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Abstract: In this paper, a new method for fault diagnosability research based on information geometry
is proposed. The problem of the diagnosability evaluation of dynamic system faults is transformed
into a distance calculation problem on a manifold. The Fisher information distance is used to realize a
quantitative judgment of diagnosability, and a quantitative evaluation index of the fault diagnosability
of a satellite attitude determination system is designed. This includes a fault detectability index
and a fault isolability index. The validity and superiority of the new indexes are verified through a
mathematical simulation. In addition, the fault information is visually presented by the geodesics of
the fault manifold, and the properties and behavior of the fault are mined and analyzed on the fault
information manifold, which lays a foundation for further exploration of fault information through
geometric methods.

Keywords: diagnosability; evaluation indexes; satellite attitude determination system; fault
information manifold; Fisher information distance (FID)

1. Introduction

With the rapid development of aerospace technology, the importance of space in
the civil and military fields has become increasingly prominent and, thus, has become a
strategic fulcrum for competition among countries. Space technology is an essential basis for
developing and utilizing space resources and safeguarding national security. Satellites are
some of the most important tools for human exploration and space applications. Due to the
high cost of satellite construction and the high cost of launching and in-orbit maintenance,
once a failure occurs, it will cause considerable losses. In recent years, on-orbit fault
diagnosis technology has made remarkable progress, which has effectively improved the
on-orbit operation status and life of satellites. Over the years, studies on fault diagnoses of
spacecraft have attracted extensive attention from scholars, and lots of valuable research
results have emerged in both the theoretical and engineering fields [1–11]. Research such
as that on fault detection and diagnosis [1–6], reconfigurability analysis [7–9], life or fault
prediction [10–13], and fault tolerance [14–19] improves the security and reliability of
satellite on-orbit operation from different perspectives.

Fault diagnosis is a significant means of achieving high-precision, long-life, and high-
reliability on-orbit operation of satellite systems, and it is of great significance. However,
existing research has mainly focused on the design of diagnostic algorithms, and there
have been few studies on fault diagnosability. According to the definition of fault diag-
nosability [20], diagnosability includes detectability and isolability. Diagnosability is the
key to fast and accurate fault detection and isolation in dynamic systems, and it is also the
basis of the design of fault diagnosis methods. Without analyzing the diagnosability of
faults, blindly designing fault diagnosis algorithms will inevitably consume personnel and
material resources and may not achieve satisfactory results. Therefore, research on fault
diagnosability is of great significance.

Most of the existing diagnosability research on general control systems only considers
the situation of linear system faults [21–23]; research on nonlinear systems and nonlinear
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faults can usually only achieve qualitative evaluation [24,25]. There have been few relatively
studies on the diagnosability of satellite systems. For example, Liu [26] studied the fault
diagnosability of a satellite momentum wheel based on the idea of if the transfer function
from fault to output was zero and if the transfer functions between faults were different.
Li and Wang used the distribution probability of fault vectors and the cosine similarity
between different fault vectors in [27] to design a quantitative evaluation method for
diagnosability based on directional similarity, which was verified by a satellite attitude
determination system. In [28], the authors described a satellite control system as a class
of affine nonlinear models by using the invariant minimum dual distribution to give the
diagnosability evaluation, which included the qualitative and quantitative evaluation index
of detectability and isolability.

This paper proposes a method of system diagnosability evaluation based on informa-
tion geometry theory. The diagnosability problem of the system is described as a distance
judgment problem of a multivariate distribution in statistics, and the Fisher information
distance is used to quantify the diagnosability of system faults. A fault detectability index
and fault isolation index are designed. The designed indexes have explicit and intuitive
geometric significance, and they are real distance measures without the problem of index
asymmetry. The principle and algorithm process of the method to realize diagnosability
judgment are given. Taking the satellite attitude determination system as an example,
the scientificity and effectiveness of the proposed method, as well as its superiority in
analyzing nonlinear faults, are verified. The fault information and properties contained
in the fault manifold geodesics are deeply excavated, and information geometry theory is
used to analyze some essential problems in the process of fault development and evolution
and to lay the foundation for future research on efficient fault detection, diagnosis, design,
and optimization methods.

