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Abstract: A novel single-carrier-based space-time code construction scheme to exploit the advantages
of a frequency-selective fading channel is investigated in this paper. The proposed construction
scheme is based on multiplexing independent streams of phase-rotated space-time codes in a time-
interleaved fashion. The advantage of such design is that it guarantees full space-time-multipath
diversity by using traditional space-time codes or MIMO signaling schemes originally designed for
flat fading channels as the constituent codes. Another advantage is that this approach incurs no
loss in bandwidth efficiency and it alleviates the problem of high PAPR in OFDM-based space-time
codes. By employing random or algebraic rotations, the design is potentially suitable for any number
of transmit antennas or multipaths. The simulation results indicate that full space-time-multipath
diversity is attained using this new approach, and comparisons with some existing space-time codes
designed for frequency-selective channels are made to show its performance advantage.
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1. Introduction

In the current generation and upcoming 6G wireless systems, multiple-input-multiple-
output (MIMO) and space-time signaling schemes are the major air interface technologies
for improving the spectral efficiency [1]. New advancement continues to be sought in
MIMO and various forms of space-time signaling schemes due to the advent of next gen-
eration wireless communications such as machine-type communications and Terahertz
communications, which impose stringent energy efficiency and spectral efficiency require-
ments. In particular, space-time code, one of the predecessors of modern MIMO techniques,
and its evolved versions will arguably continue to play a major role in next generation
wireless systems.

Due to its significance, the field of space-time code has been thoroughly studied in the
past and various types of space-time code (STC), such as space-time trellis code (STTC) and
space-time block code (STBC) [2,3], have been proposed to increase the spectral efficiency
and/or diversity gain remarkably. While newer types of STC and their variants continue to
emerge in recent years [4–9], most of these powerful STCs [2–9] are primarily optimized for
flat fading channels. By and large, the same holds true for many modern MIMO techniques
such as space-time modulation [10]. When it comes to frequency-selective fading channels,
the extra dimension due to multipath introduces more challenges in the STC design and
MIMO techniques with respect to exploiting full space-time-multipath diversity. To tackle
such issue, most of the work in this area, such as [11–16], pertain to utilizing OFDM as a
means to convert the multipath channel into flat fading channels. However, it is known that
large peak-to-average-power-ratio (PAPR) is a major problem prevalent in OFDM systems.
This becomes even more severe in the next generation wireless systems with Terahertz
communications which lead to stringent energy efficiency requirement on the hardware.
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Alternatively, other research efforts, such as [17–22], have been targeting single-carrier
STC design for frequency-selective fading channels. However, no important results were
obtained in recent years in this direction as most efforts were concentrated on OFDM to
combat multipaths.

In this paper, we consider single-carrier STC design for frequency-selective fading
channels. The reasons are two-fold. Firstly, single-carrier modulation alleviates the problem
of PAPR and it is particularly suitable for the uplink transmission in which mobile or
lightweight terminals such as an IoT device may use cheaper amplifiers operating with
lower power back-off. Secondly, without OFDM, STC design presents a major challenge if
exploiting the full space-time-multipath diversity gain is the main concern. This is because
the multipath is a form of self-interference which undermines the ability of STC to extract
the diversity gain from multipath and more sophisticated design rules are needed. While
there exists a fair amount of previous works on single-carrier STC design, most of them
suffer from some shortcomings. In [17], a delay diversity scheme was proposed. While it
achieves the maximum space-time-multipath diversity gain, it is rate-limited since signal
streams from different antennas are replicas of one another with delays. In [19,20], a
single-carrier orthogonal-STBC scheme was devised to achieve maximum diversity order
in the frequency-selective fading channel. However, the scheme may suffer from rate loss
when there are more than two transmit antennas. In [21], single-carrier STTC construction
methods exclusively for BPSK and QAM modulations were proposed. In [22], single-
carrier space-frequency block code was proposed with good PAPR property but yet it is
limited to four transmit antennas. These previous single-carrier STC schemes are either
rate-limited, restricted to a fixed number of antennas or specifically designed for certain
types of modulation (see Table 1 for a comparison), and their construction methods may not
be easily generalized. Due to the complex nature of multipath interference, they often resort
to numerical searches to obtain the codebooks capable of achieving full diversity. Here, a
novel construction method, which is based on multiplexing independent streams of STCs
in a time-interleaved fashion and applying respective phase rotations, is investigated. The
STCs employed in the independent streams are originally designed for flat fading channels
and, while they all achieve full spatial diversity gain in the flat fading channel, they may
not always do so in the frequency-selective fading channel. The advantage of our approach
is that, by simply multiplexing and judiciously rotating the STCs originally designed for
flat fading channel while keeping their original structures intact, it is able to support
full-rate transmission and extract full space-time-multipath diversity gain with single-
carrier modulation. Specifically, with maximum-likelihood (ML) detection, the proposed
scheme may achieve a space-time-multipath diversity order of MT ·MR · L, where MT , MR
and L are the number of transmit antennas, receiver antennas and the number of paths
in the tapped-delay-line model of the frequency-selective fading channel, respectively.
Both theoretical proofs and simulations are provided in this paper to verify this claim.
We emphasize that this design is universal in the sense that it can be readily applied in
frequency-selective fading channels with any number of transmit antennas or any type
of modulation provided that there exists a corresponding STC design for the flat fading
channel with equal number of transmit antennas. Furthermore, our design can in principle
be used to construct both single-carrier space-time trellis code and space-time block code,
and some examples of both types are given in the simulations. Note that our focus here is
on STC but the same construction can be applied by multiplexing other MIMO-techniques
such as space-time modulation designed for the flat fading channel.
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Table 1. Comparison of Single-carrier Space-time Codes for Frequency-Selective Fading Channel
(1 Specific means that the scheme may require further numerical searches/verification to find the
codewords for other types of modulations (or different number of Tx antennas) not shown in their
present work).

Schemes [17] [19] [20] [21] [22] [23]

Modulation Any Any Any Specific 1 Any Specific

No. of Tx Antennas Any Any Any Specific Fixed Specific

Full-Rate × × × X X X

Full space-time-multipath diversity X X X X X X

Numerical Search/Verification × × × X × X

When ML detection is employed in the proposed single-carrier scheme, the receiver
complexity may increase exponentially with the number of multipaths and the number
of STC streams. Complexity is a common problem in many space-time trellis schemes
designed for the frequently-selective fading channel [21]. Alternatively, by noting that the
multi-stream interleaved structure of the proposed scheme lends itself easily to an iterative
stream-based decoding structure, we propose a frequency-domain iterative detection and
decoding method based on [24] which requires only moderate complexity that does not
scale exponentially with the number of multipaths or STC streams. This approach is
particularly effective for the proposed scheme and may alleviate the complexity problem
inherent in the MIMO detection over frequency-selective fading channels. Simulation
results show that the proposed scheme using such detection method may outperform other
existing approaches of similar level of complexity.

