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Abstract: It is the core prerequisite of landslide warning to mine short-term deformation patterns
and extract disaster precursors from real-time and multi-source monitoring data. This study used the
sliding window method and gray relation analysis to obtain features from multi-source, real-time
monitoring data of the Lishanyuan landslide in Hunan Province, China. Then, the k-means algorithm
with particle swarm optimization was used for clustering. Finally, the Apriori algorithm is used to
mine strong association rules between the high-speed deformation process and rainfall features of
this landslide to obtain short-term deformation patterns and precursors of the disaster. The data
mining results show that the landslide has a high-speed deformation probability of more than 80%
when rainfall occurs within 24 h and the cumulative rainfall is greater than 130.60 mm within 7 days.
It is of great significance to extract the short-term deformation pattern of landslides by data mining
technology to improve the accuracy and reliability of early warning.

Keywords: disaster precursor identification; early warning; association rule mining; particle swarm
optimization; k-means clustering; Apriori algorithm; gray relation analysis

1. Introduction

Mountains and hills make up more than 60% of the total area of Hunan province in
China, half of which have slopes greater than 25◦ [1]. This area has high rainfall, so landslide
disasters are frequent. According to statistics, 2449 various geological disasters occurred in
Hunan Province in 2020, causing economic losses of 262.49 million RMB, of which 2116
were landslide disasters, accounting for 86.4% [2]. Deploying multiple types of sensors
on landslides to gather information on deformation, rainfall, stress, and other physical
parameters, and providing timely warning, are low-cost and reliable prevention methods
that can effectively reduce casualties [3–5]. With the development of sensor technology
and Internet of Things technology, landslide monitoring is gradually developing towards
the direction of automation and intelligence [6–9]. It is of great significance to fully mine
extensive monitoring data and extract and identify warning precursors for studying the
mechanisms of landslide disasters and improving the accuracy of warning.

Early and accurate identification of landslide precursors is a prerequisite for early warn-
ing. The traditional precursors that can be used for early warning are mainly macroscopic
phenomena such as surface cracks, slope toe uplift and other macro phenomena [10–12].
With the development of monitoring technology, landslide precursors can be mined from
abundant monitoring data, of which the most widely used type of data is surface deforma-
tion. The accelerated deformation process of landslides is the most intuitive and reliable
precursor, so it is widely used in the study of landslide early warning. Xu et al. [5,13] pro-
posed to use the normalized tangent angle as an indicator for early warning of landslides.
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Jeng et al. [14] proposed to use displacement-velocity ratio as an indicator for landslide
warning. Valletta et al. [15] proposed a multicriteria approach to identify accelerated defor-
mation processes in landslides. Bai et al. [16] proposed a hybrid warning algorithm that
could identify the landslide acceleration process quickly, automatically, and accurately in
an online monitoring and warning system, and achieved the balance of warning immediacy,
accuracy, and computational resources through different strategies.

Although displacement, as a precursor of landslide disaster, can give early warning
quickly and accurately, it also has many shortcomings. First, the current sensors for
displacement monitoring are highly susceptible to environmental influences and often
generate false alarms during the warning process [16–18]. Second, displacement is the
result of a combination of multiple factors, both internal and external to the landslide.
The acceleration of displacement foreshadows the initiation of the landslide process, and
the warning window is very short [19–21]. Finally, the use of a single displacement
characteristic for early warning does not take into account the impact of external trigger
factors such as rainfall, earthquakes, and construction on the disaster, and is therefore
necessarily incomplete.