2. Mathematical Description of the Problem

A satellite attitude determination system is the basis for the attitude control of a
satellite. Its task is to process information measured by the attitude sensors to obtain the
attitude of the satellite body coordinate system relative to the orbit coordinate system [29,30].
The most commonly used attitude sensors include star sensors, sun sensors, Earth sensors,
and gyroscopes [30,31].

A model of satellite dynamics can be equivalently transformed into three independent
axes: the roll, pitch, and yaw. The pitch angular velocity of a satellite is a fast variable in
comparison with the other two axes. In this paper, a satellite pitch-axis attitude determina-
tion system based on an “infrared Earth sensor + gyroscope” is taken as an example for
analysis. The infrared Earth sensor and the gyroscope are used to measure the attitude
angle and angular rate of the satellite, respectively, and the combined use of the two can
achieve high-precision combined attitude determination. Considering that the attitude
angle/angular velocity of the satellite’s pitch axis (Y-axis) is decoupled from the roll and
yaw axes (X-axis and Z-axis), and in order to reduce the model’s dimensions and simplify
the problem, the discrete-form state-space model of the satellite attitude determination
system on the pitch axis is given below, as shown in Equation (1).

 θ(k + 1)
dy(k + 1)
by(k + 1)

 =

1 −dt −dt
0 1− 1

τy
dt 0

0 0 1


 θ(k)

dy(k)
by(k)

+

dt 0 0
0 dt 0
0 0 dt

ω0 + gy
0
0

+

dt 0
0 0
0 0

[g f
θ f

]

+

1 0 0
0 1 0
0 0 1

 ny(k)
nby(k)
ndy(k)


θ(k) =

[
1 0 0

] θ(k)
dy(k)
by(k)

+

0 1
0 0
0 0

[g f
θ f

]
+ nθ(k)

(1)
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The mathematical model of the satellite attitude determination system of the infrared
Earth sensor + gyroscope is expressed as above, where θ and ω0 represent the attitude
angle and orbital angular velocity of the satellite, respectively; gy represents the pitch-
axis angular rate of the satellite, which is the output of the gyroscope; dy and by are the
exponentially correlated drift and constant drift of the gyroscope that are caused by the
small amount of torque interference on it; τy is the time constant of the gyroscope. g f stands
for the fault vector, and ny/nby/ndy are the noises of the gyroscope’s output and two drifts,
respectively, which are all in the form of Gaussian white noise. θ f and nθ represent the fault
vector and Gaussian white noise of the measured attitude angle output by the infrared
Earth sensor, respectively. dt represents the sampling time interval. The values of the
related parameters are: dt = 0.1 s, and the time constant τy = 1/11 (dimensionless); the
orbital angular velocity ω0 = 0.06 rad/s, and the Gaussian white noises ny ∼ N(0, 10−6),
nby ∼ N(0, 10−6), ndy ∼ N(0, 10−6), nθ ∼ N(0, 10−6). Here, ∼N is a Gaussian distribution
symbol, and the distribution’s parameters are shown in the parentheses.

Equation (1) can be simplified as follows:{
x(k + 1) = Ax(k) + Bu(k) + B f fa(k) + Bww(k)

y(k) = Cx(k) + Du(k) + D f fs(k) + Dvv(k)
(2)

In fact, state x, input u, and output y may be influenced by the coupling of interferences
w and v, as well as by fault f . In order to separate the influence of state x and decouple the
fault from the interference, the following equation was constructed in [32].

Lz(k) = Hx(k + 1) + F f (k) + Ee(k) (3)

where

z(k) =
[

y(k)
u(k)

]
, f (k) =

[
fa(k)
fs(k)

]
, e(k) =

[
w(k)
v(k)

]
,

L =

[
0 −B
I D

]
, H =

[
A
C

]
, F =

[
B f 0
0 D f

]
, E =

[
Bw 0
0 Dv

]
We pe-multiply both sides of the equation by the matrix NH :

NH Lz = NH F f + NHEe (4)

where NH • H = 0, and NH Lz on the left side of the equation is the dynamic behavior
of the system. Since the equivalent space transformation does not affect the solution of
the system, Equation (4) can be used to describe the dynamic behavior of the attitude
determination system shown in Equation (1). NH F f on the right side of the equation is the
fault vector, which is composed of the direction matrix NH F and the fault vector f . NHEe
is the interference vector and has a dynamic behavior. NH Lz is a multivariate distribution
composed of the fault vector and the interference vector.