In summary, our contributions are as follows:

• A novel single-carrier-based full-rate space-time code construction scheme capable of
attaining the maximum space-time-multipath diversity order is investigated. Without
resorting to common OFDM-based design, this approach is low in PAPR. In principle,
the proposed scheme is general and broadly applicable in the sense that, with proper
rotation, it can be adopted for any number of transmit antennas or any type of
modulation as well as flexible transmission rate, unlike the previous approaches
which are fixated on certain transmission modes.

• In conjunction with the proposed space-time coding scheme, an efficient frequency-
domain iterative receiver is developed. This receiver delivers good diversity per-
formance while lowering the receiver complexity significantly. Thus, the proposed
scheme may potentially employ powerful STC designed for flat fading channels as its
constituent code. In particular, it is capable of outperforming some existing STTCs of
comparable complexity which are designed for frequency-selective fading channels.

• Theoretical proofs, especially concerning the construction of our STC scheme and the
desired rotations required to achieve full diversity gain, are provided. Simulation
results are used to verify the performance gain of the proposed scheme.

We remark that unlike previous works such as signal space diversity which also
employ rotations to exploit space diversity, the approach taken here differs in several
aspects. First, one of our goals is to exploit multipath diversity, and a sequence of distinct
rotations are judiciously chosen which are assigned to the input streams in the absence of
channel state information (except the maximum channel length). Second, we show that
mere time-interleaving the input streams alone does not guarantee maximum multipath
diversity gain as the delayed streams are superimposed in the time domain. It therefore
poses challenges and only through proper rotations on different delayed streams can it
achieve the maximum diversity gain.

The conference paper version of this paper first appeared in [25] where only Proposi-
tion 1 pertaining to the random rotation was included. We have significantly expanded
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in this paper by including Propositions 2 and 3 on deterministic algebraic rotation and
their proofs as well as the proposed frequency-domain iterative receiver to lower the
receiver complexity.

The remainder of the paper is as follows. In Section 2, the system model and the
performance criteria of space-time code are presented. In Section 3, the design detail and
the performance analysis of the proposed scheme are presented. In Section 4, we present
some simulation results for the proposed design, and finally, Section 5 concludes the paper.

2. System Model

In what follows, a MIMO channel with MT transmit antennas and MR receive antennas
is considered. The space-time coded system model and its performance analysis for the
frequency-selective channel are briefly presented here. The input data stream is encoded
into blocks of space-time codeword of dimension MT by K, where K is the number of
symbols over time. To facilitate block-based single-carrier transmission, the coded sequence
(block of K symbols) to be sent from each transmit antenna is inserted with a cyclic prefix
of length greater or equal to the maximum channel memory order L− 1, which is known
by the transmitter. At the receiver, the discrete-time received signal over the j-th receive
antenna can be expressed as

yj
t =

L−1

∑
l=0

MT

∑
i=1

√
Eshij(l)ci

(t−l)mod K + nj
t, t = 0, · · · , K− 1 (1)

where ci
t is the coded symbol transmitted at the t-th time slot over i-th transmit antenna.

We denote hij(l) as the channel fading coefficient corresponding to the l-th path between
the i-th and j-th antenna. We assume that the transmitter has no knowledge about the
channel while the receiver has perfect channel information. The channel fading coefficients
hij(l), i = 1, · · · , MT , j = 1, · · · , MR, l = 0, · · · , L− 1 are assumed to be i.i.d. zero-mean
complex Gaussian random variables with the same variance σ2

ij(0) = · · · = σ2
ij(L− 1) and

∑L−1
l=0 σ2

ij(l) = 1, ∀i, j, where σ2
ij(l) , E{|hij(l)|2}. The noise samples, nj

t, are complex white
Gaussian with variance N0.

The received signals can now be analyzed as below. First, Equation (1) can be put into
a row-vector form as

yj =
L−1

∑
l=0

√
Eshj(l)C(0)Πl︸ ︷︷ ︸

C(l)

+nj (2)

where yj = [yj
0, · · · , yj

K−1], nj = [nj
0, · · · , nj

K−1], hj(l) = [h1j(l), h2j(l), · · · , hMT j(l)],

Π =


0 1 0 · · · 0

0 0 1
. . . 0

...
. . . . . . . . .

...
1 0 · · · · · · 0

 (3)

and

C(0) =


c1

0 · · · c1
K−1

c2
0 · · · c2

K−1
...

...
...

cMT
0 · · · cMT

K−1

. (4)

In (2), we have used the fact that C(l) = C(0)Πl , that is, C(l) is the result of cyclically
shifting the columns in C(0) by l positions to the right. Note that C(0) is the traditional
definition of a space-time codeword in the flat fading case. Thus, each additional multipath
would introduce a delayed version of this space-time codeword into the received signals.
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For this reason, C(l) can also be interpreted as coming from a set of virtual transmit
antennas [18]. Stacking all these delayed versions of the same codeword gives

C =

 C(0)
...

C(L− 1)

. (5)

Let hj = [hj(0)hj(1) · · · hj(L− 1)], then Equation (2) can be expressed as

yj =
√

EshjC + nj. (6)

Note that Equation (6) is in the exact form as in the flat fading case where a single
space-time codeword is considered. By stacking up all received vectors due to different
receive antennas, we obtain

Y =

 y1
...

yMR

 =
√

EsHC + N (7)

where H = [hT
1 , · · · , hT

MR
]T and N = [nT

1 , · · · , nT
MR

]T .
Our goal is the minimize the average error-rate probability by choosing a good space-

time code for the above MIMO channel. In the pursuit of good code, the pairwise error
probability (PEP) is a key criterion as the average error-rate can be upper-bounded by, via
the union bound, the weighted summation of PEPs among all pairs of codewords. Thus,
as in [18], we proceed by examining the PEP, which is defined to be the probability that
the decision at the receiver is made erroneously in favor of a codeword Ĉ over the correct
C that is transmitted. Let the codeword difference matrix be B = Ĉ− C and A = BBH .
Using the assumption that the power delay profile is uniform and H contains i.i.d. random
variables, the pairwise error probability is upper-bounded by (at high SNR) [18,23]

