional output of the LSTM layer into a single output 
value and this output was the one-step prediction of the input time series sample; we 
chose the MSE metric as the main loss function and the Adam algorithm as the optimizer. 
Finally, the training, validation, and testing of the LSTM model on the journal metrics time 
series dataset were completed, and the evaluation metrics results were derived. 

LSTM controls the transmission state by gating the state and can remember infor-
mation that needs to be remembered for a long period of time while forgetting 

Figure 8. Example of LSTM cell, after inputting xt and processing, obtaining the output ht.



Appl. Sci. 2022, 12, 12864 16 of 26

The LSTM model cell can be roughly divided into two lines, with the top line control-
ling long-time memory and the bottom line controlling short-time memory.

In the oblivion gate, ft reads ht−1 and xt and outputs a number from 0–1 with the
previous cell state Ct−1 in the previous cell, and the value determines which information is
discarded from Ct−1.

In the input gate it, the results obtained by multiplying the results of the sigmoid layer
with the vectors generated by the tanh layer are used to determine which new information
C̃t is added to the cell state, and the final combination of the results of the forgetting gate
and the input gate causes the cell state to be updated to Ct.

In the output gate ot, the cell state is processed using the tanh layer Ct and multiplied
with the sigmoid layer result to obtain the final output of this cell, ht; then, ht and Ct are
passed to the next cell [44].

We can abstract the LSTM model as a function with three inputs and one output, as
shown in Equation (10).

ht = LSTM(xt, Ct−1, ht−1) (10)

In this study, the dynamic journal evaluation task only required a one-step prediction
of the possible future impact factors of journals. To simplify the network structure, we
set only one layer of LSTM and one layer of fully connected layers when building the
LSTM model. In the LSTM layer, the matrix dimension of the hidden layer was set to
50, the activation function was set to ReLU, the inputs were the spliced (3 × 18) journal
metrics time series data, and only the output of the last time series was returned. The fully
connected layer processed the 50-dimensional output of the LSTM layer into a single output
value and this output was the one-step prediction of the input time series sample; we chose
the MSE metric as the main loss function and the Adam algorithm as the optimizer. Finally,
the training, validation, and testing of the LSTM model on the journal metrics time series
dataset were completed, and the evaluation metrics results were derived.

LSTM controls the transmission state by gating the state and can remember information
that needs to be remembered for a long period of time while forgetting unimportant
information. Therefore, the LSTM model we built can be applied to the multivariate
short-time multi-series data-based time series prediction task in this study.

4.2.5. Gate Recurrent Unit (GRU)

The gate recurrent unit (GRU) is a kind of RNN and a variant of LSTM, which reduces
the number of gates in the gating unit to 2, eliminates the second-order nonlinear function
of the output, combines the forgetting gate and the input gate into an “update gate”, fuses
the cell state and the hidden state, and makes the structure and parameters more concise,
so it is easier to compute the structure and parameters while maintaining a similar effect
as LSTM. Figure 9 shows an example cell of GRU, where ht−1 represents the output of the
previous cell, xt represents the input of the current unit, h̃t represents the information to be
updated to the hidden state of the current cell, ht represents the output of the current cell,
and σ represents the sigmoid layer (capable of mapping data in the 0–1 range and acting as
a gating signal).
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In the GRU model cell, first, we combined the ht−1 and xt sigmoid layers to obtain
the reset gate rt and update gate of zt, where the reset gate combined signals rt and ht−1
and multiplied them together to attain the “reset” data h′t−1, which was then combined
with the input xt. Then, the “reset” data were obtained through the tanh layer containing
the current input data h′. The update gate performed both forgetting and remembering
steps according to Equation (11) and used zt for ht−1 selective forgetting and h′ selective
remembering; finally, the output of this unit is ht [45].

ht = (1− zt)� ht−1 + zt � h′ (11)

We can abstract the GRU model as a function with two inputs and one output, as
shown in Equation (12), where the current unit receives the input xt and combines the
hidden state of the previous unit containing the information of the previous unit, ht−1, to
obtain the output of the current unit, ht.

ht = GRU(xt, ht−1) (12)

In our experiments, we built a GRU model containing one layer of GRU with three
fully connected layers. Among them, the hidden layer matrix dimension in the GRU layer
was set to 64, the activation function between layers was set to LeakyReLU, the inputs were
the spliced (3 × 18) journal metric time series data, and only the output of the last time
series was returned. The neurons in the fully connected layer were 32, 16, and 1, and the
64-dimensional output of the GRU layer was processed into a single output value layer by
layer in order to complete the one-step prediction of the 3 timesteps for the journal metrics
time series data. We chose the MSE metric as the main loss function, and the ratio of the
training set to the validation set was 9:1. Finally, we finished the model training, validation,
and experiments on the test set and obtained the evaluation metric results, which proved
that the GRU model can be applied to the dynamic journal evaluation task in this study.

