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Abstract: Earthen heritage sites are historical relics left by ancient human activity, with earthen as
the primary building material, and have significant historical, scientific, and artistic value. However,
many sites have experienced extensive deterioration caused by environmental forces and human
factors. A crack is a kind of typical damage to the walls of earthen heritage sites. Studies of the
crack-formation process can effectively predict trends in damage, which will play a critical role
in the maintenance of earthen heritage sites. This study is the first of its kind to propose a deep
learning method to study the cracks on earthen heritage sites at the pixel-level, adopt the idea of
transfer learning, and employ a mixed-crack image dataset for training three deep learning models.
The precision, recall, IoU, and F1 metrics were used to evaluate the performance of the trained models.
The experimental results showed that FPN-vgg16 appeared to have the highest level of applicability
to detect cracks on earthen heritage sites among all networks, due to the highest F1 score of 84.40%
and the highest IoU score of 73.11%. The results illustrated that the proposed method in this paper
can effectively be used to analyze the rammed earth surface crack images, with great potential in
related research fields.

Keywords: crack detection; pixel-level segmentation; classification; deep learning

1. Introduction

Earthen heritage sites are historical relics with earthen as the main building material,
left by ancient human activities, which are typically found in dryland regions because of the
wide availability of earthen materials and favorable environmental conditions. Rammed
earth has been widely used to build dwellings and temples in ancient Europe and Asia.
In China, these earthen heritage sites are relatively concentrated in the arid regions of
Northwest China, mainly including ancient cities, the Great Wall, passes, beacon towers,
earthen pagodas, and tombs. Earthen heritage constitutes 10% of sites on the World
Heritage List [1] and has important historical, scientific, and artistic value. However,
many sites have experienced extensive deterioration mediated by environmental and
human activities, which threatens to reduce their value [2,3]. Many heritage sites composed
of adobe materials the earthen structures with significant value remain in the Gobi Desert
and other desert regions in Northwest China [4]. Suoyang Ancient City is a typical rammed
earth heritage site, which was built during the Han (206BCE–220CE) and Tang (618–907CE)
dynasties [5]. It is located in Gansu Province, northwest China, along the ancient Silk
Road (Figure 1a). This ancient city site, situated in arid areas, has all kinds of harsh
environmental conditions, such as strong wind, sandstorms, and drought. The damage
to the walls of earthen heritage sites caused by the harsh environment include scouring,
flaking, and cracking (Figure 1c–e). Many investigations have been conducted at the
Suoyang Ancient City site and some typical damage was spotted. This study aimed to find
a long-term method for researching the deterioration of earthen heritage sites by studying
the cracks on the rammed earth surfaces of the sites.
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Figure 1. Suoyang Ancient City. (a) Google Maps image of Suoyang Ancient City. The photos show
(b) some typical damage to wall surfaces, including (c) scouring, (d) flaking, and (e) cracking.

Cracks comprise the damage to the main structures of earthen heritage sites. Detecting
the crack formation process can effectively predict the trend in the damage to earthen sites
and thus help officials adopt appropriate methods to maintain the sites’ value. The tradi-
tional method of crack detection was measuring the length and width of the cracks through
visual inspection by well-trained cultural relic workers with the help of rulers. Although
the current state of the crack can be recorded via manual inspection, long-term observation
of the crack and the objectivity and reliability of the crack observation cannot be effec-
tively guaranteed. The replacement of observers will lead to the instability of observations.
Therefore, many researchers focus on developing automated and efficient crack-detection
techniques for the long-term monitoring of earthen heritage sites.