Therefore, the purpose of quantifying the detectability and isolability of the dynamic
system faults shown in Equation (1) can be realized by measuring the similarity or differ-
ence in the multivariate distribution when no fault occurs or when different faults occur
according to the corresponding criterion (such as the distance similarity or directional
similarity).

3. Quantitative Diagnosability Evaluation Based on the Fisher Information Distance

Parameter vectors usually exist in an abstract manifold, and the manifolds correspond-
ing to a real system usually have a complex topology. Consider the probability distribution
parameter family S = {p(x|θ)}, where x is a random variable, θ = [θ1, . . . , θn]

T is an n-
dimensional parameter vector with a particular distribution, and S is a statistical manifold
with the (local) coordinate system θ. For a particular θ that belongs to the parameter space
Θ ∈ Rn, the measured and observed value of x belongs to the sampling space X ∈ Rn;
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then, each p(x|θ) corresponds to an actual probability distribution, that is, each probability
distribution p(x|θ) corresponds to a point on the statistical manifold S.

Take the vector NH F f containing the fault information as the mean value µ(θ) of
the fault manifold and take the interference vector NHEe as the variance C(θ) of the fault
manifold, namely:

NH F f = NH

[
B f 0
0 D f

][
f (k)
f (k)

]
= NH


0.1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (5)

NHEe = NH

[
Bw 0
0 Dv

][
w(k)
v(k)

]
= NH

[
w(k)
v(k)

]
(6)

The values of coefficient matrices B f , D f , Bw, Dv in Equation (1) are known; now, only
NH needs to be determined, and NH is the left orthogonal basis for the null space of H,
which means that NH H = 0. The matrix H is determined by the system matrix A and the
output matrix C of Equation (1) [32]. Extending the system to a full-dimensional observable
system, let C = I3; then,

H =

[
A
C

]
=



1 −0.1 −0.1
0 −0.990909 0
0 0 1
1 0 0
0 1 0
0 0 1

 (7)

Then,

µ(θ) =

−0.0705 0.7050
0.0015 −0.0148
0.0015 −0.0146

[arctan fgy(k)√
fhy(k)

]
=


−0.0705 arctan fgy(k) + 0.705

√
fhy(k)

0.0015 arctan fgy(k)− 0.0148
√

fhy(k)

0.0015 arctan fgy(k)− 0.0146
√

fhy(k)

 (8)

C(θ) =


N
(

0, 10−4
)

0 0

0 N
(

0, 10−4
)

0

0 0 N
(

0, 10−4
)
 (9)

Different values of the parameter θ represent different types of faults. Considering the
nonlinearity caused by the sensor measurement conversion, the settings in this paper are
as follows:

θ = f T(k) =
[
g f θ f

]
=
[
arctan fgy(k)

√
fhy(k)

]
(10)

The manifold of a fault system is obtained, and the fault probability distribution
p(x|θ) and parameterized probability distribution family S = {p(x|θ)} constitute an n-
dimensional statistical manifold. Here, θ is the distribution parameter (and the fault
parameter vector), µ(θ) is the mean value, and C(θ) is the variance. Different faults have
different µ(θ) and C(θ) in this manifold. In this statistical manifold, θ is the coordinate
system and is global.

In statistical manifolds, a Fisher information matrix (FIM) is the unique Riemannian
geometric metric tensor for the parameterized probability distribution family [33], and it is
expressed as (G(θ) = [gαβ(θ)]. The FIM is given by the following:

gαβ(θ) = E{∂ log p(x|θ)
∂θα

,
∂ log p(x|θ)

∂θβ
} (11)



Appl. Sci. 2022, 12, 12835 5 of 14

where E is the mathematically expected value. As the parameter θ′ approaches θ, FIM
measures the ability to distinguish between two adjacent parameters θ′ and θ from the data
x. This equation can be rewritten in parametric form as:

gαβ(θ) =

[
∂µ(θ)

∂θα

]T
C−1(θ)

[
∂µ(θ)