P(C→ Ĉ) ≤
(

Es

4N0

)qMR
(

q

∏
i=1

(λi)
−MR

)
(8)

where q is the rank of matrix A (or B), and λi, i = 1, · · · , q are the eigenvalues of A. Since
the maximum rank of A is MT L, the maximum space-time-multipath diversity order one
can achieve in this MIMO system is MT MRL. Therefore, in order to minimize the PEP,
the general STC design criteria are to maximize the rank, i.e., the diversity order, and
the determinant (given by the product of the eigenvalues) of matrix A over all pairs of
codewords (C, Ĉ) [23]. One notable conclusion from their analysis in [23] is that an STC
designed for maximum diversity diversity order (MT MR) in a flat fading channel does not
necessarily lead to maximum diversity order (MT MRL) when used in a frequency-selective
channel. Furthermore, unlike the flat fading case, not all the rows in C can be designed
independently as some of them are delayed versions of the others. As such, designing new
STCs to achieve the maximum diversity order for frequency-selective channels becomes a
challenging task. The goal of this paper is to obtain the maximum diversity order (MT MRL)
with proper space-time code design.

3. Rotation-Interleaved Multi-Stream Space-Time Code

We now outline the new method, namely the rotation-interleaved multi-stream space-
time code, which may obtain the maximum diversity gain order (MT MRL) in a frequency-
selective MIMO channel. The basic idea is to employ an STC scheme which is optimized
for a flat fading (L = 1) MIMO channel, and multiplex independent streams of such STCs
in a time-interleaved fashion followed by symbol-wise phase rotations. This new method
is in theory applicable for arbitrary MT , MR and L provided that the STC employed in each
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stream is able to achieve full diversity in the corresponding flat fading MT-by-MR MIMO
channel. Furthermore, our design is bandwidth-efficient as it neither alters the transmission
rate of the original STC nor increases any redundancy.

Figure 1 depicts the diagram of our design. The steps to construct the multi-stream-
based space-time codewords are outlined as follows:

1. The input data stream d is demultiplexed into M ≥ L parallel sub-streams d(m),
m = 1, · · · , M.

2. Each sub-stream is encoded by the same STC encoder. Denote the output codewords
from the STC encoder corresponding to different sub-streams as C(m), m = 1, · · ·M,
which are MT × P matrices, where P = K/M.

3. Each codeword C(m), m = 1, · · · , M is multiplied by a phasor ejθm to give ejθm C(m).
4. The codewords from the rotated sub-streams, ejθm C(m), m = 1, · · · , M enter a mul-

tiplexer, which does the following. Let ejθm C(m) = [ejθm c(m)
0 ejθm c(m)

1 · · · ejθm c(m)
P−1],

where c(m)
t denotes the (t + 1)-th column vector in C(m), i.e., the code symbols trans-

mitted at time t. By multiplexing these column vectors from different rotated STC
sub-streams in a time-division fashion (see Figure 2), the super-codeword from the
outputs of the multiplexer can now be expressed as

C(0) = [ejθ1 c(1)0 ejθ2 c(2)0 · · · ejθM c(M)
0 ejθ1 c(1)1 · · ·

ejθM c(M)
1 · · · ejθM c(M)

P−1]. (9)

The resulting MT × K codeword C(0) is called a super-codeword because it consists of
multiple codewords from the phase-rotated sub-streams. Note that, due to the interleaving,
the adjacent columns in any C(m) are now separated by M columns in C(0), and it is clear
that no bandwidth efficiency reduction occurs as the separation gap is filled with columns
from different sub-codewords. By stacking all the delayed versions of this super-codeword,
the final codeword C is in the form of (5).

Note that the input data stream d can also be replaced by a coded data stream.
As such, our scheme becomes the inner code whereas the incoming coded stream is
from an outer code. Due to limited space, such concatenated scheme will be a subject of
future investigation.

Figure 1. Proposed method.
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Figure 2. The time-interleaved multiplexer of rotated streams (L = 3, M = 3, MT = 2).

3.1. Symbol-Wise Random Phase Rotation

As the multiple streams in the proposed scheme are independently generated using
the same STC encoder, we need to ensure that the resulting super-codewords fulfill the
full-rank criterion. Hence, for each stream, phase rotation is uniformly applied to rotate
each symbol while different streams are subject to different angles of rotation. The rationale
is that rotation, being either random or deterministic, can be viewed as a means to separate
the multiple streams in the algebraic space. The following is the first proposition concerning
the property of our design when the symbol-wise rotation is assumed to be random.

Proposition 1. Assume that the phase-rotation angles θm, m = 1, · · · , M are chosen to be
θm = m · θ, where θ is randomly chosen from [0, 2π). Then, the time-interleaved multi-stream space-
time code achieves the maximum diversity gain order (MT MRL) with probability one, provided
that M ≥ L and the constituent space-time code used in the construction achieves the maximum
diversity gain order in the corresponding flat fading MIMO (MT MR) channel.

Proof of Proposition 1. For simplicity, it is assumed that M = L. The proof can be easily
extended to M > L and thus omitted here. First, for the super-codeword C (see (5)), we
permute the columns as follows:

[c0c1 · · · cMP−1] → [c0cPc2P · · · c(M−1)Pc1cP+1 · · ·
c(M−1)P+1 · · · cMP−1] (10)

where cj denotes the (j + 1)-th column of C. Since column-wise permutation would not
affect the rank of the matrix A = BBH , our analysis from now on is based on the permuted
super-codewords. Due to the permutation, the super-codeword can be expressed as a
block-Toeplitz matrix in which the blocks are the individual codewords from the STC
streams. Now, consider the pairwise error probability and a pair of super-codewords
(B = C− Ĉ). It is clear that B is also a block-Toepliz matrix in which the blocks are given
by B(m) = C(m) − Ĉ(m), m = 1, · · · , M (or its column-permutated version) and

B =


ejθ1 B(1) ejθ2 B(2) · · · · · · ejθM B(M)

ejθM B(M) ejθ1 B(1) ejθ2 B(2) . . . . . .
. . . . . . . . . . . . . . .

ejθ2 B(2) · · · · · · · · · ejθ1 B(1)

. (11)
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Due to the assumption that the STC achieves full diversity gain in the flat fading
channel, the rows in each block B(m), m = 1, · · · , M are linearly independent. Note that B
must contain at least one non-zero block.