The application of computer vision-based crack detection technology for modern
buildings, such as cement roads, brick walls, and bridges, has been widely studied.
Threshold segmentation [6,7], morphology [8], wavelet transform [9], and filter-based
algorithms [7,10,11] have been applied in the field of crack detection. Wang et al. [12] sum-
marized traditional computer vision-based crack detection and subdivided them into four
categories, namely an integrated algorithm, morphological approach, percolation-based
method, and practical technique, and then analyzed and compared the experimental results
of the four types of methods. Using these methods to analyze a photo of the building
surface, one can identify the cracks, locate the cracks, and measure the cracks’ width, length,
and orientation. By adjusting the parameters of these algorithms, high inspection detection
accuracy can be achieved. The traditional computer vision-based crack detection algorithm
usually focuses on the understanding and analysis of the partitive features of the image,
and parameters are designed for a specific dataset. However, when there is interference,
such as stains, potholes, etc., the partitive image will be difficult to segment. The main
characteristics of rammed earth heritage are that cracks are distributed on the irregular
surface and mixed with irregular textures, such as shadows and holes. It is difficult for
computer vision methods to segment cracks.
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In order to overcome the drawbacks of traditional computer vision-based algorithms,
some studies have suggested applying machine learning to image processing tasks. Lecun et al.
first proposed that Convolutional Neural Networks (CNN) could be applied to handwritten
character recognition [13]. More studies have proposed image classification [14–16], object
detection [17–19], semantic segmentation [20–22], and crack detection [23–25] tasks. Instead
of extracting features, Convolutional Neural Networks can automatically learn the features
of an image and identify cracks from images. Deep learning semantic segmentation models
have been extensively studied for crack detection in modern buildings with positive results.

Classical machine learning algorithms, such as Support Vector Machines [26] and
Random Forests [27], require the manual extraction of crack features. Even though this
sort of algorithm relies heavily on manual extraction, they produce some fruitful study
findings. The accuracy of the algorithm will be diminished to varying degrees due to
the variations in external environmental factors, such as background noises and lighting
conditions, when extracting manually. These factors may lead to unexpected practical
problems and limitations in the application of classical machine learning algorithms.

As a branch of machine learning, the architecture of deep learning can extract fea-
tures related to it and thus can effectively avoid the limitations existing in traditional
algorithms. Research on crack detection technology based on deep learning, including
image classification, object recognition, and semantic segmentation, has been proposed.
Image classification algorithms can automatically classify the images into two categories,
crack images and non-crack images. Object recognition algorithms can find and locate
objects that contain cracks in images and use bounding boxes to identify and locate them.

Semantic segmentation is basic research in the field of computer vision processing
and has been widely used in many fields, such as autonomous driving, medical image
analysis, etc. Compared with image classification and object recognition, semantic segmen-
tation is more accurate in positioning, and its positioning output can be distinguished using
different colors. It can identify the width and length of cracks at the pixel-level. Obviously,
in crack detection for earthen heritage sites, it is important not only to detect whether
there are cracks on the surface but also determine the size of the cracks, which is of great
significance in studying the causes and development of the cracks and proposing scientific
protection plans.

Ni et al. [28] used GoogLeNet and ResNet classification architecture to find crack
patches, employed Otsu’s thresholding to segment crack patches, and adopted median
filtering to eliminate the influence. Kang et al. [29] proposed the faster region proposal con-
volutional neural network (Faster R-CNN) algorithm to detect crack regions. Wei et al. [30]
used Mask R-CNN to perform crack segmentation at the pixel-level. Several studies have
employed two settings: first, the classification architecture was used to locate crack patches,
and then, the crack map was extracted at the pixel-level. The approach above is known as
Hybrid Semantic Segmentation.

Another method was performed with encoder-decoder structures without identifying
a crack patch or crack region beforehand. A typical encoder-decoder structure consists of
an encoder network and a corresponding decoder network. The encoder network has a
backbone architecture that contains convolution, pooling, and activation layers. The role of
the decoder network is to map the low-resolution feature maps to full-resolution feature
maps for pixel-wise classification.

Several crack segmentation methods with encoder-decoder structures have been devel-
oped to detect surface cracks, such as U-Net [31], SegNet [32,33], LinkNet [34], ResNet [35],
and several variants [36,37]. In the semantic segmentation setting, the key to achieving
improved accuracy is to provide the contextual information flow in architecture [38].