∂θβ

]
+ 0.5 ∗ tr

[
C−1(θ)

∂C(θ)
∂θα

∗ C−1(θ)
∂C(θ)

∂θβ

]
(12)

According to the Equation (12), the information metric gαβ(θ) of the attitude determi-
nation system studied under the fault set is Equation (13):

gαβ(θ) =

 19,899
400(1+ fgy

2(k))
2 − 248,733

1000(1+ fgy
2(k))
√

fgy

− 248,733
1000(1+ fgy

2(k))
√

fhy(k)
1,243,643

1000 fhy(k)

 (13)

Its determinant is:
49,707

2,000,000(1 + fgy
2(k))

2
fhy(k)

(14)

On a manifold, since space is curved, to define the distance between two points on the
manifold, the length of the curve connecting the two points on the manifold should first be
defined.

The differential distance between two points (or two distributions) p(x|θ) and p(x|θ +
dθ) on a manifold can be expressed by the metric:

ds2 = Σαβgαβdθαdθβ = dθTG(θ)dθ (15)

Considering that θ(t) ∈ Θ is the curve connecting θ1 = θ(t1) and θ2 = θ(t2), t1 ≤
t ≤ t2, this curve can be described as a parametric equation with a single free parameter t.
The distance between the distributions p(x|θ1) and p(x|θ2) on the statistical manifold is
defined by the curve θ(t) [34]:

DF(θ1, θ2) =
∫ t2

t1


√√√√(dθ

dt

T
)

G(θ)
dθ

dt

dt (16)

where , stands for “define as”. This integral distance depends on the choice of the curve
θ(t). Generally, the minimum value of curves for all possible connections is defined as
the integral distance between the two distributions, and it is called the Fisher information
distance (FID). The Fisher information distance between the distributions p(x|θ1) and
p(x|θ2) is expressed as [35]:

DF(θ1, θ2) = min
θ(t):θ(t1)=θ1,θ(t2)=θ2

∫ t2

t1


√√√√(dθ

dt

T
)

G(θ)
dθ

dt

dt. (17)

The curve with the smallest distance defined above is actually the geodesic that con-
nects two points on the manifold, while the Fisher information distance is the length of the
shortest geodesic connecting the two points. Geodesics are generalizations of straight lines
on manifolds in Euclidean space, and the Fisher information distance is a generalization of
the Euclidean distance on manifolds.

The FID satisfies the property of the distance definition, and it is symmetrical for all
θ1, θ2 ∈ Θ:

DF(θ1, θ2) = DF(θ2, θ1) (18)

For θ1, θ2, θ3 ∈ Θ, the FID satisfies the triangle inequality:

DF(θ1, θ2) + DF(θ2, θ3) ≥ DF(θ1, θ3) (19)
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Based on the above studies, the following detectability evaluation index is designed:

FD( fi) = DF(θi, θ0) (20)

where θ0 represents the parameters of the fault manifold in the normal state or fault-free
state, and θi = fi(k) , i = 1, 2, . . . n, represents the parameters of the fault manifold at time
k in the case of a fault fi. gαβ(θ) is an all-zero matrix in the case of the fault-free state.

The following isolability evaluation index is designed:

FI

(
fi, f

′
i

)
= DF

(
θi, θ

′
i

)
(21)

where θi and θ
′
i are the parameters of different fault manifolds fi and f

′
i , respectively.

By measuring the difference in the FIDs of different faults, different faults can be separated.
It is necessary to notice that Fiso

(
fi, f

′
i

)
= Fiso

(
f
′
i , fi

)
, the isolability index is symmetrical.

The definition of the Fisher information distance given by Equation (17) requires
solving the minimum value of the integral, which is a variational problem whose solution
is given by the geodesic equation.

d2θv

dt2 + Γv
αβ

dθα

dt
dθβ

dt
= 0, ∀v ∈ {1, . . . , n} (22)

Einstein’s summation convention is used in the above formula, where
θ(t) = [θ1(t), . . . , θn(t)]T is the coordinate of the geodesic Cγ(t), and Γv

αβ is the Christoffel
symbol of the second kind [36] in this coordinate system, which is usually used to repre-
sent a class of Riemannian connection coefficients, which can be obtained with the Fisher
information matrix according to the following formula:

Γv
αβ =

1
2

gvλ(gλα,β + gβλ,α − gαβ,λ) (23)

where [gvλ] is the coordinate component of the inverse matrix of the Fisher information
matrix G(θ) = [gαβ(θ)], which can be obtained directly through inversion.