The development of data mining technology in recent years has provided new research
ideas for landslide precursor identification. Data mining technology can filter and analyze
useful information and important events from massive data to reveal the internal relation-
ships and hidden rules of data, which have been widely used in the commercial [22,23],
industrial [24,25], engineering [26,27], medical [28–30] and educational [31,32] fields with
remarkable effect. The application of data mining techniques in the field of landslides is
mainly focused on susceptibility assessment [33–35], aiming to analyze landslide instability
risk at the regional scale, while there are very few studies on application in specific landslide
monitoring. Ma et al. [36,37] first used modern data mining techniques integrating two-step
clustering, association rule mining, and decision trees to analyze data from the Majiagou
landslide and the Zhujiadian landslide in the Three Gorges reservoir area. These studies not
only identified landslide disaster factors but also realized the prediction of displacement
evolution, which was the earliest research to carry out data mining for single landslide
monitoring. Miao et al. [38] and Guo et al. [39] adopted the same data mining technology
to analyze the trigger factors of the Baishuihe landslide and the Shuping landslide in the
Three Gorges Reservoir area, and determined the warning threshold. All these studies have
fully and comprehensively considered the correlation between multi-source monitoring
data and provided causal relationships between different monitoring variables, which are
very helpful for the analysis of landslide damage mechanisms and instability patterns.
Most of these studies focused on reservoir landslides in the Three Gorges region of China,
with monitoring data collected over several years and on a monthly scale. Therefore, these
studies were more focused on the long-term deformation patterns of landslides. How-
ever, the daily-scale or even hourly-scale short-term deformation patterns of landslides
are equally important in landslide early warning studies. Such short-term deformation
patterns contain more reliable precursors of landslide disasters than deformation features,
which are important for early warning decisions. In addition, these studies all adopted
a two-step clustering algorithm, which is a kind of hierarchical clustering and divides
clusters through the process of splitting or clustering, so there is no need to determine the
number of clusters. However, for the clustering of daily or even hourly monitoring data,
we prefer to flexibly adjust the number of clusters. This kind of data is very complex, and
human subjective judgment is still needed. At this time, partition clustering represented by
k-means is more appropriate.

The purpose of this paper was to mine the short-term deformation patterns of land-
slides, identify the precursors of landslides, and obtain more reliable early warnings. In
this study, the Lishanyuan Landslide in Hunan Province was taken as the case study. First,
the sliding window method was used to extract features from the original monitoring data,
then the k-means algorithm optimized by particle swarm optimization (PSO) was used
to cluster the features and construct the item set, and the Apriori algorithm was finally
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used to mine the association rules between different features and determine the short-term
deformation pattern of landslides according to the given confidence levels to analyze the
precursors of landslide disasters and provide early warnings.

2. Methodology
2.1. Overview

The association mining method as shown in Figure 1 was used to mine the association
rules between the triggering factors and landslide displacement, which mainly includes
three parts: feature engineering, clustering and association rule mining.
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In the feature engineering part, for the original multi-source data obtained from
landslide monitoring, the sliding window method is used to scan the monitoring data time
series of each source. In the scanning process, the 3σ criterion is first used to eliminate
obvious outliers, and then the corresponding features are calculated according to the type
of monitoring data, and finally the feature time series data set is formed.

In the clustering part, for the feature time series obtained in the previous part, the
PSO-optimized k-means algorithm is first used for clustering, and then the time series are
transformed into item sets, and finally the time series of all features are processed in the
same way to build the transaction database.

In the association rule mining part, for the transaction database constructed in the
previous section, the Apriori algorithm is used to mine the frequent item sets and associa-
tion rules in the transaction database and analyze the disaster factors and destabilization
precursors of landslides accordingly.

2.2. PSO-Optimized k-Means Algorithm

The original value-based monitoring dataset must be changed into a category-based
transactional database since the Apriori algorithm for association rule mining is category-
based. The k-means algorithm is the most well-known clustering algorithm, whose core
objective is to classify the dataset into K clusters, with the elements in each cluster having a
high degree of similarity. The k-means algorithm is simple to implement and fast to cluster,
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but it is very sensitive to the choice of initial cluster centers. Different initial values may
lead to different clustering results, i.e., local optima rather than global optima. To solve
this problem, we used the PSO algorithm for global optimization. The PSO algorithm is an
evolutionary algorithm based on population intelligence that finds the optimal solution
by simulating the process of a flock of birds searching for food. The specific steps of the
k-means clustering algorithm optimized by PSO are as follows:

Step 1: Particle swarm initialization. Suppose there is a particle swarm composed of m
particles in a given D-dimensional search space, and each particle has only two attributes:
position and velocity, where position is the code of the solution to be solved and the velocity
is the iteration step size.

For the i− th particle, its coordinate position can be expressed as:

Xi =
(
xi1, xi2, · · · , xiD

)
(1)

The velocity of the i− th particle can be expressed as:

Vi =
(
υi1, υi2, · · · , υiD

)
(2)

When performing k-means clustering on the dataset D =
{

x1, x2, · · · , xn
}

, the
initial cluster centers C =

{
µ1, µ2, · · · , µk

}
need to be specified. In order to avoid

the problem of local optimal clustering caused by the sensitivity of C, we coded C as Xi in
Equation (1) for global optimization.