U-Net was initially released in the context of medical image analysis for biomedical
image segmentation [31]. In several studies, the U-Net architecture has been proposed for
crack detection. Sizyakin et al. [39] used morphological filtering to improve the binary
map with localized cracks from the U-Net neural network. Lau et al. [40] put forward a
U-Net-based architecture that replaces the encoder with a pre-trained ResNet-34 backbone.
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Lin et al. [41] advanced a U-Net architecture that employs the Full Attention Strategy, which
comprises synthesis of the attention mechanism and the outputs from each encoding layer
in a skip connection. Cao et al. [42] used the squeeze-and-excite module to empower U-Net,
which they call SE-U-Net. This architecture can adaptively learn the shallow information
matched with deep features in the skip path. The preceding studies demonstrated its
superiority over the methods based on traditional machine learning algorithms.

SegNet [32] is made up of an encoder network and a corresponding decoder network.
The encoder network architecture is topologically identical to the VGG16 [43] network
with 13 convolutional layers. Song et al. [44] deployed SegNet architecture to segment
structure surface cracks. By using SegNet as a reference, Chen et al. [45] recommended an
encoder-decoder structural model for inspecting concrete pavement, asphalt pavement,
and bridge deck cracks. Zou et al. [46] proposed the DeepCrack network based on the
encoder-decoder architecture of SegNet and pairwisely fused the convolutional features
that are generated in the encoder network and decoder networks. LinkNet employs
an improved codec network architecture, and the input of each encoder layer is also
bypassed by the output of its corresponding decoder [34]. This method can recover the
spatial information lost by downsampling operations in the encoder and reduces the
processing time. Training deeper neural networks is more challenging. He et al. presented
a residual learning framework to make it simpler to train networks [35]. ResNet, which
has a depth of up to 152 layers, is less complex than VGG. Combining the Residual
connections and Inception architecture [47], Szegedy et al. [36] proposed that Inception-
ResNet improves training speed with low total parameter counts and computational costs.
Loverdos et al. [48] evaluated the effectiveness of several deep learning networks (U-Net,
DeepLabV3+, U-Net (SM), LinkNet (SM), and FPN (SM)) in brick segmentation and crack
detection with masonry walls. The analysis results showed that machine learning is
superior to image-processing techniques for segmentation. Deep learning demonstrates
enormous potential in crack detection.

However, there is not much research being done on the application of convolutional
neural network models for the detection of cracks in earthen heritage sites because deep
learning models require huge amounts of training data to make them work, and the
adoption of deep learning techniques relies significantly on the volume of data available.
The complexity of building a deep learning model stems from the difficulty in obtaining a
significant number of cracked photographs of earthen heritage sites.

This study focused on contributing to this growing area of research by exploring an
effective and efficient method for crack detection in earthen heritage sites. By evaluating
different network performances, pixel-level crack segmentation models were recommended
for the study of earthen heritage site surfaces. It also aimed to establish a hybrid dataset.
Different open-source image datasets were mixed, and then, a hybrid dataset was con-
structed. The hybrid dataset combines the images of cracks on the surface of cement
pavement, asphalt pavement, and earthen heritage sites.

In this paper, a method for crack detection in earthen heritage sites is proposed. Mixed
datasets were used to evaluate different network performances by using key metrics and
manually labeled ground truth for evaluation purposes.

The rest of the paper is structured as follows. Section 2 briefly presents the mixed
datasets and proposed network. Section 3 presents experimental results. The results are
analyzed and discussed in Section 4, and Section 5 draws some conclusions and presents
some hints for future work.

2. Materials and Methods
2.1. Overview

This study evaluated the reliability and precision of the application of different meth-
ods to cases of cracks in the earthen surfaces of the Suoyang Ancient City and proposed
a deep learning method that can effectively detect and predict rammed earthen heritage
cracks. The workflow of the proposed method approach is illustrated in Figure 2.
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Figure 2. Workflow of the proposed method for detecting and predicting cracks in rammed earthen
heritage sites.

Step1: Gather open-source crack image datasets, which include road cracks with
occlusions and shadow interference. Every image has a manually annotated binary ground
truth image.

Step2: Take some photographs of the crack on the surface of the Suoyang Ancient
City wall. These photos were cropped to a uniform size, and 177 photos were selected and
manually annotated to generate a dataset.
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Step3: Combine the open-source crack dataset and the Suoyang Ancient City crack
dataset, training 3 models with the mixed crack dataset to optimize model parameters.