The geodesic equation in Equation (9) is an ordinary differential equation of the
coordinate θ(t). For the given initial conditions θ(0) and θ̇(0), the solution of the geodesic
equation is unique.

Tb∇bTa = θ (24)

The above equations are called geodesic equations, and there is a metric tensor field
gab on the manifold S; the geodesic of the manifold (S, gab) is the geodesic of (S,a ), where
∇a fits with gab (∇a gab = 0).

θv = θv(t) is the parametric form of the geodesic Cγ(t); then, the above equation can
be rewritten into the coordinate component form, as shown in Equation (22). The geodesic
Equation (24) is an ordinary differential equation of the coordinate θ(t). For the given initial
conditions θ(0) and θ̇(0), the solution of the geodesic equation is unique.

The Fisher information distance is the length of the shortest geodesic connecting two
points (i.e., two distributions) on a manifold. Geodesics connected to different endpoints
also express the detectability and separability of different faults.

Therefore, according to Equation (17), the FID can be obtained after integration, and
it can be used to measure the distance on a manifold between different distributions that
represent a fault-free state, a fault, and different faults so as to achieve a quantitative
evaluation of diagnosability.

The corresponding non-zero Christoffel symbol of the second kind is:

Γ1
1,1 = −

2 fgy(k)

1 + fgy
2(k)

(25)
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Γ2
2,2 = − 1

2 fhy(k)
(26)

The corresponding geodesic equation of the attitude determination system is:
f
′′
gy(k) =

2 fgy(k)[ f
′
gy(k)]2

1+[ fgy(k)]2

f
′′
gy(k) =

[ f
′
hy(k)]

2

2 fhy(k)

(27)

4. Simulation Experiment

Summarizing the content in Section 2, the algorithm for the quantitative evaluation
method for diagnosability is provided in Algorithm 1:

Algorithm 1: The quantitative evaluation method for diagnosability on an infor-
mation manifold

Require: State–Space Model of a Dynamic System:
1. Pretreatment: Lz(k) = Hx(k + 1) + F f (k) + Ee(k)
2. Pretreatment: NH Lz = NH F f + NHEe
3. Manifold parameter: Mean value µ(θ) = NH F f , Variance C(θ) = NHEe
4. Fisher Information Metric G(θ) = gαβ(θ) = f (µ(θ), C(θ))

5. Fisher Information Distance (FID) DF(θ1, θ2) =
∫ t2

t1

(√(
dθ
dt

T)
G(θ) dθ

dt

)
dt

6. Detectability Index FD( fi) = DF(θi, θ0)

7. Isolability Index FI

(
fi, f

′
i

)
= DF

(
θi, θ

′
i

)
8. Import specific fault/faults to obtain the detectability/isolability index

To verify the effectiveness of the proposed algorithm, in this section, for the satellite
pitch-axis attitude determination system, which is shown in Equation (1), a simulated
experiment on diagnosability evaluation is carried out in a joint mathematical and Matlab
simulation platform.

As the derived manifold parameters µ(θ), C(θ) already contain the information of the
satellite pitch-axis attitude determination system (Equation (1)), as shown in Equation (10),
fgy is the fault vector of the gyroscope, and fhy is the fault vector of the infrared Earth
sensor. Each fault vector contains a nonlinearity related to its sensor output characteristics.

We set the initial value to fgy(0) = 0, fgy
′(0) = 0.1, fhy(0) = 1, fhy

′(0) = 0.1. The
time-varying geodesics for the two fault components are obtained, as shown in Figure 1.

Figure 1. Development of single faults fgy and fhy on a fault information manifold over time.

The FID of fgy(k) is 1.55741, and the FID of fhy(k) is 1.25, which means that

FD
(

fgy
)
= 1.55741

FD

(
fhy

)
= 1.25
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It can be found that the geodesic images of the fgy(k) fault component and the fhy(k)
fault component also reflect this difference; the derivatives of the geodesics of the two fault
components are different. It should be noted that the two geodesics in Figure 1 only reflect
the development and variation of a single fault itself on the manifold.