Step 2: Particle clustering and fitness calculation. Perform k-means clustering after
decoding each particle in the particle swarm. The specific steps are as follows:

Sub-step 2.1: For each element xi in the dataset D, the Euclidean distance

dij =

√
n
∑

i=1

(
xi − µj

)2 between xi and the center µj of each cluster is calculated and

the current element xi is assigned to the cluster Cj represented by the center with the
smallest distance.

Sub-step 2.2: For each cluster Cj obtained in Sub-step 2.1, the central µ
′
j = 1

|Cj| ∑
x∈Cj

x

of that cluster is recalculated and the C =
{

µ1, µ2, · · · , µk
}

is updated.
Sub-step 2.3: Repeat the sub-step 2.1 and 2.2 until the center µ

′
j and element xi of each

cluster Cj no longer change. Then, the final clustering result can be obtained.
Sub-step 2.4: To evaluate the clustering effect of the current position of each particle,

the following equation is used to calculate the fitness F(i) of each particle.

F(i) =
n

∑
i=1

k

∑
j=1

(
xi − µj

)2

(3)

where xi denotes the i− th element in the dataset, and µj is the center of the i− th cluster.
The fitness function represents the sum of the squares of the distances between each element
and the center of the cluster to which the element belongs, and the smaller the fitness,
the better the clustering effect. The individual optimal solution Pi and the group optimal
solution gbest can be obtained through fitness.

The optimal position searched by the i− th particle is denoted as:

Pi =
(

pi1, pi2, · · · , piD
)

(4)

The optimal position searched by the particle swarm is denoted as:

gbest =
(

g1, g2, · · · , gD
)

(5)
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Step 3: Position update. Update the position and velocity of each particle with the
following equation:

Vk+1
i = ωVk

i + c1r1

(
Pk

i − Xk
i

)
+ c2r2

(
gk

best − Xk
i

)
(6)

Xk+1
i = Xk

i + Vk+1
i (7)

where Vk
i denotes the velocity of the i− th particle at the k− th iteration. Xk

i denotes the
position of the i − th particle at the k − th iteration. Pk

i denotes the individual optimal
solution of the i− th particle up to the k− th iteration. gk

best denotes the population optimal
solution of the particle swarm as of the k− th iteration. c1 and c2 denote the acceleration
constants to adjust the step size. r1 and r2 denote the random numbers between 0 and 1,
respectively, to enhance the randomness of the search process.

Step 4: After the velocity and position of each particle are updated, the particles that
are out of the solution range are initialized randomly again. If the current fitness function
value is better than the historical optimal Pi, then update Pi. Similarly, if the population
fitness function value of the updated particle population is better than the historical optimal
gbest, then update gbest.

Step 5: Repeat Step 2 to 4, and constantly update and iterate for all particles until
the maximum number of solutions is reached or the aggregation degree σ2 of the group
optimal solution gbest is less than the given threshold.

σ2 =
1
n

n

∑
i=1

[
F(i)− F

]2 (8)

where F is the average fitness of the particle swarm, and σ2 represents the aggregation de-
gree of the particles in the particle swarm. The smaller its value, the higher the convergence
degree of the PSO algorithm. When σ2 is less than the given threshold, this means that the
particles are all clustered near the global solution. At this time, the particle with the best
fitness is the initial center of the global optimal clustering, and the clustering result can be
obtained using k-means for clustering.

2.3. Association Rule Mining and Apriori Algorithm

Association rule mining refers to the discovery of valuable correlation information
and knowledge rules from data sets. The Apriori algorithm is the most classic algorithm for
mining association rules. Suppose I =

{
i1, i2, · · · , im

}
is an item set, each element

im of which is called an item, and the item set of length k is called k− itemset. A subset of
item set I can form a transaction, and multiple transactions can form a transaction database
T =

{
t1, t2, · · · , tn

}
. Suppose X and Y are two item sets in the transaction database

whose intersection is empty, that is, X ⊂ T, Y ⊂ T and X ∩ Y = ∅. These two item sets
can be denoted by X ⇒ Y and if there is an association rule the former item X denotes
the condition of the association rule and the latter item Y denotes the conclusion of the
association rule. To better measure the performance of the mined association rules, three
indicators need to be used: support, confidence and lift. Their definitions are as follows:

Support is the probability that X and Y occur together in the transaction database T.
Support indicates the importance of association rule X ⇒ Y in the total data:

SX⇒Y =
|T(X ∪Y)|
|T| (9)