Step4: Analyze results using key metrics and predictions, devoted to the segmentation
of cracks on the surface of earthen heritage sites.

2.2. Image Dataset

Many open-source crack image datasets were widely used, such as CrackTree206 [49],
Crack500 [50], and DeepCrack [51], etc. The CrackTree206 dataset contains 206 800 × 600 pixel
photos of road cracks, with occlusions and shadow interference. It was widely used because
it was released early with many samples. The Crack500 dataset contains 500 images with a
resolution of around 2000 × 1500. Each image is cropped into 16 non-overlapping image
regions and saved as 3368 crack images, with 1896 images in the training data, 1124 images
in the testing data, and 348 images in the validation data. The DeepCrack dataset contains
537 crack images with three textures and two scenes, where the training data contains
300 images and the test data contains 237 images. All above datasets were manually
annotated and generated binary ground truth images.

We collected many images of the cracks on the Suoyang Ancient City wall surface and
removed some images with excessive interference. A dataset, named SYCrack, including
177 images with a uniform size of 256 × 256 pixels images, was generated. This dataset
contains two categories: images with cracks and images without cracks. All of these images
were manually annotated and rendered as binary ground truth images. Then, 80% of these
images were chosen as training datasets, with 20% as testing datasets.

To improve the robustness of models, CrackTree206, Crack500, Deep Crack, and SYCrack
were merged to form a Mixed Crack Dataset (MCD). The MCD, with a total of 2538 raw
images and annotated images, contains concrete cracks, asphalt cracks, and earthen cracks.

2.3. Proposed Network

The semantic segmentation network consists of an encoder and a decoder, and different
pre-trained Convolutional Neural Network architectures are used as backbones. As stated
before, related works show that U-net, FCN, and Linknet have outstanding performance
in image segmentation, especially in detecting cracks in some specific buildings. Their
application, however, is limited only to images of those buildings. A deep learning network
that was trained on a specific material dataset cannot achieve the same accuracy with
different materials [52]. This means that the model trained on the cement road datasets is
not necessarily suitable for the cracks in walls of earthen heritage sites. Özgenel et al. [53]
proposed that a pre-trained CNN network can extract the low-level features of cracks.
Therefore, with only the requirement for a small number of training samples and fast
convergence networks, models can be achieved for new materials.

2.4. Transfer Learning

Deep learning requires enough data to complete the model training. The current
dataset of earthen cracks cannot meet the needs of model training, and thus, the transfer
learning method was adopted.

Transfer learning involves making the best possible use of the knowledge in the
annotated domain to find the similarity of the target problem to assist in knowledge
acquisition and learning in the target field. The transfer learning task, based on similarity,
applies the model trained in the source domain to the target domain. Transfer learning can
solve the insufficiency of high-quality training data in the target domain, and even in the
case of a small amount of data, it can also solve the problem of model training.

In this research, we adopted the concept of transfer learning and used the road cracks
similar to the surface cracks of earthen heritage sites to combine the pictures of the crack
images of the earthen heritage sites for deep learning model training. This was verified
using the Suoyang Ancient City crack image testing dataset to compare the deep learning
models and select the best the crack identification model.
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3. Verification and Results
3.1. Experimental Environment

All models were created in the Python 3.8 environment using the Tensorflow frame-
work, and training and testing were carried out in the following experimental setting.
Tables 1 and 2 detail the software and hardware environments, respectively.

Table 1. Software environment setups employed in this paper.

Software Details

OS Windows 10 Professional
Programming language Python 3.8

Deep learning framework Tensorflow-gpu 2.3.0
Dependent library Cuda, Keras, PIL etc.

Table 2. Hardware environment setups employed in this paper.