For the two-dimensional fault information manifold (including two fault components)
studied in this paper, there are three possible fault types: two single-fault cases and one
compound fault case.

A fault information manifold with a curvature is a typical surface that is hard to display.
To intuitively demonstrate its shape and study its properties, this paper then “transforms
the surface into a plane” through geodesics, then researches the fault diagnosability problem
on it. In this paper, by taking the two fault components as the X-axis and Y-axis, respectively,
the two-dimensional fault manifold surface can be mapped in the Cartesian coordinate
system. In this coordinate system, the X-axis ( fgy) and Y-axis ( fhy) represent two single-fault
cases (a gyroscope fault and infrared sensor fault), while the first quadrant represents a
compound fault case. In the same type of fault case, different points in the coordinate
system indicate a fault with different parameters.

Plotting the geodesics, the figure shows the path taken by a group of composite fault
geodesics with a departure velocity of 1 that are located at the fault manifold coordinate
(4,4) in the same time period. The compound fault parameters are set as follows: fgy(0) =
4, fhy(0) = 4, f ′gy(0) = 1 ∗ sin[2π ∗ j

MX ], f hy′(0) = 1 ∗ cos[2π ∗ j
MX ]. We set the number of

geodesic lines to MX = 128.
This set of geodesics describes the unit circle on the fault information manifold with

the same FID centered at the location of the compound fault, the point (4,4). The FID
unit circle of a statistical manifold does not usually correspond to a circle in a Euclidean
space, and vice versa. In fact, on the fault information manifold, the endpoints of these
128 geodesics form a “unit circle”, but when mapped in Euclidean space, the shape of this
unit circle is distorted, forming a shape similar to that of a “comet”. Figure 2 also expresses
the response of the FID to the fault development process in this fault form.

Figure 2. The FID unit circle of the compound fault f1.

Because the two single faults are set to the x and y rectangular coordinate axes,
the manifold, which was originally a curved surface, is “leveled”, and the FID, which was
originally a unit circle on the manifold, is distorted in this process. In this coordinate system,
the evaluation of the diagnosis of faults based on the FID can be succinctly and intuitively
described and studied.

As mentioned above, the X-axis ( fgy) and Y-axis ( fhy) represent two single-fault scenar-
ios, and the first quadrant represents a compound fault scenario. Now, three types of faults
are displayed in the coordinate system: a single gyro fault fgy, a single infrared sensor fault
fhy, and a compound fault f1:(4,4).
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According to the definition of detectability in this paper, the detectability indexes of
single faults fgy and fhy and of f1 are shown in Figure 3, indicating FID of the line between
the coordinates where the fault is located and the origin. It should be noted that the “line”
here is actually the geodesic on the manifold, not a line mapped in Euclidean space.

(a) (b) (c)

Figure 3. Fault detectability indexes on the fault information manifold. (a) FD( fgy); (b) FD( fhy);
(c) FD( f1).

The isolability between the single faults fgy and fhy and the compound fault f1 is
shown in the Figure 4, indicating the FIDs of the geodesics between the two faults. The line
shown in Figure 4a is obviously not the shortest line between two points in Euclidean space,
but it is the shortest path between them on a manifold.

(a) (b) (c)

Figure 4. Fault isolability indexes on the fault information manifold. (a) FI( fgy, fhy); (b) FI( f1, fgy);
(c) FI( f1, fhy).

Table 1 shows the numerical results of the detectability and isolability indexes for the
three types of faults.

Table 1. Diagnosability indexes on the fault information manifold for the three types of faults.

Fault FD FI(, fgy) FI(, fhy) FI(, f1)

fgy 9.351268 0 9.351245 150.237868
fhy 141.061220 9.351268 0 141.061290
f1 131.709952 150.237868 141.061290 0

Firstly, the coordinates of the compound fault f1 under the fault information manifold
can be expressed as (9.351245, 141.061290), indicating that the isolability between the
compound fault and fhy (single infrared fault) is stronger than that of fgy (single gyro fault).
It can also be stated that the coupling between fgy and the compound fault f1 is deep and
difficult to isolate.

