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Abstract: Weed control is a significant means to enhance crop production. Weeds are accountable
for 45% of the agriculture sector’s crop losses, which primarily occur because of competition with
crops. Accurate and rapid weed detection in agricultural fields was a difficult task because of
the presence of a wide range of weed species at various densities and growth phases. Presently,
several smart agriculture tasks, such as weed detection, plant disease detection, species identification,
water and soil conservation, and crop yield prediction, can be realized by using technology. In this
article, we propose a Modified Barnacles Mating Optimization with Deep Learning based weed
detection (MBMODL-WD) technique. The MBMODL-WD technique aims to automatically identify
the weeds in the agricultural field. Primarily, the presented MBMODL-WD technique uses the
Gabor filtering (GF) technique for the noise removal process. For automated weed detection, the
presented MBMODL-WD technique uses the DenseNet-121 model as feature extraction with the
MBMO algorithm as hyperparameter optimization. The design of the MBMO algorithm involves
the integration of self-population-based initialization with the standard BMO algorithm. At last,
the Elman Neural Network (ENN) method was applied for the weed classification process. To
demonstrate the enhanced performance of the MBMODL-WD approach, a series of simulation
analyses were performed. A comprehensive set of simulations highlighted the enhanced performance
of the presented MBMODL-WD methodology over other DL models with a maximum accuracy
of 98.99%.

Keywords: smart agriculture; weed management; crop productivity; computer vision; deep learning

1. Introduction

Agriculture is confronting enormous difficulties, which include threats from diseases,
weeds, and pests, varying climate, severe scarcity of water resources and arable lands,
etc. [1]. Many efforts were exerted to weed control over the years by farmers and researchers
to solve the difficulties brought by weeds [2]. Weeds appear everywhere arbitrarily in the
domain and compete with crops for sunlight, water, and nutrients, which causes harmful
effects on crop quality and yields if not controlled properly. Many studies have illustrated
a strong correlation between weed competition and crop yield loss [3]. There are different
weed varieties that are detrimental to crop productivity and should be identified in the
initial stage of growth. The weed’s growth in the crop would affect fundamental resources
such as minerals, sunlight, water, fresh air, soil, etc., which are the fundamental necessities
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of the crop [4]. It has been found that 35% of crops are ruined because of the growth
of various weeds in the agricultural field. This study aimed to learn various techniques
and tools employed by the researchers to classify and detect weeds, which are essential
for assessing the growth of weeds [5]. Numerous computer-related approaches, such as
wireless sensor networks (WSN), artificial intelligence (AI), and some other approaches,
are used that enhance agriculture.

Weed detection in plants is now becoming a great challenge since there is not much
effort put into weed detection. Techniques to realize field weed identification through
computer vision (CV) technology primarily use conventional deep learning (DL) and image
processing [6]. If weed identification has been carried out by conventional image-processing
technology, then feature extraction, such as shape, color, and texture of the image, and
integration with conventional ML classifiers, such as the Support Vector Machine (SVM) or
random forest (RF) algorithm, for weed detection are essential [7]. Such techniques must
devise features manually and highly depend on pre-processing methods, quality of feature
extraction, and image acquisition algorithms. Classical algorithms for detecting agricultural
weeds had a focus on direct identification of the weed; yet, there were substantial variances
in weed species [8]. With the advances in computational power and growth in data
volume, DL methodologies are capable of extracting multidimensional and multiscale
spatial semantic feature information of weeds by using the Convolutional Neural Network
(CNN) because of its enhanced data expression abilities for images, evading demerits
of conventional extracted approaches [9,10]. Hence, CNN models have gained higher
attention in the research community.

This manuscript introduces a Modified Barnacles Mating Optimization with Deep
Learning based weed detection (MBMODL-WD) technique. The presented MBMODL-WD
technique initially pre-processes the input images via the Gabor filtering (GF) technique to
eradicate the noise. For automated weed detection, the presented MBMODL-WD technique
uses the DenseNet-121 model as feature extractor. Moreover, the MBMO algorithm is used
for the hyperparameter optimization process. At last, the Elman Neural Network (ENN)
method was applied for the classification of images into plants and weeds. To demonstrate
the enhanced performance of the MBMODL-WD approach, a series of simulation analyses
were performed.