Hardware Details

CPU Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz
CPU RAM(GB) 256

GPU NVIDIA GeForce RTX 3070
GPU memory (GB) 8

CUDA cores 5888
CUDA version 11.2

3.2. Experimental Data

The open-source dataset and crack dataset of the Suoyang Ancient City were mixed.
The mixed crack data contain 2538 raw images and annotated ground truth images. Figure 3
shows samples of the training dataset.
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3.3. Analysis of the Pre-Trained Deep Learning Models

The deep neural network model architectures used in this paper were Unet, Linknet,
and FPN, with four backbones for each architecture, and all backbones have pre-trained
weights on ImageNet [54]. The number of parameters is a performance indicator of the
model, which means the requirement for computing resources. The larger number of
parameters, the more storage resources and computing time required. Table 3 shows the
statistics of the total number of parameters for each model.

Table 3. Total number of parameters for each model.

Model Backbones Parameters

Unet

vgg16 23,752,273
resnet152 67,295,194

densenet201 26,378,577
inceptionv3 29,933,105

Linknet

vgg16 20,325,137
resnet152 63,517,466

densenet201 22,549,393
inceptionv3 26,268,401

FPN

vgg16 17,572,545
resnet152 61,645,898

densenet201 21,523,905
inceptionv3 25,029,281

As can be seen from Table 3, the parameters of FPN were the fewest, indicating a
simple model structure and a lower memory footprint. The number of model parameters
varied by more than three times due to different backbone networks.

3.4. Training Configuration

All models were trained for 100 epochs until the F1 score on the validation set stopped
increasing. The data were supplied to the network with a batch size of 4. The optimization
algorithm employed was Adam, which is efficient for gradient descent and requires less
memory. The learning rate was set as 0.001. The Binary Cross-Entropy loss function
(see Equation (1)) was implemented here, as the function works well for classification
objectives, such as segmentation at the pixel-level [55]. Binary Cross-Entropy is defined as:

LBCE(y, ŷ) = −(ylog(ŷ) + (1− y)log(1− ŷ)) (1)

where y is the ground truth and ŷ is the prediction. Additionally, y can have values of 0
(background) or 1 (crack), whereas ŷ can have values between 0 and 1.

The evaluation of the network is based on the values of Precision, Recall, IoU, and F1 score.
These metrics are given as:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 score =
2× Precision× Recall

Precision + Recall
(4)

IoU =
GroundTruth ∩ Prediction
GroundTruth ∪ Prediction

(5)

The TP, FP, TN, and FN terms are defined as follows:

True Positive (TP): the pixel is a crack (Positive) and is identified as a crack (True);
False Positive (FP): the pixel is intact (Positive) and is identified as a crack (False);
True Negative (TN): the pixel is intact (Negative) and is identified as intact (True);
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False Negative (FN): the pixel is a crack (Negative) and is identified as intact (False).

Precision and Recall are the two most common metrics. Additionally, they form the
basis of the F1 score. Precision is the percentage of correct positive predictions versus
the total number of positive predictions. Recall indicates the completeness of the positive
predictions. Normally, poor precision is caused by high recall scores and vice versa.
The F1 score combines the accuracy and recall metrics and is defined as the harmonic mean
of precision and recall.

The F1 score is a useful model performance metric when working on classification
models with an imbalanced dataset. The intersection over Union (IoU) is a metric used to
measure the accuracy of an annotation based on a task. The F1 score and IoU score were
used as the main indicators to evaluate the model.

4. Results and Discussion

All models were trained for 100 epochs with a batch size of 4 for all models. Table 4
shows the metrics presented for the validation set.

Table 4. The metrics are presented for the validation set.

Model Backbones Precision% Recall% F1 Score% IoU% Best Epoch *

Unet

vgg16 89.41 85.52 83.65 72.00 84
resnet152 93.02 79.85 82.28 69.98 93

densenet201 92.60 94.38 83.68 72.01 80
inceptionv3 95.21 80.66 82.65 70.51 84

Linknet

vgg16 90.19 85.97 82.76 70.74 99
resnet152 90.40 83.07 82.63 70.43 76

densenet201 89.80 81.56 81.83 69.33 96
inceptionv3 88.03 80.20 80.88 67.99 88

FPN

vgg16 88.83 85.82 84.40 73.11 93
resnet152 90.50 83.35 83.31 71.46 89

densenet201 87.84 82.62 82.59 70.44 90
inceptionv3 90.05 85.37 81.72 69.25 94

* Epoch where the highest F1 score was obtained for the validation set.