To begin, let us assume that B(1) is a non-zero block. In addition, B clearly has full
rank when other blocks are zero because B(1) occupies the main diagonal. The more
difficult task is to prove that B has full rank when there are more than one block among
B(m), m = 1, · · · , M being non-zero. To proceed, we apply Gaussian elimination (a sequence
of elementary row operations) on the first MT rows so that the block B(1) is reduced to
a full-rank upper triangular matrix T(1). The same set of elementary row operations are
applied to every block of MT rows in B and we obtain the following MT M× K matrix

B→


β1T(1) β2

1S(2) β3
1S(3) · · · βM

1 S(M)

βM
1 S(M) β1T(1) β2

1S(2) . . .
...

...
. . . . . . . . .

...
β2

1S(2) · · · · · · · · · β1T(1)

 (12)

where Sm, m ∈ {2, · · · , M} is the resulting matrix after applying the row operations
(B(1) → T(1)) on B(m). We also let β1 = ejθ1 and express all other phasors as a power
of β1, i.e., ejθm = βm

1 in (12). Next, we want to convert the above matrix (12) to upper
triangular form by elementary row operations. Denote gn as the leading entry in the n-th
row of the resulting upper-triangular matrix, and it can be shown that each leading entry
can be reduced to a non-zero polynomial with indeterminate β1. Then,

gn = ānβ
p
1 + ∑

p<k
akβk

1 (13)

where ān and ak denote the coefficients, p is some integer. To see this, let us start the
Gaussian elimination procedure at the (MT + 1)-th row (since the first MT rows are already
triangularized). In order to clear an entry to the left of the diagonal entry, we need to first
multiply the current row by a scalar (i.e., the leading entry with β1 from the corresponding
row above), whereas the corresponding row above is to multiply the current entry that
needs to be cleared. Such cross multiplication is to be followed by row-wise subtraction
and there are MT such operations to clear MT entries. After each multiplication, the power
of β1 in the polynomial at each entry will increase by one. When completed, the leading
entry at the (MT + 1,MT + 1)-th position takes the form of (13) with ān 6= 0 and p = MT + 1
because the (MT + 1,MT + 1)-th entry starts as a term containing β1 and during the row
operations, it is always multiplied by the diagonal entries which contain β1 and are always
non-zero. As such, it contains a term with the lowest power of β1 compared with all other
entries in the current row. The other terms in (13) are due to cross-multiplication of different
powers of β1 and the product can be expressed as βk

1, where k is greater than p. This is
because there are at least MT such multiplications and some of them always involve β of
power greater than one. Likewise, the above elimination procedure is then applied to the
subsequent rows. The only difference is that the rows involved may contain leading entries
already in the form of (13), and each multiplication will increase the respective powers
of β1 in the polynomial accordingly. After completing the elimination, the leading entry
takes the form of (13) for some p again because the terms with the smallest powers of β1
are always non-zero and occupy the main diagonal after each cross-multiplication and
subtraction (ānβ

p
1 is in fact the product of the diagonal entries before the n-th row). The

other terms in (13) are due to cross multiplications involving some βs of power greater
than one. Next, as we know from the fundamental theorem of algebra, the number of roots
of a polynomial (13) is finite. From measure theory, it can be shown that the zero set of a
polynomial has measure zero (i.e., a polynomial function on Cn to C, is either identically
0, or non-zero everywhere). Since the leading coefficient, ān in (13), is non-zero, the event
that gn 6= 0 occurs with probability one. As the event of gn 6= 0, n = 1, · · · , MMT for all
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these super-codeword pairs is the intersection of all such individual events, the rank of B is
MT M with probability one.

After proving the case with B(1) being non-zero, we may repeat the above procedure
by considering other super-codewords with B(1) being strictly zero and B(2) being non-zero.
The matrix B can now be permuted such that B(2) lies in the diagonal and B contains only
other blocks B(i), i = 2, · · · , M. It can be reduced to a full rank matrix (with probability
one) with all leading entries in the form of (13) (the smallest power of β is two). The same
procedure then repeats with B(1) and B(2) both being zero and B(3) being non-zero. As such,
it can be repeated for all other remaining super-codewords with B(m), m = 3, · · · , M− 1
respectively being zero.

A major implication of the above proposition is that when the angles in the phase
rotations are random, the codeword difference matrix B (11) is full-rank irrespective of
the type of modulation employed in the STC. Hence, the limitation is relaxed as to what
type of STC scheme previously proposed is applicable in our design, making the proposed
scheme more flexible in accommodating different modulation schemes due to different
system requirements such as data rate. Note that in practice, however, the angles produced
are not truly random over [0, 2π) but they are countable rational numbers produced from a
pseudo-random generator. In section 5, simulation results will show that full diversity can
be obtained using the computer-generated random number sequence produced in Matlab.

3.2. Symbol-Wise Deterministic Phase Rotation

To justify the applicability of the proposed scheme in practice, deterministic rotation
as opposed to random rotation is considered in the following.

To understand the role of rotation, it is observed that the proposed interleaved multi-
steam structure has led to a layered space-time structure in which each stream occupies a
thread in the resulting space-time matrix B (11). This space-time matrix which contains the
extra spatial dimensions introduced by the delayed taps in the multipath channel resembles
the space-time threading framework proposed in [26]. Specifically, a thread in the proposed
scheme is shown in Figure 3 and is defined as follows: b(l)ij ; i = (i′ − 1) · MT + qi, j =

(j′ − 1) ·MT + qj, j′ = bi′ + lcM, qi ∈ {1, · · · , MT}, qj ∈ {1, · · · , MT}, i′ ∈ {1, · · · , M}, l ∈
{1, · · · , M}, where l denotes the l-th thread and i′, j′ denote the row-block index and
column-block index, respectively. With the above definition, each thread is now block-
based (with MT rows) instead of row-based as in [26]. We emphasize that the block-based
thread structure is naturally formed due to the delayed taps as the STC codewords are
shifted successively in time over different spatial dimensions. As such, the analysis in [26]
and the algebraic codeword constructions can also be employed here in the proposed
structure after some modification.