Secondly, it can be found that FI on the right is a symmetric matrix. This is because
the FID is a true distance measure with symmetry, and it is fundamentally more scientific
and accurate than diagnosability evaluation methods based on the KLD. The principle of
the diagnosability evaluation method based on the KLD is stated briefly as follows.



Appl. Sci. 2022, 12, 12835 10 of 14

The distance between two distributions (in this paper, two faults) p(x|θi) and p(x|θj)
can be approximated with various alternative approximations. A common alternative to
the information distance is the KLD (Kullback–Leibler divergence).

KLD[p(x|θi)||p(x|θj)] =
∫

p(x|θi) ln p(x|θi)
p(x|θj)

dx

= E{ln p(x|θi)− ln p(x|θj)}
(28)

The relationship between the KLD and differential Fisher information distance is:

ds2 = 2KLD[p(x|θ)||p(x|θ + dθ)] (29)

The KLD provides a measure of the distance between two points on a manifold, but the
KLD cannot give the shortest path between two points, which means that the KLD does
not contain information about the structure of the manifold. This is also one of the most
significant differences between the KLD and the Fisher information distance. At the same
time, the KLD is not a true distance measure because it does not satisfy the symmetry and
triangle inequality of the distance definition.

Since the KLD of the two distributions is equivalent to the maximum likelihood
estimate between them, it can be used to evaluate the detectability of faults fi and the
isolability between faults fi and f j, which are calculated as follows:

Detectability( fi) = KLD[p(x|θi)||0] (30)

Isolability( f1, f2) = KLD[p(x|θ1)||p(x|θ2)] (31)

The numerical results of the detectability and isolability indexes of the three types of
faults based on the KLD with the same settings are shown in the following.

It can been seen from Table 2 that though the diagnosability indexes obtained with the
KLD can realize the evaluation of fault detectability and isolability, the evaluation value of
each index appears to be chaotic and irregular. Because the KLD is asymmetric, the value
of the isolability evaluation between fi and f j is unequal to the value of the isolability
evaluation between f j and fi. The problem of asymmetry in the fault isolability index is in-
evitable for a diagnosability evaluation based on the KLD [27]. Similarly, the diagnosability
evaluation method based on the Bhattacharyya coefficient (BC) has the same problem [37].
The FID is a significant concept in information and statistical theory. It has made some
achievements in theoretical and applied research on signal processing, target tracking, path
planning, and other fields. In the field of fault diagnosis, the results obtained with the
diagnosability method proposed in this paper have a similar tendency to that of the results
obtained with the traditional KLD method, which demonstrates their correctness on the
other side. At the same time, the method presented in this paper contains accurate fault
information, and there is no problem of asymmetry in the isolability index.

Table 2. Diagnosability indexes based on the KLD for the three types of faults.

Fault Det Iso(, fgy) Iso(, fhy) Iso(, f1)

fgy 43.722891 0 43.209558 11,304
fhy 9949.144 47.283433 0 9931.571
f1 8673.768471 11,312.5 9796.349 0

However, for the method proposed in this paper, the diagnosability problem is trans-
ferred to a fault information manifold for research, and the real distance measurement of
the FID is used to design detectability and isolability indexes, so there is no such problem
of asymmetry. The design of the indexes with the FID is relatively more scientific and
is conducive to the development of subsequent research on diagnosability (such as fault
diagnosis, diagnosability optimization, etc.).
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Otherwise, through comparison with Table 1, we find that there is a certain relationship
between the diagnosability evaluation values based on the FIDs of the three types of faults.
It is manifested as: The isolability evaluation value of the single faults fgy and fhy is equal
to the sum of the detectability evaluation values of fgy and fhy.

FD( fgy) + FD( fhy) = FI( fgy, fhy) = FI( fhy, fgy) (32)

The detectability evaluation value of the compound fault f1 is equal to the modulus
of the difference between the two detectability evaluation values of the single faults fgy
and fhy.

|FD( fgy)− FD( fhy)| = FD( f1) (33)

For verification, we set multiple compound faults with different parameters.
From Table 3, it can be noticed that in the new cases, there is indeed some relationship

between the diagnosability indexes based on the FID, despite the numeral error that exists
because of the limits of decimal digits. However, the diagnosability indexes obtained with
the KLD do not have this connection.