Metrics of U-Net, As shown in Figure 4, Precision achieved the highest score at epoch
36, but the Recall score was only 40.38%, which means more cracked pixels were classified
as intact. After completing training based on 100 epochs, the Precision score was 88.08%,
but the Recall value was only 74.59%. Metrics of Linknet and FPN were also analyzed,
shown in Figures 5 and 6, revealing similar results. Furthermore, the authors checked
the predicted outputs, as shown in Figure 7, the crack annotation was incomplete for the
predicted result and there was noise in the background. In other words, neither the Precision
nor Recall score achieved good results. Moreover, the IoU value was 67.43%, which
also shows that the prediction result did not match the ground truth very well. Among
the results predicted by U-Net-densenet201, U-Net-resnet152, FPN-resnet152, and FPN-
inceptionv3 models, some cracked pixels were classified as intact, which indicates failure in
detecting some cracked pixels. In the results predicted by the Linknet-densenet201, Linknet-
inceptionv3, FPN-densenet201 models, there was too much noise in the background.

U-Net-vgg16, Linknet-vgg16, and FPN-vgg16 all performed well without noise in the
background. As can be seen in Figures 4–6, the results of completing training based on
100 epochs had very close F1 scores. According to Table 4, FPN-vgg16 obtained the highest
F1 score of 84.40% and the highest IoU score of 73.11%, which indicates the highest level of
applicability in crack detection of earthen heritage sites among all networks in this study.
FPN-vgg16 demonstrated unexpected performance and has fewer training parameters than
other networks when F1 and IoU scores are compared and the prediction result image
is analyzed.
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5. Conclusions and Future Work
5.1. Conclusions

This paper proposes a method for crack detection in earthen heritage sites by evaluat-
ing the performances of different networks. Pixel-level crack segmentation models were
recommended to detect cracks on earthen heritage site surfaces. The three models evaluated
in this study are the most promising crack detection networks, and the four backbones
show different abilities in prediction. Through the comparison of F1 and IoU scores and
the analysis of the prediction result picture, FPN-vgg16 shows surprising performance and
has fewer training parameters than other networks.
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We collected some crack pictures at the site of Suoyang City, and cropped, screened,
and annotated 177 pictures of cracks. A hybrid dataset, a mixture of different opensource
image datasets, was constructed, which combines the images of cracks on the surface of
cement pavement, asphalt pavement, and earthen heritage site surfaces, which thus solves
the problem of a lack of data on cracks on earthen heritage site surfaces. To the best of the
authors’ knowledge, this study is the first to propose pixel-level crack segmentation for
surface cracks in earthen heritage site surfaces.

Monitoring the change in cracks on earthen heritage site surfaces is a long-term
research topic. The crack detection method that we proposed can help conservators auto-
matically and effectively extract crack information.

5.2. Future Work

According to the statistics generated from the experiments, the research methods and
transfer learning ideas proposed in this paper have been proven to be effective. The models
can only segment rammed earthen surface cracks, but the position, width, length, and depth
of cracks are still uncertain, and thus, further optimization is needed. Moreover, the dataset
of cracks on rammed earthen heritage sites is still small. More in-depth work is needed.

1. Since the image data of surface cracks in earthen heritage sites is still relatively small,
there are few studies on the deep learning of surface cracks in earthen heritage sites.
Therefore, it is very important to collect a large amount of image data of surface cracks
on earthen heritage site surfaces and build a larger dataset. In the future, UAVs can be
used to collect crack images, and image cropping and annotating can be performed
using the trained model to establish a dataset.

2. By sharing the dataset of cracks on the surface of heritage sites and uploading crack
pictures in real-time, a larger database of crack pictures was established, which is
convenient for researchers to study the cracks.

3. This study focused on the identification of cracks. Future work can be done regarding
the location, length, width, and depth of cracks.

4. The current solutions, which cannot be deployed in lightweight embedded systems,
were limited due to the complexity of the network. For practical application, models
that can be deployed based on UAVs will be able to detect cracks more efficiently.
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