Confidence is the probability that Y will occur if X is included. Confidence expresses
the validity of the association rule X ⇒ Y :

CX⇒Y =
|T(X ∪Y)|
|T(X)| (10)
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Lift is the ratio of the confidence to the occurrence probability of the later term Y in
the transaction database T. Lift indicates the strength of the correlation, and the larger the
lift, the stronger the correlation:

LX⇒Y =
|T(X ∪Y)|
|T(X)| /

|T(Y)|
|T| (11)

where |T(X ∪Y)| represents the number of item sets X and Y appearing in the transaction
database T at the same time. |T| represents the number of transactions in the transaction
database T. |T(X)| and |T(Y)| represent the number of item sets X or Y appearing in the
transaction database T, respectively.

The minimum support min_supp and minimum confidence min_con f need to be
specified as thresholds in association rule mining. If the support of an item set is greater
than min_supp, then this item set is called frequent item set. If the support and confidence
of an association rule are greater than the min_supp and min_con f , then this rule is called
a strong association rule. The specific flow of the Apriori algorithm is shown in Figure 1
and described in detail as follows:

Step 1: Iterate through all the transactions in the transaction database T and count the
number of each item and calculate the support. The items with the support greater than
min_supp are deleted to generate the frequent 1-item set L1.

Step 2: Generate candidate 2-item set for L1 by joining and pruning operations,
calculate the support of each item in the candidate 2-item set and also filter according to
the min_supp to get the frequent 2-item set L2. Repeat this process until the candidate
k− itemset is empty, thus obtaining the frequent k− itemset.

Step 3: Calculate the confidence of each Lk separately, and output the association rules
with confidence greater than min_con f .

3. Study Area
3.1. Landslide Overview

The Lishanyuan landslide is located in Xinhua County, Hunan Province, China
(Figure 2). The longitudinal length of the landslide is 120 m, the horizontal width is
300 m, the average thickness is about 3 m, and the total volume is about 1.08 × 105 m3. The
landslide is a shallow landslide with a main slide direction of 210◦. The middle and back
edges of the slope are well covered with vegetation. There are several residential houses at
the left foot of the slope. The area on the right side of the slope is poorly covered with vege-
tation. There is a village-level road and a small stream at the front edge of the landslide, and
the foot of the slope has been washed by the river for a long time. Due to long-term river
scouring at the foot of the slope, the landslide initially showed accelerated deformation
characteristics in 1996. From then until 2012, it underwent a slow deformation trend. In
2013, the landslide accelerated again, with multiple cracks on the slope and subsidence of
the village-level road. In April 2018, affected by heavy rainfall, the landslide had a local
slip of about 600 m3, and the sliding soil fell to the walls and windows of residential houses
on the lower side of the slope, causing a direct loss of about 600,000 RMB. According to the
on-site investigation, the landslide is a small and shallow traction landslide, which is very
common and representative in Hunan Province, China.
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of the Lishanyuan landslide. (b) Geographical location of the Lishanyuan landslide. (c) Photographs
of monitoring stations DB02 and YL01. (d) Photograph of the DB01 monitoring station.

3.2. Deformation Characteristics

To protect the safety of the residents below the landslide, we completed the deploy-
ment and commissioning of monitoring equipment to establish a monitoring and early
warning system on 15 April 2021. The location and photos of the monitoring stations are
shown in Figure 2. Two GNSS monitoring stations, named DB01 and DB02, were deployed
on the main slide profile of the landslide, and the GNSS base stations are located on the
roadside of the lower side of the landslide. In addition, a rain gauge named YL01 was
deployed at DB02. The automated monitoring system received the first monitoring data at
17:00 on 15 April, and the default acquisition interval of the GNSS monitoring stations was
1 h. As the landslide appeared to accelerate significantly on 17 May, the GNSS monitoring
stations adjusted the collection interval to 30 min, and the collection interval of the rain
gauge was adjusted to 20 min. As of 15:00 p.m. on 1 July 2022, a total of 57,597 monitoring
data were collected by the monitoring system, including 30,396 GNSS monitoring data and
27,201 rainfall monitoring data. The monitoring data are shown in Figure 3.