5. Results

In this study, we conducted experiments using a single RTX 3090 GPU, used sklearn
for model construction, training, and testing based on machine learning methods, and
TensorFlow and Keras for model construction, training, and conducted testing based on
deep learning methods. In the experiments, we built corresponding models using each
of the nine methods introduced in Chapter 4 and then trained, tested, and compared the
performance of these models on the journal metrics time series dataset and utilized various
evaluation metrics to assess the experimental results in order to enable comprehensive
analysis. We normalized the data before inputting them into the models and uniformly used
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the MSE metric as the main loss function of the model. We uniformly set the deep learning
model to use 80 epochs to try to improve the reasonableness of the metric comparison.

5.1. Training Situation Analysis

The model training situation of the nine methods is shown in Table 2. In the ex-
periments, we used instrumentation timing to time the training of the models built by
each method.

Table 2. Training situation analysis table. The best data in each column are displayed in bold.

Methods Training Time Params MSE

Machine
Learning

Multiple Linear
Regression 0.36618 s - 0.00044

Random Forest 134.23013 s - 0.00047

XGBoost 3.37131 s - 0.00058

LightGBM 2.57614 s - 0.00076

Deep Learning

ANN 32.43376 s 20,161 0.00047

Conv-1D CNN 51.61289 s 67,145 0.00047

WaveNet 73.93935 s 6721 0.00050

LSTM 108.72789 s 13,851 0.00037

GRU 120.08700 s 18,561 0.00046

In machine learning, the multiple linear regression model benefits from its simple
algorithm and obtains the fastest training speed and superior results. On the other hand,
the random forest model is the slowest method, but its performance is fair. Presumably,
its model pre-construction process is more complex, and we did not conduct any pruning,
which resulted in the algorithm becoming too complex, resulting in increased time con-
sumption. The XGBoost and LightGBM models are based on the optimization method of
the boosting tree, which is faster than the random forest model, but the effect is relatively
poor. In terms of the dynamic journal evaluation task, using the unpruned random forest
model is more expensive, but the prediction fit of the journal metric time series dataset is
better than that of the XGBoost and LightGBM optimization models.

The training speed of deep learning models is generally affected by the network
structure, the number of epochs, and the number of parameters. Regarding the network
structure, the general time consumption in the case of a close number of layers means
that ANN is the fastest, CNN is the second fastest, and RNN is the slowest. In terms of
the number of epochs, we uniformly conducted 80 epochs of iterative training during
the experiment.

Among the five deep learning models built in this study, the ANN model has only
four fully connected layers in its network structure, so it has the fastest training speed
despite its large number of parameters. Alternatively, the Conv-1D CNN model has the
largest number of trainable parameters (10 times that of WaveNet) among the five methods
because it uses more convolutional kernels, but its network structure only contains three
convolutional layers and one fully connected layer. The LSTM model and the GRU model
are both RNNs, both of which take the longest amount of time to train among the deep
learning methods. Although GRU is an optimized and simplified version of the LSTM
model, we added two more fully connected layers to the GRU model structure compared
with the LSTM model. The relative relationship between the five models’ training situations
is consistent with our inferences regarding the factors affecting the training speed.

On the whole, the training time for building models by machine learning methods is
shorter than that of deep learning. Considering that machine learning generally requires
artificial feature engineering of the input in advance, it is normal that the training time is
shorter than that of deep learning models.
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For the models built using the deep learning methods, the variations in the loss for
80 epochs during training are shown in Figure 10. It can be seen in the figure that the loss
convergence curves of several models are relatively close, and the LSTM model has the best
convergence, while the ANN, Conv-1D CNN, and GRU models have similar convergence
effects, and WaveNet has the worst convergence, with large fluctuations at 20–30 epochs.
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5.2. Evaluation Metrics Results

In Section 4.1, we introduce the mainstream evaluation metrics for time series predic-
tion selected for this experiment, and the results of the evaluation metrics for the models
built by the nine methods are shown in Table 3.

Among the models built by machine learning methods, the multiple linear regression
model and the random forest model have the best metrics. The multiple linear regression
model exhibits low training time consumption and high metric results with regard to the
journal metrics time series dataset applied in this study and has the best overall performance
among the machine learning models in this study, indicating that this dataset can be used
to mine better linear dependencies.