Figure 3. The block-based space-time threading structure (M = L = 4).
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(a) BPSK codes

Firstly, we consider BPSK modulation in the proposed scheme where the constituent
STCs are BPSK codes and the angles of rotation are chosen based on algebraic number
theory. For more background on algebraic number theory, interested readers may refer
to [27]. A few important definitions relevant to our development are highlighted here. Let
Q be the set of rational numbers. Let α ∈ C, then α is called an algebraic number over Q
if there exists a non-zero irreducible monic polynomial f ∈ Q[X] such that f (α) = 0. The
degree of α is defined to be the degree of f , which is called the minimal polynomial of α. If
α is complex, one can also define its minimal polynomial over Q[iX]. Based on the algebraic
code construction proposed in [26], the following proposition is obtained concerning our
proposed scheme using BPSK codes:

Proposition 2. Assume that the phase-rotation angles θm, m = 1, · · · , M are chosen to be
θm = θ · (m − 1)/M. If {1, ejθ , ej2θ , · · · , ej(M−1)MTθ} are algebraically independent over Q,
then the time-interleaved multi-stream space-time code achieves the maximum diversity gain order
(MT MRL) provided that M ≥ L and the constituent BPSK space-time code used in the construc-
tion achieves the maximum diversity gain order in the corresponding flat fading MIMO (MT MR)
channel. In order to achieve the maximum diversity, there are two ways to choose θ:

(1) θ is chosen such that ejθ is an algebraic number with degree of (M− 1)MT + 1 or greater.
(2) θ 6= 0 is an algebraic number (i.e., ejθ is transcendental).

Proof of Proposition 2. It is assumed that M = L and K = MMT . The extension to M > L
and K > MMT is straightforward and omitted here. The first part of the proof is as follows.
As in the Proof of Proposition 1, the permuted super-codewords are considered, and for
any pair of distinct super-codewords, B is a K× K block-Toepliz matrix as shown in (11).

To begin, let us assume that B(1), the main diagonal of B, is non-zero. The determinant
can be expressed as follows,

det(B) = ∑
σ∈SK

λ(σ)
K

∏
i=1

bi,σi (14)

The above sum is computed over all the permutations σ of the set SK = {1, · · · , K}.
In addition, λ(σ) ∈ {1,−1} denotes the signature of σ, and bi,σi denotes the (i, σi) entry in
the matrix. Thus, each permutation is traversing the matrix from top to bottom through
different columns and the accessed entries are multiplied to yield the product in (14).
As each entry contains a phasor, the products of some permutations in (14) will contain
common phasor terms and they can be factored out in (14). It is proven in Lemma A1
(see Appendix A) that the determinant can be expressed as

det(B) = c0 + c1ejθ + c2ej2θ · · · c(M−1)MT
ej(M−1)MTθ (15)

where cn ∈ Q and it can be expressed as

cn = ∑
σ∈Tn

K

∏
i=1

bi,σi (16)

where Tn denotes the set of all those permutations for which the product in (16) contains a
common phasor term ejnθ . Note that c0 must be due to those permutations traversing only
the main block diagonal of B as they yield the smallest sum of angles which is equal to
zero. Likewise, c(M−1)MT

is due to the permutations traversing only the columns from B(M)

because they are the only permutations yielding the maximum angle equal to (M− 1)MT .
Next, we observe that by definition, c0 can be expressed as the determinant of matrix B
when all the blocks are zero except the main block diagonal which contains B(1). Such block
diagonal matrix is full-rank since B(1) is a full-rank matrix, implying that c0 is non-zero.
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The assumption that {1, ejθ , ej2θ , · · · , ej(M−1)MTθ} are algebraically independent over Q
leads to the following conclusion: that the determinant of B in (11) is equal to zero if and
only if all the coefficients c0, c1, · · · , c(M−1)MT

are equal to zero. Since c0 is not equal to zero,
the determinant is not zero and B is therefore a full-rank matrix.

Next, as done in Proposition 1, we may repeat the above procedure considering other
super-codewords with B(1) strictly being zero and B(2) being non-zero. The matrix B can be
permuted such that B(2) lies in the diagonal. As such, the coefficient cMT is now due to the
permutations traversing the main block diagonal containing B(2) because the sum of angles
is equal to MT. It can be shown to be non-zero using the same argument above, leading to
the conclusion that B is a full-rank matrix. Likewise, the procedure then repeats for all other
remaining super-codewords with B(m), m = 2, · · · , M− 1, respectively being zero.

The second part of the proof is to show that the construction methods for the phase
rotations are valid. In the first method, having an algebraic number, ejθ , with degree greater
than (M− 1)MT guarantees that the polynomial (15) is never equal to zero since cn ∈ Q
and the highest degree in (15) is (M− 1)MT . Similarly, in the second method, the Link
proposition (see Appendix A) asserts that the transcendental number, ejθ , guarantees a
non-zero polynomial (15).

For the first construction method, the cyclotomic numbers, which are defined as the
nth roots of unity ej2π/n, can be used. Their degrees over Q are equal to φ(n) (the Euler
φ-function). Since it was shown in [26] that the algebraic numbers yield better performance
than transcendental numbers, the first method is preferred over the second method and our
simulation studies will only focus on using cyclotomic numbers in the proposed scheme.

(b) QPSK/QAM codes

The development above for BPSK codes can be readily extended to QPSK/QAM
codes by considering the complex algebraic space Q(i) as opposed to Q. The following
proposition is the main result concerning the QPSK/QAM codes, which is similar to that of
the BPSK codes:

Proposition 3. Assume that the phase-rotation angles θm, m = 1, · · · , M are chosen to be
θm = θ · (m− 1)/M. If {1, ejθ , ej2θ , · · · , ej(M−1)MTθ} are algebraically independent over Q(i),
then the time-interleaved multi-stream space-time code achieves the maximum diversity gain order
(MT MRL) provided that M ≥ L and the constituent QPSK/QAM space-time code used in the
construction achieves the maximum diversity gain order in the corresponding flat fading MIMO
(MT MR) channel. In order to achieve maximum diversity, there are two ways to choose θ:

(1) θ is chosen such that cos(θ) is an algebraic number with degree of 2 · (M − 1)MT + 1
or greater.

(2) θ 6= 0 is an algebraic number (i.e., ejθ is transcendental).

Proof of Proposition 3. The first part of the proof is identical to that of Proposition 2 except
that the code symbols and the coefficients are now complex rational numbers. Hence, only
the difference is highlighted here. The determinant of B can be shown as

det(B) = c0 + c1ejθ + c2ej2θ + · · · c(M−1)MT
ej(M−1)MTθ (17)

where cn ∈ Q(i). Using the same arguments as in Proposition 2, one of the coefficients
in (17) must be non-zero, and therefore, if {1, ejθ , ej2θ , · · · , ej(M−1)MTθ} are algebraically
independent over Q(i), the matrix B is full-rank.