From Figure 3, it can be seen that the deformation patterns of the two GNSS monitor-
ing stations are basically the same, but the deformation amplitude of DB02 is significantly
larger than that of DB01, which indicates that the deformation of the leading edge of this
landslide is larger than that of the trailing edge of the landslide, which is consistent with
the deformation characteristics of the traction landslide. The threshold design and warning
process of this landslide are described in Bai et al. [16] The deployed monitoring and warn-
ing system is able to accurately and quickly identify the accelerated deformation process of
the landslide and report timely warnings. To verify the reliability of the monitoring data,
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we inspected the landslide site on 19 May 2021. At this time, the landslide area had just
experienced a strong rainfall, and the monitoring data from two GNSS monitoring stations
showed that the landslide had been violently deformed. We found multiple cracks in the
landslide body during a site inspection (Figure 4), obvious slippage, soil accumulation at
the foot of the slope, and small mudslides in the local area. These macroscopic phenomena
are consistent with the monitoring and early warning results, proving the effectiveness and
reliability of the monitoring and early warning system.
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The deformation process of Lishanyuan landslide shows obvious correlation with the
rainfall process. Taking the DB02 monitoring station with the most obvious deformation
as an example, the displacement of the two GNSS monitoring stations first showed a
fluctuation of 10 mm for about a week after the monitoring started, indicating that the
measurement accuracy of GNSS was of centimeter level. Affected by the rainfall event on
22 April 2021, the acceleration process began with the synchronization of the displacements
of the two GNSS monitoring stations starting at 4:00 a.m. on 23 April. After that, the
displacements of the two monitoring stations showed a step-like growth, and each severe
deformation process was accompanied by concentrated high-intensity rainfall. After mid-
October, the rainfall decreased, and the deformation began to slow down, showing creep
characteristics. After April of the following year, the landslides started a process of obvious
deformation and acceleration again.

3.3. Feature Engineering

From the deformation characteristics reflected by the Lishanyuan landslide monitoring
data, we found that the deformation process of the landslide showed an obvious correlation
with the rainfall process. To further mine the association rules of this correlation, we needed
to carry out further data mining on the monitoring data, for which feature engineering was
first needed. Feature engineering refers to extracting more representative features from raw
monitoring data to improve the effectiveness of mining tasks. For the monitoring data and
deformation characteristics of the Lishanyuan landslide, we constructed features for both
deformation and velocity. In terms of deformation, we focused more on the accelerated
deformation process, so the deformation velocity was the most important feature. The
deformation velocity (υDB01,υDB02) of two GNSS monitoring stations was chosen as the
main feature. In terms of rainfall, we paid attention not only to the short-term rainfall
features, but also to the long-term rainfall features. We chose the cumulative rainfall of
three hours q3h, six hours q6h, twelve hours q12h, 24 h q24h, three days q3d, and seven days
q7d as the characteristics reflecting rainfall.

According to Bai et al. [40] and Liu et al. [41], the strength of correlation between
features can be quantitatively determined by gray relation analysis. Therefore, we used
the gray relation analysis algorithm to calculate the gray relation degree between various
types of rainfall features and deformation velocity; the calculation results are shown in
Table 1. From Table 1, we can see that the gray relation degree of all rainfall features and
deformation velocity is greater than 0.9, which is much higher than the empirical threshold
of 0.6. So, all of these rainfall features can be adopted.

Table 1. Gray relation degree between rainfall characteristics and displacement characteristics.

q3h q6h q12h q24h q3d q7d

υDB01 0.970735 0.971045 0.971962 0.973857 0.978478 0.979868
υDB02 0.964633 0.964742 0.96582 0.968061 0.973537 0.975926

4. Results
4.1. Clustering Results

For the various types of feature sequences obtained from feature engineering, we
used the PSO-optimized k-means algorithm to cluster each feature. The number of cluster
centers for each type of feature was set to 3, thereby clustering the feature into low, medium,
and high clusters. The clustering results of all features are shown in Figure 5, and the
interval ranges and sample sizes of different clusters are shown in Table 2.
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Table 2. Interval range and sample size of all feature clustering results.