2. Literature Review

Sodjinou et al. [11] introduce a segmentation approach relevant to the compilation of
K-means and semantic segmentation methods for segmenting weeds and crops in color
images. The two distinct databases of agronomic images are employed for segmenting
methods. Everything except the plants has been eliminated from the images with the use of
the threshold method. Then, utilizing U-net and the K-means subtractive approach for the
segmentation of weeds and crops, semantic segmentation has been implemented. A U-net
for the segmentation of weeds and wheat on images was given in [12]. An image classifier
task has been employed for choosing the backbone network for the encoding part. The
abovementioned task on a similar dataset will be exploited for pretraining and choosing
the decoding network. The training process implemented TL. Sa et al. [13] formulates a
weed segmentation and mapping structure that processes multispectral images received
from drones by utilizing deep neural networks (DNNs). Many researchers are increasingly
making an effort in weed or crop semantic segmentation just by considering single images
for classification and processing.

A weed species and density evaluation approach rely upon an image semantic seg-
mentation NN that has been modeled in [14]. To train the network, an amalgamation
of fine-tuning and pretraining training approaches has been employed. The pretraining
datasets are the images that just have a single weed species in a single image. The weeds
will be labeled mechanically by an image segmentation approach related to the minimum
error threshold and Excess Green (ExG). The fine-tuning data are real imageries comprising
many crops and weeds and are manually labeled. In [15], an AI-oriented method has been
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modeled to find weeds’ unintentional growth on agricultural fields and rise the control
rate, concerning technological advances. This presented technique will train the dataset
by utilizing pretrained DL techniques and has been optimized through metaheuristic op-
timization approaches through the selection of the species-related activations that can be
sent to Softmax, which was in the final layer of DL techniques.

In [16], a technique related to DL has been modeled for weed segmentation from
the images. This approach may segment weeds from crops and soil in the images. This
semantic segmentation approach has been advanced using a simplified U-net. An image
augmentation method has been devised because of the difficulty of image labeling for
the semantic segmentation of weeds. The semantic segmentation network is trained by a
two-stage training technique made up of fine-tuning and pretraining. Abdalla et al. [17]
intended to assess three TL approaches with the use of a VGG16-oriented encoder net
for segmenting the oilseed rape images in a field including high-density weeds. Three
TL methods utilizing a VGG16-based encoder method have been modeled, and their
performances will be compared with a VGG19-related encoder net.

3. The Proposed Model

In this article, we have introduced a new MBMODL-WD technique for the automated
identification of weeds using computer vision techniques and improved crop productivity.
It encompasses a series of processes: GF-based image pre-processing, DenseNet-121 feature
extractor, MBMO-based hyperparameter optimizer, and ENN-based classification. Figure 1
demonstrates the block diagram of the MBMODL-WD system.
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Figure 1. Block diagram of MBMODL-WD system.

3.1. Image Pre-Processing

Primarily, the presented MBMODL-WD technique removes noise using the GF tech-
nique. Gabor filter has been employed in the presented system for enhancing the ridges
and relaxing the valleys through the enforcement of short-term Fourier transformation
including Gaussian window in the spatial domain [18]. It helps to gain deviations in
characteristics and textures in the fingerprint images for distinct scales and orientations.
Such statistical features generated image features that can be significantly accentuated by
utilizing the frequency information and orientations in fingerprint images by fine-tuning a
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Gabor filter. A set of Gabor filters was employed on image I(x, y) in distinct frequencies
having distinct orientations, utilizing the Gabor function g(x, y), as defined by Equation (1).

g(x, y) = exp

(
− x′2 + γ2y′2

2σ2

)
cos

(
2π

X′

l
+ φ

)
(1)

Here χ′ = xcoxθ + ys
.

mθ and y′ = ycoxθ − xs
.

mθ.
This Gabor transform will be applied in the Gaussian envelope σ, in addition to the

χ and y directions.

3.2. Feature Extraction

For automated weed detection, the DenseNet-121 model produces feature vectors. A
CNN accomplishes higher performance in the domain of image classification [19]. However,
training a CNN from scratch is not easier because classifier accuracy based on hyperpa-
rameter tuning, namely learning rate, initial weight, number of epochs, optimizers, and
dropout, needs a wide-ranging amount of labeled training datasets and higher computation
power. This problem can be leveraged by means of the TL method. In the TL model, the
training time can be decreased by the weight attained from the pretrained mechanism that
is applied as an initial weight for training the novel problem. This process of reusing the
pretrained weight leads to lower generalization errors. The DenseNet framework is popular
since the DenseNet module motivates feature reuse, attenuates the gradient vanishing
problems, decreases the parameter count, and enhances feature propagation. In DCNN,
all the layers are interconnected to other layers as a feed forward pattern. Every layer in
DenseNet accepts the feature map of each previous layer as other inputs and passes on its
own feature map to every succeeding layer. Therefore, the n-th layer has n inputs of each
previous layer.