For the first construction method of θ, the argument from [28] can be used to show
that in order for the {1, ejθ , ej2θ , · · · , ej(M−1)MTθ} to be independent over Q(i), the real part
of the complex exponential, cos(θ), must have a degree greater than twice the maximum
degree (M − 1)MT in (17). For the second construction method, the Link proposition
guarantees that using a transcendental number is valid.
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3.3. Frequency-Domain Iterative Receiver

Single-carrier space-time trellis coding schemes operating in multipath-rich channels
are known to have prohibitive receiver complexity if maximum-likelihood sequence de-
tection is employed. For instance, the complexity of the optimal receiver for the STTC
developed in [21] is O(|Ω|(ν+(L−1))), where ν is the memory length of the trellis code and
|Ω| is the size of the constellation. The complexity renders such coding schemes impractical
for large L and ν. For the proposed scheme, the complexity of the optimal receiver is
O(|Ω|((ν+1)L−1)), which is also prohibitively high due to the joint multi-stream detection
as well as the presence of multipath. Alternatively, in view of the unique multi-stream time-
interleaved structure of the proposed scheme, we propose to use a simpler and effective
receiver based on iterative block-based MMSE frequency domain equalization (FDE) and
decoding formulated in [24,29]. Figure 4 depicts the corresponding turbo receiver structure
that, after subtracting the inter-symbol and inter-stream interference, jointly detects the
block of signals from multiple streams through the linear MMSE FDE followed by stream-
based BCJR decoding. The time-interleaved multiplexer in the proposed scheme plays
the role of interleaver in the turbo processing and allows the equalizer to approximate
the inter-symbols as independent signals. The detail of the MMSE-FDE and the iterative
processing are described in Appendix B.

Figure 4. Iterative receiver based on linear MMSE-FDE and turbo processing.

The MMSE-FDE process has a complexity of O(KM3) which is a linear function of
the block size K, while the stream-based decoding (e.g., BCJR algorithm) has a complexity
depending on the constituent STC and the number of trellis states which is given by
O(|Ω|ν). For large L and ν, our approach clearly has a reasonable complexity unmatched by
the optimal receiver of the traditional space-time trellis codes [21]. Besides the complexity,
the memory requirement and the decoding delay also need to be addressed for the proposed
iterative receiver. For a binary linear block code of blocksize P, the BCJR algorithm requires
storage up to Ki(2P−Ki ) real numbers, where Ki is the number of information-carrying
bits in the code. Modified BCJR algorithms have been previously proposed to reduce
the complexity and memory requirement by a fixed factor Ki [30]. With regard to the
decoding delay, it is well known that the decoding delay due to iteration adversely affects
the throughput performance. As an illustration, it is found that in an iterative-based
turbo decoder implemented with a parallel structure, the throughput is proportionally
to PmF/p , where Pm is the number of parallel MAP-decoders, F is the operating clock
frequency and p is the number of iterations [31]. Existing works such as [31] studied
improved parallel architectures and sliding-window-based logarithmic-BCJR algorithm to
increase the throughput and managed to match the LTE-advanced standards throughput
requirements. In our iterative receiver, it is expected that the multi-stream-based structure
can also be implemented with a similar parallel architecture consisting of logarithmic
BCJR-based decoders to reduce the throughput degradation.
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4. Simulation Results and Discussion

In all the simulations, the number of transmit antennas is either two (MT = 2) or four
(MT = 4) and the receiver has perfect knowledge of the frequency-selective fading channel
which contains uncorrelated and balanced taps with equal variance.

A. Number of multipaths is two (L = 2)

In the first part of the simulation, L is assumed to be two and maximum-likelihood
(ML) detection is employed at the receiver. QPSK space-time block coding (STBC) is
considered and two streams (M = 2) of Alamouti code are multiplexed based on our
design. The block size K is therefore equal to 4. For random rotation, phases are randomly
generated from [0, 2π). For deterministic rotation, according to Proposition 3, θ = 2π/11 is
chosen because cos(θ) has a degree of 5. Figure 5 depicts the simulation results assuming
MR = 1. It also contains the performance result of the original Alamouti code in such
channel. It is clear from the slope of the performance curves that the original Alamouti
code exhibits inferior performance whereas our approach is able to utilize the original
Alamouti code in the new design so as to exploit the frequency-diversity gain in addition
to the spatial-diversity gain. In addition, random rotation and deterministic rotation show
comparable performance as they both attain the maximum diversity gain.
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Figure 5. Performance of the proposed scheme based on QPSK−modulated STBC, MT = 2, MR = 1,
L = M = 2.

Next, the number of transmit antenna increases to four and two streams of QPSK-
modulated quasi-orthogonal space-time block code (QOSTBC) [32] designed for maximum
space diversity in a flat fading channel are utilized. Figure 6 depicts the simulation results
assuming MT = 4, MR = 1, L = 2. As a comparison, the performance of original QOSTBC
in the flat fading channel (L = 1) with four transmit antennas is also shown. It is clear that
the proposed scheme achieves better diversity gain, with an order of 4× 2 = 8, whereas the
QOSTBC only achieves a diversity order of 4. We remark that the ML detection complexity
of the proposed scheme is larger than that of QOSTBC, as the latter can exploit the property
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of QOSTBC to divide the detection task into two for separate groups of decodable symbols,
which however can be performed only in a flat fading channel.

5 6 7 8 9 10 11 12 13 14

SNR (dB) per receive antenna

10-3

10-2

10-1

B
E

R

QOSTBC, M
T
=4, L=1

Proposed scheme using QOSTBC,

M
T
=4, L=2, random rotation

Figure 6. Performance of the proposed scheme based on QPSK−modulated STBC, MT = 4, MR = 1,
L = M = 2.