Feature Name Cluster Name Lower Bound Upper Bound Count Mean Standard
Deviation

υDB01
DB01-Low-Velocity −3.64 4.70 4887 0.46 1.02

DB01-Medium-Velocity 4.78 15.54 253 9.09 2.83
DB01-High-Velocity 16.49 60.96 56 23.58 6.25

υDB02
DB02-Low-Velocity −3.84 4.77 4669 0.60 1.23

DB02-Medium-Velocity 4.79 55.37 507 13.39 8.55
DB02-High-Velocity 59.24 108.84 20 90.67 15.85

q3h
Rain-3 h-Low 0.00 3.60 4962 0.18 0.56

Rain-3 h-Medium 3.80 19.40 217 7.33 3.43
Rain-3 h-High 21.20 61.40 17 34.34 12.17

q6h
Rain-6 h-Low 0.00 5.00 4830 0.32 0.88

Rain-6 h-Medium 5.20 24.40 333 9.95 4.57
Rain-6 h-High 24.80 83.80 33 39.42 16.47

q12h
Rain-12 h-Low 0.00 7.20 4656 0.64 1.48

Rain-12 h-Medium 7.40 32.80 494 13.93 6.12
Rain-12 h-High 33.40 89.20 46 52.80 17.83

q24h
Rain-24 h-Low 0.00 10.40 4429 1.39 2.55

Rain-24 h-Medium 10.60 43.00 698 19.64 7.76
Rain-24 h-High 45.00 99.40 69 68.48 17.00

q3d
Rain-3 d-Low 0.00 17.20 3736 4.31 5.12

Rain-3 d-Medium 17.40 68.20 1284 30.46 11.61
Rain-3 d-High 68.60 202.20 176 106.48 28.89

q7d
Rain-7 d-Low 0.00 35.20 3554 15.46 10.88

Rain-7 d-Medium 35.40 122.20 1450 55.17 17.47
Rain-7 d-High 130.60 285.80 192 197.53 46.03

Combining Figure 5 and Table 2, it can be seen that the number of samples in different
clusters differs by an order of magnitude. The number of samples of low-rank clusters is
much higher than that of middle-rank and high-rank clusters, and the number of samples
of middle-rank clusters is also much higher than that of high-rank clusters. Combining
Figure 5 and Table 2, it can be seen that the number of samples in different clusters differs
by an order of magnitude. The number of samples of low-rank clusters is much higher than
that of middle-rank and high-rank clusters, and the number of samples of middle-rank
clusters is also much higher than that of high-rank clusters. Taking υDB01 as an example,
the speed of samples in the DB01-Low-Velocity cluster is between −3.64 and 4.70, which
has a total of 4887 samples. The speed of samples in the DB01-Medium-Velocity cluster
is between 4.78 and 15.54 with a total of 253 samples, which is an order of magnitude
less than the DB01-Low-Velocity cluster. The speed of samples in the DB01-High-Velocity
cluster is between 16.49 and 60.96, and the number of samples is only 56, which is an order
of magnitude less than the DB01-Medium-Velocity cluster. The clustering results of other
features have similar characteristics to υDB01, differing only in the range of intervals. The
boundaries between the different clusters are very clear, and the characterized velocities or
intensities of rainfall are largely consistent with the actual situation.

4.2. Association Rule Mining Results

After clustering, each cluster is named, and then the values in the features converted
into category names. The category names of different features at each moment form an item
set, thereby transforming the entire feature dataset into a transaction database. The Apriori
algorithm was used to carry out the association rule mining study on this transaction
database to mine strong association rules between rainfall features and the velocities of two
GNSS monitoring stations separately. We took the velocity of GNSS monitoring stations
as the latter term and the rainfall characteristics as the former term, and obtained the
corresponding strong association rules based on both different min_con f and min_supp.
For the velocity of the DB01 monitoring station, we set the min_supp as 0.3% and the
min_con f as 80%. For landslide warning, we focused more on the high-speed deformation
process, which is the DB01-High-Velocity cluster, so we filtered the eligible association
rules as shown in Table 3.
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Table 3. Association rules related to Lishanyuan landslide deformation.

Rule ID Mined Association Rules Confidence Support Lift

1 Rain-24 h-Low & Rain-3 d-High & Rain-7 d-High => DB01-High-Velocity 86.36% 0.37% 80.13

2 Rain-12 h-Low & Rain-24 h-Low & Rain-3 d-High & Rain-7 d-High =>
DB01-High-Velocity 86.36% 0.37% 80.13

3 Rain-24 h-Low & Rain-3 d-High & Rain-3 h-Low & Rain-7 d-High => DB01-High-Velocity 90.48% 0.37% 83.95
4 Rain-24 h-Low & Rain-3 d-High & Rain-6 h-Low & Rain-7 d-High => DB01-High-Velocity 86.36% 0.37% 80.13