The random forest model is able to learn the possible relationships between a large
amount of time series data via the use of a forest composed of decision trees—without the
use of a pruning strategy—and although the training period is long, time-consuming, and
more complex in structure, it also obtains almost the best results in terms of the evaluation
metrics in the journal time series dataset. However, its overall performance is not as good
as the multiple linear regression model due to the long training period and excessive
memory usage.
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Table 3. Evaluation metric record table. The best data in each column are displayed in bold.

Methods MSE MAE RMSE MAPE NRMSE 80% 85% 90%

Machine
Learning

Multiple
Linear Re-
gression

0.00044 0.01393 0.02109 22.143% 0.02516 68.433% 55.899% 40.645%

Random
Forest 0.00047 0.01342 0.02174 19.921% 0.02594 71.152% 59.447% 43.687%

XGBoost 0.00058 0.01456 0.02418 21.963% 0.02884 68.203% 56.359% 39.862%

LightGBM 0.00076 0.01561 0.02764 27.961% 0.03298 66.129% 53.963% 38.018%

Deep
Learning

ANN 0.00047 0.01388 0.02165 23.472% 0.02583 68.525% 57.281% 42.074%

Conv-1D
CNN 0.00047 0.01369 0.02169 21.560% 0.02588 69.032% 58.479% 42.258%

WaveNet 0.00050 0.01401 0.02225 22.983% 0.02655 67.604% 56.866% 41.567%

LSTM 0.00037 0.01238 0.01914 19.704% 0.02283 72.442% 61.521% 46.083%

GRU 0.00046 0.01304 0.02154 19.972% 0.02570 71.521% 60.046% 43.548%

The XGBoost and LightGBM models are based on the optimization method of boosting
trees, and both models are slightly worse than the random forest model. LightGBM is the
model with the worst evaluation metrics in terms of machine learning, and although it op-
timizes XGBoost from a theoretical point of view, it exhibits poor prediction generalization
in this study, which is also consistent with its possible disadvantage of easy overfitting.
Both XGBoost and LightGBM greatly improve the speed of training with a slight decrease
in accuracy compared to the random forest model.

The performance of the test evaluation metrics of the four machine learning models
after training on the journal metrics time series dataset reflects that the dataset constructed
in this study achieved superior feature engineering and can be better applied to many time
series analysis methods in the field of machine learning.

Among the models built by deep learning methods, the LSTM model is optimal in
all metrics and is the best deep learning model when considering the training situation.
However, the GRU model outperforms the other three deep learning models in terms of
overall metrics, considering that both are special RNNs with gating units added, which can
indicate that the ability of RNNs to mine implied relationships through short-time series
under the journal metrics time series dataset is stronger, and the ability to link covariates
with other time series for learning is more suitable for the dynamic journal evaluation task
proposed in this paper.

The ANN and CNN models perform similarly on the evaluation metrics. ANN models
are able to fit nonlinear relationships due to the presence of activation functions, and their
logic and performance in the field of time series data analysis are similar to the multiple
linear regression model used in machine learning. The large number of neurons contained
in multiple hidden layers introduces a large number of parameters to be learned but also
improves the models’ ability to mine the implicit relationships in time series data.

The Conv-1D CNN model contains a large number of one-dimensional convolutional
kernels and thus has the largest number of parameters, but it is able to extract multimodal
hidden features among the time series of journal metrics compared to the ANN model,
which contains only fully connected layers; therefore, evaluation metrics perform better
with the Conv-1D CNN model than the ANN model overall.

The WaveNet model is an optimized version of the Conv-1D CNN model that uses
atrous convolution to expand the perceptual field with a low number of parameters, but
in the case of the journal metrics time series dataset, containing only three timesteps per
input, the Conv-1D CNN model is able to obtain a more comprehensive perceptual field
and features as well, although the network structure is shallower and has more parameters.
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Therefore, the WaveNet model has a worse combined effect than the Conv-1D CNN model
and is the worst-performing deep learning method.

Overall, for the dynamic journal evaluation task and the journal metrics time series
dataset, the models built by machine learning perform better than the models built by
multiple linear regression and random forest.

The two models built based on RNN perform the best among the models built using
deep learning and can still obtain better evaluation metric results than the machine learning
models, even under the premise that the feature engineering of the dataset in this study is
better. On the other hand, ANN can maintain better evaluation metric results under the
premise of the shortest training time consumption and is also capable of the task proposed
in this paper. The overall comparison of the nine models in this study shows that the two
deep learning models based on CNN are less effective, but the gap between them and other
models is not particularly large.