In general, a CNN changes the size of feature maps via the down-sampling of layers.
However, DenseNet facilitates feature concatenation and down-sampling by separating the
network into multiple densely connected dense blocks. The feature map size in the block is
unchanged. Inside the dense block, the size of the feature maps is similar which assists in
performing concatenation while outside the dense block, while pooling and convolution
operations were performed to down-sample. At the end of every dense layer, a transition
block or layer was added. The transition layer comprises a batch normalization layer, a
1 × 1 convolutional, and 2 × 2 average pooling layers. The transition layer changes the
size of the feature map. Therefore, the DenseNet comprises 1 classification, 117 Conv, and
3 transitions, making the size of the layer 121 [19].

Here, the MBMO algorithm as a hyperparameter optimizer is applied. Barnacles are
certain kinds of arthropods which constitute an infraclass Cirripedia based on crabs and
lobsters [20]. A barnacle is a marine animal that lives in shallow and tidal waters. They
can be found all around the seawater and are raised on hard surfaces in seawater. After
they hatch eggs, barnacle larvae were disseminated in the water to find and stick to hard
surfaces. Indeed, hard surfaces cover the bodies of barnacles and enhance shell plates.
They must seek a balance between managing ever-longer penises and accomplishing more
mates in a turbulent flow. A novel optimization technique, named the barnacles mating
optimizer (BMO) technique, based on these behaviors has been introduced. The balance
behavior can be devised depending upon the Hardy–Weinberg equilibrium as follows:

The initial population of barnacles for the solution can be determined by:

X =


χ1

1 χN
1

...
...

χ1
n χN

n

 (2)



Appl. Sci. 2022, 12, 12828 5 of 16

where n defines candidate number, and N denotes count of decision parameters according
to lower and higher bounds:

lb =
[
l1
b , . . . , li

b

]
(3)

ub =
[
u1

b, . . . , ui
b

]
(4)

From the expression, ub and lb indicate the upper and lower bounds of variable i. By
assessing the objective function for each candidate, better outcomes to worst outcomes are
stored and arranged at the initial iteration.

The presented method involves exploration and exploitation. The offspring generation
can be performed by the sperm cast method as an exploration term:

bD = rand(n) (5)

bM = rand(n) (6)

where bD and bM denote the mated parents.
Depend upon the Hardy–Weinberg theory, the BMO method considers the parents’

genotype frequencies or inheritance features in the offspring generation to model the
reproduction process:

XNnew
i = pXN

bD
+ qXN

bM
(7)

Now, XN
bM

and XN
bD

characterize the variables of Mum and Dad candidates, correspond-
ingly, and p defines a pseudo-random value disseminated between 0 and 1, = (1− p).

When the candidate choice for mating exceling pl amount is taken into account initially,
then the exploration term can take place:

XNnew
i = rand× Xn

bM
(8)

In Equation (8), rand defines a random integer between zero and one. The recently
produced offspring for exploration can be created by Mum’s candidate.

The offspring will be added and analyzed to the parents to extend the solution matrices
from the candidate dimension. Hence, to choose fifty percent top solutions, a technique was
utilized for arranging individual dimension, and the inappropriate solution was removed.
The MBMO algorithm involves the integration of self-population-based initialization with
the standard BMO algorithm. Similar to other metaheuristic models, BMO has a population-
related optimization method that begins with random initialization. This implies that it
needs a control variable to determine the population size. Nevertheless, it is worth noting
that the selection of population size to resolve case problems becomes difficult. The self-
adaptive population will regulate the population size at the iteration. Now, the initial
population size in the initial iteration can be accomplished by a self-adaptive population:

PopSize = 10× d (9)

where d signifies the problem dimension and it can be defined as follows:

PopSizenew = max (d, round(PopSize + r× PopSize)) (10)

where r defines a random number between −0.5 and 0.5.
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Algorithm 1: Pseudocode of BMO

Initializing the population of barnacles Xi
Compute the fitness of all the barnacles
Arrange for locating an optimum outcome at the top of populations (T = the optimum solution)
while (I < Maximal iterations)