5 Rain-12 h-Low & Rain-24 h-Low & Rain-3 d-High & Rain-3 h-Low & Rain-7 d-High =>
DB01-High-Velocity 90.48% 0.37% 83.95

6 Rain-12 h-Low & Rain-24 h-Low & Rain-3 d-High & Rain-6 h-Low & Rain-7 d-High =>
DB01-High-Velocity 86.36% 0.37% 80.13

7 Rain-24 h-Low & Rain-3 d-High & Rain-3 h-Low & Rain-6 h-Low & Rain-7 d-High =>
DB01-High-Velocity 90.48% 0.37% 83.95

8 Rain-12 h-Low & Rain-24 h-Low & Rain-3 d-High & Rain-3 h-Low & Rain-6 h-Low &
Rain-7 d-High =>DB01-High-Velocity 90.48% 0.37% 83.95

9 Rain-12 h-Low & Rain-24 h-High & Rain-7 d-High => DB02-High-Velocity 83.33% 0.10% 216.50

10 Rain-12 h-Low & Rain-24 h-High & Rain-3 d-High & Rain-7 d-High =>
DB02-High-Velocity 83.33% 0.10% 216.50

11 Rain-12 h-Low & Rain-24 h-High & Rain-3 h-Low & Rain-7 d-High =>
DB02-High-Velocity 83.33% 0.10% 216.50

12 Rain-12 h-Low & Rain-24 h-High & Rain-6 h-Low & Rain-7 d-High =>
DB02-High-Velocity 83.33% 0.10% 216.50

13 Rain-12 h-Low & Rain-24 h-High & Rain-3 d-High & Rain-3 h-Low & Rain-7 d-High =>
DB02-High-Velocity 83.33% 0.10% 216.50

14 Rain-12 h-Low & Rain-24 h-High & Rain-3 d-High & Rain-6 h-Low & Rain-7 d-High =>
DB02-High-Velocity 83.33% 0.10% 216.50

15 Rain-12 h-Low & Rain-24 h-High & Rain-3 h-Low & Rain-6 h-Low & Rain-7 d-High =>
DB02-High-Velocity 83.33% 0.10% 216.50

16 Rain-12 h-Low & Rain-24 h-High & Rain-3 d-High & Rain-3 h-Low & Rain-6 h-Low &
Rain-7 d-High => DB02-High-Velocity 83.33% 0.10% 216.50

For the velocity of DB02 monitoring station, we set the min_supp as 0.1% and the
min_con f as 80%. We also filtered the association rules with DB01-High-Velocity as the
latter term in the same way (see Table 3).

A lot of interesting information can be obtained from the association rules in Table 3.
First, the lift of all these association rules is much greater than 1, indicating that the presence
of rainfall former terms in these association rules has a significant positive effect on the
high-speed deformation of landslides. Second, if the rainfall characteristics are classified
into the current moment (3 h, 6 h), short-term (12 h, 24 h), and long-term (3 days, 7 days),
then the recent rainfall characteristics are not significant in the association rules. For
example, in Rules 3–8 and 11–16, these association rules with recent rainfall characteristics
can be considered as subordinate rules of the four main rules: Rule 1, Rule 2, Rule 9,
and Rule 10. Third, from the four main rules of Rule 1, Rule 2, Rule 9, and Rule 10,
the high-speed deformation of landslides requires not only the occurrence of short-term
rainfall characteristics, but also long-term rainfall characteristics, and the occurrence of
only one of them does not induce the high-speed deformation process of landslides. Fourth,
for the DB01 monitoring station, the long-term heavy rainfall characteristics are more
important for high-speed deformation of the landslide, because the three-day or seven-
day rainfall characteristics in Rule 1–8 are heavy rainfall, and the 12- and 24-h rainfall
characteristics can be low-intensity rainfall. Fifth, for the DB02 monitoring station, not
only the long-term heavy rainfall characteristics of 3–7 days but also the short-term heavy
rainfall characteristics of 24 h are required.

In conclusion, by analyzing the monitoring data of the Lishanyuan landslide, it can be
initially concluded that the landslide is caused by rainfall. Through association rule mining,
the disaster factors can be more accurately identified as the combination of short-term
rainfall and long-term heavy rainfall. When making early warning decisions, a rainfall
within 24 h and a heavy rainfall with a cumulative rainfall greater than 130.60 mm within
7 days can be used as a precursor to identify the high-speed deformation of the landslide.
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5. Discussion

To analyze the disaster factors of the Lishanyuan landslide and determine the precur-
sors of high-speed deformation of the landslide, we used a combination of PSO-optimized
k-means clustering algorithm and the Apriori algorithm to mine the association rules of
the monitoring data. The analysis results of the mined strong association rules show that
the high-speed deformation process of the Lishanyuan landslide is mainly affected by the
combination of short-term rainfall of about 1 day, and long-term heavy rainfall of about
3–7 days. A rainfall within 24 h and a heavy rainfall with a cumulative rainfall greater than
130.60 mm within 7 days can be used as a precursor to identify the high-speed deformation
of the landslide. Such a precursor can improve the ability of warning.