In this study, a model was built based on nine methods in two fields, the model was
trained on our journal metrics time series dataset for dynamic journal evaluation tasks, and
experiments and evaluations were conducted. The results demonstrate, to a certain extent,
that the current common and mainstream methods in the field of time series analysis can be
generalized to the new tasks proposed in this paper. After analyzing the results of various
metrics, the LSTM model is currently the best model for the comprehensive evaluation of
the dynamic journal evaluation task, and the following subsection provides a more detailed
analysis of the experimental results based on this method.

5.3. Dynamic Evaluation Analysis of Sci-tech Journals Based on LSTM

This subsection analyzes the performance of LSTM in the experiment in detail.
Figure 11 shows the comparison between the real results in the test set and the

predicted results of the LSTM model. Blue dashes represent the actual values and green
dashes represent the predicted values, revealing that the predicted results are well fitted.
Considering that the difference between the metrics of other experiments and LSTM is not
disparate, it can be demonstrated that the mainstream methods in the field of time series
analysis are generalizable to the task of dynamic journal evaluation.
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Table 4 shows the results of the evaluation metrics of the trained LSTM model in the
test set for dynamic evaluation of journals in different classes of subjects. It can be seen
that the dynamic evaluation of journals in the field of medicine is optimal, followed by
agriculture; however, the overall dynamic evaluation of the subjects of economics and
transportation is poor.

Table 4. LSTM results’ evaluation metrics of different classes of objects. The best data in each column
are displayed in bold.

Subject Class MSE MAE RMSE MAPE NRMSE 80% 85% 90%

Medicine 0.00040 0.01372 0.01990 14.032% 0.03096 82.656% 72.847% 55.622%

Engineering 0.00034 0.01020 0.01844 20.840% 0.04779 69% 57% 44%

Pedagogy 0.00045 0.01311 0.02123 27.958% 0.03149 71.622% 59.459% 44.595%

Technical
Science 0.00018 0.00902 0.01330 19.659% 0.03335 69.412% 58.235% 44.706%

Economic 0.00086 0.01806 0.02924 35.588% 0.04092 53.947% 43.421% 31.579%

Transportation 0.00015 0.00969 0.01237 17.177% 0.07558 61.538% 50% 30.769%

Social Science 0.00030 0.01213 0.01743 17.112% 0.02764 68.868% 53.774% 36.792%

Natural
Science 0.00036 0.01278 0.01887 22.791% 0.06288 61.667% 52.5% 38.333%

Materials
Science 0.00026 0.01225 0.01599 43.718% 0.12383 55.263% 47.368% 34.211%

Agronomy 0.00014 0.00869 0.01180 14.211% 0.05090 79.310% 63.793% 48.276%

Basic Science 0.00022 0.00993 0.01477 27.944% 0.05378 59.483% 48.276% 34.914%

Others 0.00077 0.01635 0.02775 27.026% 0.03310 62.745% 53.922% 37.255%

Through detailed analysis of the journal metric time series dataset, we found that
journals in the medical field are the most numerous and most completely and compre-
hensively recorded samples in the dataset, while journals in the field of agronomy are
smaller in number, but their metric records are more comprehensive, with fewer missing
values and a high degree of metric diversity; thus, both have better evaluation metric
results under the trained LSTM model. In contrast, journals in the field of economics and
transportation are smaller in number in the dataset, and it is verified that the original data
of these two types of journals contain more outliers and missing values, and although they
are processed through data cleaning, poorer evaluation metric results are still obtained
under the LSTM model.

The above analysis proves that the authenticity, completeness, and comprehensiveness
of metric records are very important for the dynamic journal evaluation task, and the
number of training samples is essentially positively correlated with the performance effect.
Although the problem of abnormal data can be solved by data pre-processing, it still affects
the final training effect.

6. Discussion

Sci-tech journals currently play an important role in the innovation systems of each
country as a carrier of academic content, and effective journal evaluation and prediction
models will play a crucial role in the development of sci-tech journals, so the purpose of
this study was to dynamically evaluate the possible future development of the journal
through journal historical metrics, which will enable us to allocate the right resources and
develop appropriate strategies for journal development. In this chapter, we will discuss the
methods and results of this paper and analyze the theoretical and practical implications
based on the above content.
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6.1. Methods and Results Discussion

In this paper, we introduced time series data prediction methods using artificial
intelligence into the dynamic journal evaluation scenario and built and tested nine models
based on various metrics.