Fixed the value of pl
if selective of Dad and Mum = pl

for all the variables
Off spring generation:

end for
else if selective of Dad and Mum > pl

for all the variables
Off spring generation:

end for end if
Bring the present barnacle back once it moves outside the boundaries
Compute the fitness of all the barnacles
Arranging and upgrading T if there is an optimum solution
l = l + 1

end while
Return T

3.3. Weed Detection and Classification

For the weed recognition process, the MBMODL-WD technique exploited the ENN
model. The ENN model is a common example of a dynamic recurrent network, and its
architecture comprises an input layer with specific context nodes, an output, and hidden
layers [21]. The key advantage of ENN is that the context node might be employed for
remembering the prior hidden node activation, which makes it appropriate in the fields of
dynamic system identification and prediction control. Consider the external input of the
network as u. The output is y, and the output of the hidden layer is χ. Hence:

x(k) = f
[
w1

k xc(k) + w2
ku(k− 1)

]
(11)

xc(k) = x(k− 1) (12)

y(k) = g
[
w3

k x(k)
]

(13)

where w1
kw2

k , and w3
k indicate the weight connection matrices from context to implicit

layers, the input to hidden layers, and hidden to output layers, correspondingly. Now, f
and g represent the transfer function of implicit and output layers.

xc(k) = x(k− 1) = f
[

x1
k−1xc(k− 1) + x2

k−1u(k− 2)
]

(14)

Then,
xc(k− 1) = x(k− 2) (15)

where xc(k) depends on w1
k−1, w2

k−2 at distinct moments; hence, xc(k) represents the
dynamic recursive method. Consequently, the BP model applied to Elman regression NN
training is the dynamic BP learning mechanism.

4. Experimental Validation

The proposed model is simulated using the Python 3.6.5 tool. The proposed model is
experimented on PC i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB
HDD. The parameter settings are given as follows: learning rate: 0.01, dropout: 0.5, batch
size: 5, epoch count: 50, and activation: ReLU.
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The weed detection results of the MBMODL-WD model are tested using a dataset,
compassing 3000 images. The dataset holds 287 crop images and 2713 weed images, as
defined in Table 1. Figure 2 illustrates some sample images.

Table 1. Dataset details.

Class No. of Images

Crop 287

Weed 2713

Total Number of Images 3000
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The confusion matrices of the MBMODL-WD model on the weed detection process
are demonstrated in Figure 3. The outcomes displaying the MBMODL-WD model properly
recognized the crop and weed images under all aspects.
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Table 2 and Figure 4 report the weed detection results of the MBMODL-WD method
on 60% of TR and 40% of TS databases. The simulation values revealed the MBMODL-
WD method properly classified the crop and weed images. On 60% of TR database, the
MBMODL-WD model reached an average accubal of 94.73%, precn of 93.75%, recal of
94.73%, Fscore of 94.23%, MCC of 88.48%, and Gmean of 94.64%. Concurrently, on 40% of
TS database, the MBMODL-WD approach gained an average accubal of 92.73%, precn of
97.40%, recal of 92.73%, Fscore of 94.91%, MCC of 90.01%, and Gmean of 92.47%.
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Table 2. Weed detection outcome of MBMODL-WD system under 60:40 of TR/TS databases.

Class Accubal Precn Recal Fscore MCC Gmean

Training Phase (60%)

Crop 90.62 88.41 90.62 89.51 88.48 94.64

Weed 98.84 99.08 98.84 98.96 88.48 94.64

Average 94.73 93.75 94.73 94.23 88.48 94.64

Testing Phase (40%)

Crop 85.83 96.46 85.83 90.83 90.01 92.47

Weed 99.63 98.34 99.63 98.98 90.01 92.47

Average 92.73 97.40 92.73 94.91 90.01 92.47
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Figure 4. Average weed classification analysis of MBMODL-WD system under 60:40 of TR/TS databases.

Table 3 and Figure 5 depict the weed detection results of the MBMODL-WD system
on 70% of TR and 30% of TS databases. The simulation outcomes stated that the MBMODL-
WD system properly classified the crop and weed images. On 70% of TR database, the
MBMODL-WD system reached an average accubal of 98.30%, precn of 97.87%, recal of
98.30%, Fscore of 98.08%, MCC of 96.17%, and Gmean of 98.29%. Simultaneously, on 30% of
TS database, the MBMODL-WD algorithm attained an average accubal of 98.99%, precn of
96.13%, recal of 98.99%, Fscore of 97.51%, MCC of 95.08%, and Gmean of 98.99%.
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Table 3. Weed detection outcome of MBMODL-WD system under 70:30 of TR/TS databases.