The association rule mining algorithm used in this study has the following main
advantage. First, we used the sliding window method to extract features in the feature
engineering part. This method improves the data utilization by considering continuous
data over a period of time comprehensively, compared to considering only the features at
the current moment, thus improving the reliability and representativeness of the obtained
features. Second, the original k-means clustering algorithm is optimized by using the PSO
algorithm, which effectively prevents the clustering results from falling into a local optimal.
Third, the k-means algorithm is simple to implement and only requires a given number of
clusters, which is easy to quantify. Other clustering methods that do not require specifying
the number of clusters often require specifying other hyperparameters that are difficult to
quantify. It is more convenient to directly specify the number of clusters for the control
of clustering results. Finally, this study is based on real-time monitoring data, whose
sampling intervals are hourly or even on the minute scale. Compared with ultra-long-term
monitoring data at the monthly scale, it is richer and pays more attention to short-term
deformation patterns of landslides, which is of great significance for early warning.

Additionally, it should be noted that our improvement of the association rule mining
method results in an increase in algorithm complexity. On the one hand, we use the PSO
algorithm to optimize the k-means clustering process, which is an evolutionary algorithm
that requires uninterrupted iterative computation of many potential solutions, which is
very complex and time-consuming. On the other hand, the Apriori algorithm for mining
association rules needs to scan the entire transaction database when processing frequent
candidate sets, which has high algorithm complexity, a huge amount of calculation, and is
very time-consuming. With the improvement of technology and the passage of monitoring
time, the number of monitored landslides and the volume of data will also increase sharply
in the future. It is an inevitable trend to explore simple and fast data mining algorithms.

In this study, the Apriori algorithm was used to mine association rules. Therefore,
the numerical dataset was converted into a category-type transaction database. This
method cannot further quantify association rules and is easily affected by clustering results.
Meanwhile, the Apriori algorithm does not consider the time series characteristics of item
sets in the mining process of association rules, which results in ignoring the influence of
sequence pattern in the mining process. Future research needs to explore a data mining
method that uses numerical datasets and considers sequential patterns in order to mine
more valuable information.

6. Conclusions

For the monitoring data of the Lishanyuan landslide, the sliding window method was
used to extract the features, and gray relation analysis was used to screen the features. Then
the PSO-optimized k-means algorithm was used to cluster. Finally, the Apriori algorithm
was used to mine the strong association rules between deformation speed and rainfall
characteristics to analyze the disaster factors of the Lishanyuan landslide and propose the
precursors that can be used for early warning. The following conclusions were obtained
from this study:

The sliding window method was adopted to achieve feature extraction of high-
frequency monitoring data, which can make full use of the data and be more representative.
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Using PSO-optimized k-means algorithm to cluster feature engineering can effectively
avoid the clustering results falling into local optimal. By clustering, the numerical dataset is
transformed into transaction database, and the strong association rules can be mined using
the Apriori algorithm. This research developed mining of association rules of monitoring
data at hourly or even minute scale. Compared with ultra-long-term monitoring data at
monthly scale, we should pay more attention to short-term deformation patterns, which
are more conducive to short-term real-time early warning.

The results of association rules mining show that the high-speed deformation process
of the Lishanyuan landslide is mainly affected by the combination of short-term rainfall
of about 1 day and long-term heavy rainfall of about 3–7 days. A rainfall within 24 h and
heavy rainfall with a cumulative rainfall greater than 130.60 mm within 7 days can be used
as a precursor to identify the high-speed deformation of the landslide.

The association rule mining algorithm used in this paper is highly complex, computa-
tionally intensive, and very time-consuming, and simpler and faster algorithms need to
be explored in the future to cope with monitoring and early warning of more and more
landslides. In addition, this mining process does not consider the time-series characteris-
tics of item sets, and future research should explore sequence pattern mining, which has
uncovered more and more valuable information.
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