BPSK space-time trellis code (STTC) is then considered. The block size, K, is 130. The
constituent STTC used in our scheme is the optimal 8-state BPSK STTC code designed for
the flat fading MT = 2 channel (obtained by computer search in [33]), and has a generator
matrix given by G8 = [1110; 0101]T . Again, we consider multiplexing two streams of
such STC, each one has a block size of 65 (K = 65 · 2 = 130). For convenience, we
name our scheme as Proposed-G8 scheme. For deterministic rotation, θ = 2π/5 is chosen
according to Proposition 2. Figures 7 and 8 depict the simulation results, for MR = 1 and
MR = 2, respectively. Comparing with the original 8-state G8-STTC, the Proposed-G8
scheme is superior since it is able to achieve full space-time-multipath diversity gain. We
also compare our design with the best 8-state STTC (G8∗ = [1111; 1001]T) previously found
for the frequency-selective channel [23]. For both random and deterministic rotation, the
Proposed-G8 scheme outperforms the G8∗ -STTC by around 1 dB at FER= 0.01 for MR = 1.
In terms of complexity, the Proposed-G8 scheme however requires 128 ML states whereas
the G8∗ STTC requires only 16 ML states. Nonetheless, the simulations have validated
our design that it attains the maximum diversity order by using simple space-time code
designed for a flat fading channel.
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Figure 7. Performance of the proposed scheme based on BPSK−modulated STTC, MT = 2, MR = 1,
L = M = 2.
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Figure 8. Performance of the proposed scheme based on BPSK−modulated STTC, MT = 2, MR = 2,
L = M = 2.
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B. Number of multipaths is three (L = 3)

In the second part of the simulation, L is three, both MT and MR are two. The block
size K is 132. First, BPSK modulation is considered. In Figure 9, the proposed scheme,
Proposed-G4 scheme, using a 4-state BPSK STTC (with generator G4 = [011; 111]T) and
fixed rotation (θ = 2π/5), is compared with one of the best 4-state STTCs (with generator
G4∗ = [111; 101] from [21]) designed for frequency-selective channels with 3 taps. Note that
the Proposed-G4 scheme requires 256 ML states whereas the G4∗ -STTC requires 16 ML states
only, and the performance of the Proposed-G4 scheme outperforms G4∗ -STTC by about
0.25 dB at FER = 0.01. Both schemes deliver the maximum level of diversity performance
as seen from the slope of the FER curves, therefore validating the diversity advantage of
the proposed scheme for L = 3. Next, in order to circumvent the complexity problem of
ML detection, the iterative receiver as described in section III.C is used for the proposed
scheme when the constituent STTC has a large number of states. Due to the suboptimal
nature of the iterative receiver, the performance of the proposed scheme is compromised.
Our focus is to assess its diversity performance over the range of desired FER as well as
considering the comparison with existing space-time coding schemes of similar decoding
complexity. As such, we remark that the major complexity requirement of the iterative
receiver stems from the number of states required in the BCJR decoding algorithm rather
than the linear FDE which has polynomial complexity and is independent of the STTC
design. The proposed scheme, Proposed-G16, using the 16-state BPSK STTC (with generator
G16 = [11011; 01111]T) from [34] is then considered. The rotation angle is fixed to θ = 2π/7
and its performance is shown in Figure 9. With a comparable number of states (16 states
BCJR decoder), it offers a 1 dB gain over the G4∗ -STTC (with 16 ML states) at FER = 0.01
while both schemes deliver the same level of diversity gain over the range of desired FER.
Thus, it indicates that not only has the iterative receiver delivered the diversity advantage
of the proposed scheme, it brings about a considerable amount of improvement over
some STTC schemes. Hence, the proposed scheme using iterative receiver may yield good
performance with affordable level of complexity.

Another comparison is also included in Figure 9, in which the performance of the
best 16-state STTC (G16∗ = [11101; 11011]T) [23] designed for frequency-selective chan-
nels is shown. It is slightly better than the Proposed-G16 scheme but at the expense of
larger number of ML states since it requires 64 ML states. Finally, Figure 9 shows the
performance of the proposed scheme, Proposed-G32, with 32-state BPSK STTC (with gen-
erator G32 = [110101; 101111] from [35]) and θ = 2π/7. It outperforms the best 16-state
G16∗ -STTC code by about 1 dB at FER = 0.01 while requiring only 32 states in the BCJR
decoder. Thus, the proposed scheme again yields promising performance with affordable
level of complexity. Note that, as shown in Figure 9, the proposed scheme, Proposed-G16, is
simulated for both random and fixed rotation, and they provide comparable performance
when the iterative receiver is employed.

Next, QPSK modulation is considered. The proposed scheme, Proposed-G32, using the
32-state QPSK STTC (with generator G32 = [2012122; 2201202]T from [36]) is considered.
The rotation angle is chosen to be θ = 2π/19 and the iterative receiver is employed.
In Figure 10, the result is compared to the best 4-state QPSK STTC code for frequency-
selective fading channels (with G4∗ = [12; 21] from [21]) and the gain of the proposed
scheme is about 2 dB at FER = 0.01 while both schemes achieve equal diversity performance
over the range of desired FER. In terms of the number of states in the decoder, Proposed-G32
requires 32 states in the BCJR decoder whereas G4∗ -STTC requires 64 ML states. Hence, it
again indicates that the proposed scheme with iterative receiver is capable of outperforming
the existing STTC scheme of comparable receiver complexity. The proposed scheme thus
enables the use of any powerful STC among a large body of existing STC schemes designed
for flat fading channels and transform it into effective STC for frequency-selective fading
channels. Finally, as shown in Figure 10, the performance of using random rotation in the
proposed scheme is as good as using deterministic rotation since both are able to extract
the diversity gain inherent in the MIMO frequency-selective fading channel.
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Figure 9. Performance of the proposed scheme based on BPSK−modulated STTC, MT = 2, MR = 2,
L = M = 3.
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Figure 10. Performance of the proposed scheme based on QPSK−modulated STTC, MT = 2, MR = 2,
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5. Conclusions

In this paper, a novel space-time coding approach is investigated for single-carrier
transmission in a frequency-selective MIMO fading channel. By multiplexing independent
streams of constituent space-time codes in a time-interleaved fashion followed by phase
rotations, this new space-time code construction method is able to achieve full space-time-
multipath diversity. It is also broadly applicable in the sense that, with proper rotations, it
is potentially suitable for any number of transmit antennas or any type of modulation. It is
shown that, both in theory and in simulations, the new scheme is a full-rate full-diversity
scheme, while being flexible enough to incorporate any STC or MIMO scheme originally
optimized for a flat fading channel as its constituent codes. Furthermore, iterative frequency
domain equalization and decoding can be readily used for the new scheme to yield better
performance than some of the best space-time codes designed for the frequency-selective
fading channel with comparable receiver complexity.
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Appendix A. Lemmas for Propositions 2 and 3

The following lemmas are required in the proofs of Propositions 2 and 3.