In the experimental process of this study, we found that although machine learning
methods are not necessary to dimension the process of the data, normalizing the data and
then training the model can still improve the evaluation metrics. WaveNet based on atrous
convolution performs no better than Conv-1D CNN on the dynamic journal evaluation
task because the dataset is a multivariate short-time multi-series and has few time-steps.
Although multiple linear regression is a simple algorithm, it performs well on the dataset
in this study, and its model can be quickly implemented to obtain the basic values of
evaluation metrics when performing the time series analysis task. The models built with
RNN methods (LSTM and GRU) obtained the best performance on the dynamic journal
evaluation task.

In recent years, there have been many papers conducted on the analysis of time series
data, for example, Alzain E, et al. used artificial intelligence to predict housing prices [35],
Shehadeh A, et al. used machine learning models to predict the residual value of heavy
construction equipment [34], Ecer F, et al. trained a multilayer perceptron to predict the
stock price index [36], Ahmed A A, et al. integrated LSTM and random forest to estimate
soil moisture [39], etc.

Similar to these papers, we also propose new scenarios, new tasks, and new datasets,
and build models. In addition, our time series dataset of journal metrics is more challenging
than traditional time series datasets, because it is a multivariate short-time multi-series
dataset; our experiments cover the two major fields of machine learning and deep learn-
ing; therefore, we are able to provide a relatively reliable result after a comprehensive
comparison of various mainstream time series analysis models.

Through this study, we found that, currently, on journal platforms such as WanFang
and ZhiWang, there are more journals in the medical field and comprehensive records of
metrics, while economics journals are relatively fewer in number and have more metric
anomalies. To achieve the orderly and healthy development of sci-tech journals, the dis-
semination media of sci-tech journals should be expanded, diverse dissemination channels
should be opened, and annual metrics should be comprehensively recorded and calibrated.

6.2. Theoretical and Practical Implications

Practical Implication. The model built, trained, and experimented with in this study
can be extended with a variety of application strategies in future journal evaluation and
analysis tasks and can serve as a guide for resource allocation and the subsequent devel-
opment planning of journals. For example, when trying to make decisions on arranging
the al-location of journal resources, the model built in this study can be used to outline the
possible future development status of journals, which can help guide the reasonable alloca-
tion of journal resources to a certain extent. For instance, when there are certain planning
expectations for the development of journals in a given year, they can be passed into the
models as input to obtain dynamic evaluation results, and different dynamic evaluation
results can be obtained through the continuous adjustment of the planning, which can, in
turn, assist in adjusting journals’ development.

Theoretical Implication. The comprehensive conclusions of the experiments conducted
in this study can provide methodological references for other multivariate short-time multi-
series time series analysis studies, and the dataset proposed in this paper can also provide
data support for similar tasks.

7. Conclusions

At present, sci-tech journals are becoming increasingly important as part of the national
innovation system. The quality of journals is directly related to the development and
progress of subjects, and the scientific and systematic evaluation of journals can help
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improve their quality and influence, as well as facilitate researchers to understand the
current research priorities and hot spots. The development of a dynamic evaluation
model for journals based on journal metrics and time series data and the verification of its
rationality and usability can play an important role in the development of sci-tech journals.

Contributions. In this study, we proposed a new task: Dynamic evaluation task for
journals and construct a new time series dataset of 18 journal evaluation metrics. Based on
this, we built nine models based on the mainstream machine learning and deep learning
methods in the field of time series analysis and conducted training and experiments
on the dataset to provide comprehensive and diverse evaluation metric results, then
compared and analyzed the results to confirm the generalizability of these methods for
the comprehensive dynamic evaluation of journals, and found the LSTM model we built
achieved high prediction accuracy in the task proposed in this paper, laying the foundation
for subsequent research on this task.

Limitations. We built the dataset by collecting journal evaluation metrics data in
the past five years from the Wanfang and ZhiWang platforms, but there are still many
journal platforms and search websites that can provide more data or proofread existing
data. We built models using nine mainstream time series forecasting methods to dynam-
ically evaluate sci-tech journals, and although these models are universal for the task of
dynamic evaluation of sci-tech journals, they have not been specifically optimized for our
multivariate short-time multi-series dataset. These limitations also provide directions for
future studies.

Future studies. To improve the accuracy and credibility of the models built in this
study for dynamic journal evaluation, more journal metric time series data could be added
from different data sources. From the perspective of the feature value, we could consider
selectively choosing some covariates for model training based on the importance of the
journal metrics. With regard to the algorithm, we could consider improving the network
structure and the parameter settings of the model built based on LSTM and GRU methods
in this study, for example, adding a transformer or Seq2Seq structure, etc.
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