Table 3. Diagnosability indexes on a fault information manifold for compound faults.

Fault FD FI(, fgy) FI(, fhy)

f2(4, 3) 112.811393 121.653057 9.351245
f3(1, 1) 64.618801 70.140214 5.539564
f4(1, 3) 116.118182 121.653057 5.539564
f5(3, 1) 61.390573 70.140216 8.809759
f6(3, 7) 177.282673 186.091232 8.809759
f7(5, 5) 148.024455 157.201838 9.686858
f8(5, 9) 201.904966 211.050089 9.686858
f9(7, 5) 147.632920 157.201838 10.078330
f10(9, 7) 176.307810 186.091233 10.298639

The four representative geodesic lines in Figure 2 are selected and displayed separately.
It can be seen in Figure 5 that among these geodesic lines (there are theoretically

infinite ones), there are two special geodesic lines, which are the shortest geodesic lines in
the “unit circle”; in addition, the FIDs of the two special geodesic lines are equal, and the
other geodesic lines are symmetrical about these two special geodesic lines. According
to the research in [38], they are named the “symmetry lines”, and “symmetry lines” have
extremely important properties in the information space.

Figure 5. Representative geodesics of f1 on the fault information manifold.

In the figure, the two geodesic “symmetry lines” appear to be “straight lines” and
have unequal lengths because they can only be displayed through the Euclidean plane.
However, with the Riemann metric, these two special geodesics are both typical curves and
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have the same length. According to [38], a “symmetry line” embodies a certain symmetry
and conservation principle in the information space.

With the Riemannian metric, free particles travel unequal distances along different
geodesics to accumulate the same amount of energy. The geodesics between two points in
a Riemannian manifold are not unique, and the FID between two points corresponds to
the geodesics of the shortest length. Since on different geodesics, free particles have the
same energy that is accumulated in a certain period of time, according to the “principle of
lowest energy”, free particles must choose to travel the shortest path. In the information
space, the geodesics corresponding to the FID also correspond to the shortest path for
accumulating energy from the “initial state” endpoint to the “final state” endpoint, which
can also be regarded as the inevitable path of information. For the fault information space,
after a certain fault occurs in the system, this state can also be understood as an “initial
state”. In the absence of the injection of new faults, the “initial state” will follow the
geodesic line and move to reach a certain “final state”. The geodesic corresponding to the
FID reflects the developmental trajectory of the fault.

Remark 1. 1. There are special geodesic “symmetry lines” that exist on a fault information
manifold, and they can represent the diagnosability properties of a fault. A “symmetry line” is
an inevitable path for the development and evolution of a fault after setting the “initial state”.

2. There is a special geodesic “symmetry line” of a fault component whose length reflects how
detectable the fault is. Since the geodesic is the path that the fault travels on the manifold with
the same departure speed and the same time interval, a longer path means a richer amount of
information, which is more beneficial for researchers’ measurement work.

3. The faults studied in this paper are coupled with two faults, and the coupling between the
faults causes a deformation of the FID unit circle, distorting the unit circle into a “comet-like”
shape. The closer the fault information is to the “comet tail”, the easier it is to decouple, and the
longer the “comet tail” is, the easier it is for the fault to be decoupled. This effect is now called
the “comet tail effect” on the fault manifold.

5. Conclusions

To realize the reliable in-orbit operation of satellites and improve the fault diagnosis
capabilities of their systems in the design stage, a fault diagnosability evaluation method
based on information geometry is proposed in this paper. The Fisher information distance is
used to realize the quantitative evaluation of the fault diagnosability of a satellite’s attitude
determination system. The proposed fault diagnosability evaluation method is independent
of specific fault diagnosis schemes, fault nonlinearities, and system interferences, and it is
suitable for multi-fault situations. The designed diagnosability indexes have explicit and
intuitive geometric significance, and they solve the problem of the asymmetry of the fault
isolability indexes designed with the traditional diagnosability algorithm based on the
distance similarity. Fault information is expressed “geometrically” through the geodesics
of the fault manifold; this may inspire efficient fault detection, diagnosis, design, and
optimization methods.
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