Class Accubal Precn Recal Fscore MCC Gmean

Training Phase (70%)

Crop 97.01 96.06 97.01 96.53 96.17 98.29

Weed 99.58 99.68 99.58 99.63 96.17 98.29

Average 98.30 97.87 98.30 98.08 96.17 98.29

Testing Phase (30%)

Crop 98.84 92.39 98.84 95.51 95.08 98.99

Weed 99.14 99.88 99.14 99.51 95.08 98.99
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The TACC and VACC of the MBMODL-WD approach are investigated on weed
detection performance in Figure 6. The figure states that the MBMODL-WD methodology
revealed an improved performance with higher values of TACC and VACC. It is evident
that the MBMODL-WD system has attained superior TACC outcomes.
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The TLS and VLS of the MBMODL-WD methodology are tested on weed detection
performance in Figure 7. The figure points out that the MBMODL-WD approach has
exposed optimum performance with decreased values of TLS and VLS. It is noticeable that
the MBMODL-WD method has resulted in lesser VLS outcomes.
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A noticeable precision–recall study of the MBMODL-WD system under test database
is represented in Figure 8. The figure pointed out that the MBMODL-WD algorithm has
enhanced values of precision–recall values in various classes.
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Table 4 reports a detailed weed detection result of the MBMODL-WD model and
existing models [22]. Figure 10 examines the precn and recal results of the MBMODL-WD
method and recent methods. The results demonstrated the MBMODL-WD method reached
enhanced values of precn and recal . For instance, based on precn, the MBMODL-WD model
has shown a higher precn value of 96.13%. In contrast, the RF, KNN, SVM, ResNet-101,
VGG-16, SVM-Pixel-based, and HLBODL-WDSA models have shown reduced precn of
95.24%, 62.43%, 91.32%, 93.15%, 93.96%, 85.41%, and 95.84%, respectively. In addition, in
terms of recal , the MBMODL-WD approach has exposed a maximally recal value of 98.99%.
In contrast, the RF, KNN, SVM, ResNet-101, VGG-16, SVM-Pixel-based, and HLBODL-
WDSA models have shown lesser recal values of 93.93%, 61.85%, 91.24%, 94.47%, 92.76%,
85.79%, and 95.18%, correspondingly.

Table 4. Comparative analysis of MBMODL-WD system with other algorithms.

Methods Accubal Precn Recal MCC Gmean

MBMODL-WD 98.99 96.13 98.99 95.08 98.99

RF Model 95.53 95.24 93.93 88.63 89.87

KNN Model 62.81 62.43 61.85 35.83 93.29

SVM Model 94.39 91.32 91.24 84.00 90.34

ResNet-101 Model 93.52 93.15 94.47 92.90 92.80

VGG-16 Model 93.29 93.96 92.76 92.93 89.07

SVM-Pixel-based 85.84 85.41 85.79 86.81 93.62

HLBODL-WDSA 98.96 95.84 95.18 93.34 95.16
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Figure 11 observes the MCC and Gmean results of the MBMODL-WD algorithm and
recent approaches. The outcomes exhibited that the MBMODL-WD system gained im-
proved values of MCC and Gmean. For instance, with respect to MCC, the MBMODL-WD
model outperformed a maximal MCC value of 95.08%. In contrast, the RF, KNN, SVM,
ResNet-101, VGG-16, SVM-Pixel-based, and HLBODL-WDSA systems outperformed lower
MCC values of 88.63%, 35.83%, 84%, 92.90%, 92.93%, 86.81%, and 93.34%, correspondingly.
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Moreover, in terms of Gmean, the MBMODL-WD system has depicted a superior Gmean
value of 98.99%. In contrast, the RF, KNN, SVM, ResNet-101, VGG-16, SVM-Pixel-based,
and HLBODL-WDSA algorithms have demonstrated minimal Gmean values of 89.87%,
93.29%, 90.34%, 92.80%, 89.07%, 93.62%, and 95.15%, correspondingly. These results
reassured the superior outcomes of the MBMODL-WD model.

5. Conclusions

In this article, we have modeled a new MBMODL-WD technique for the automated
identification of weeds using computer vision techniques and improving crop productivity.
Primarily, the presented MBMODL-WD technique removes noise using the GF technique.
For automated weed detection, the DenseNet-121 model produces feature vectors with the
MBMO algorithm as hyperparameter optimizer. At last, the ENN method was applied for
the classification of images into plants and weeds. To demonstrate the enhanced perfor-
mance of the MBMODL-WD approach, a series of simulation analyses were performed. A
comprehensive set of simulations highlighted the enhanced performance of the presented
MBMODL-WD methodology over other DL models, with a maximum accuracy of 98.99%.
In the future, the performance of the proposed model can be improved using hybrid DL
classification models. In addition, the computational complexity of the proposed model
needs to be examined in the future.
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