Lemma A1. The determinant of B can be expressed as

det(B) = c0 + c1ejθ + c2ej2θ + · · · c(M−1)MT
ej(M−1)MTθ . (A1)

Proof. The proof is an extension of the one used in Lemma 2 from [26]. In [26], the space-
time thread traverses one row only for each column it visits whereas the thread in the
proposed structure traverses a block of MT rows for each block of MT columns it visits
(see Figure 3). Let σ be a permutation of the set (1, 2, · · · , MMT). We decompose each
permutation into MT partitions in such a way that the determinant (14) can be expressed as

det(B) = ∑
σ∈SK

λ(σ)
MT

∏
q=1

M

∏
p=1

b(p−1)·MT+q,σ(p−1)·MT+q
. (A2)

That is, the q-th partition contains the rows (p− 1) ·MT + q where p = 1, · · · , M.
Let φ = ejθ and denote expφ(bi,j) as the operator which returns the exponent of φ in

bi,j (e.g., if bi,j = ej2θ , then expφ(bi,j) = 2). Due to the thread structure of B, we have

expφ(bbk−jcM ·MT+q1,(k−1)·MT+q2
) = j−1

M (A3)

∀q1, q2 ∈ {1, · · · , MT}
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where j, k ∈ {1, · · · , M}. It can then be shown that

bM expφ(b(j1−1)·MT+q1,(k0−1)·MT+q2
)−

M expφ(b(j2−1)·MT+q3,(k0−1)·MT+q4
)cM = j2 − j1 (A4)

∀q1, q2, q3, q4 ∈ {1, · · · , MT}

where j2 > j1, j1, j2 ∈ {1, · · · , M} and k0 ∈ {1, · · · , M}. Note that the above relationship
holds despite the values of q1, q2, q3, q4. Furthermore, the sum of the exponents over any
row or any combinations of rows within the r-th block of rows can be expressed as

MT

∑
q=1

M

∑
p=1

expφ(b fr(p,q),σ(p−1)MT+q
) =

MT(M− 1)
2

(A5)

where fr(p, q) is any function of p, q such that (r− 1)MT + 1 ≤ f (p, q) ≤ rMT . Next, for
one permutation σ, the sum of exponents can be expressed as

bM expφ(σ)cM

= bM expφ

(
MT

∏
q=1

M

∏
p=1

b(p−1)MT+q,σ(p−1)MT+q

)
cM

= bM
MT

∑
q=1

M

∑
p=1

expφ(b(p−1)MT+q,σ(p−1)MT+q
)cM (A6)

= bM
MT

∑
q=1

{
M−1

∑
p=1

expφ(b(p−1)MT+q,σ(p−1)MT+q
) +

= expφ(b(M−1)MT+q,σ(M−1)MT+q
)
}
cM.

The last term in the above equation can be expressed as the sum of the exponents of
the whole row subtracting the remaining entries in the same row and gives

expφ(b(M−1)MT+q,σ(M−1)MT+q
)

=
MT(M− 1)

2
−

M−1

∑
p=1

expφ(b(M−1)MT+q,σ(p−1)MT+q
) (A7)

−
M

∑
p′=1

∑
q′ 6=q

expφ(b(M−1)MT+q′ ,σ(p′−1)MT+q′
).

The above equation is substituted into (A6) and then one of the summations in
(A6) gives

MT

∑
q=1

M

∑
p′=1

∑
q′ 6=q

expφ(b(M−1)MT+q′ ,σ(p′−1)MT+q′
)

=
MT

∑
q=1

M

∑
p′=1

 MT

∑
q′=1

expφ(b(M−1)MT+q′ ,σ(p′−1)MT+q′
)

−expφ(b(M−1)MT+q,σ(p′−1)MT+q
)
}

(A8)

=
MT

∑
q=1

MT(M− 1)
2

− MT(M− 1)
2

=
MT(MT − 1)(M− 1)

2
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where we have used the relationship of (A5). Using (A5), (A8) and bbacM + bbcMcM =
ba + bcM, (A6) can be shown as

bM expφ(σ)cM = bM(M− 1)MT(3−MT)

2
cM. (A9)

Therefore, since MT is an integer, expφ(σ) is always an integer. The determinant B (A1) can
thus be expressed as a summation of terms, each of which contains an exponential with
integer multiples of the angle θ. The largest angle, (M− 1)MT , is due to the permutations
traversing only the Mth-thread (in which expφ(bi,j) = M− 1/M) because they are the only
permutations that yield the maximum angle.

Lemma A2 (see [26]). If α1, · · · , αm are distinct algebraic numbers, and if c1, · · · , cm are algebraic
numbers not all equal to zero, then

m

∑
l=1

cleαl 6= 0. (A10)

Furthermore, if α is an algebraic number 6= 0, then eα is transcendental.

Appendix B. Frequency Domain Iterative Receiver

The detailed formulation of the frequency domain iterative receiver applicable to the
proposed rotation-interleaved multi-stream space-time code is described as follows. The
iterative receiver consists of the soft-cancellation, MMSE frequency domain equalization
(MMSE-FDE) and the decoding.

The MMSE-FDE aims to find the estimates of the input coded symbols transmitted
from antenna i ∈ {1, · · · , MT}. Recall that K denotes the size of transmitted block. Denote
Oij as the channel matrix corresponding to the (i, j)th transmit-receive antenna pair and
Oij ∈ CK×K is a circulant matrix with [hij(0), hij(1), · · · , hij(L− 1), 0, · · · , 0] as its first row.
By performing the eigen-decomposition, Oij can be written as Oij = FHΓijF, where F
is the FFT-matrix and Γij is a diagonal matrix containing the channel coefficients in the
frequency domain. Denote Ξi = [ΓH

i1 , · · · , ΓH
iMR

]H and Ω = [Ξ1, · · · , ΞMT ]. The MMSE-
FDE will take into consideration the quality of the soft-cancellation, which is explained as
follows. Let us denote si

t as the soft estimation of si
t, the transmitted symbol from the ith

antenna at time t, which is obtained from the decoding process in the last iteration, and
the estimates are assumed to be si

t ≈ E[si
t|Y]. Then, the covariance matrix of estimation

error can be approximated by Λt = diag(Es − |s1
t |2, Es − |s2

t |2, · · · , Es − |sMT
t |2). To further

simplify the computation of the MMSE filter coefficients, we calculate the average of the
estimation error as $ = 1/(KMT)∑K

t=1 ∑MT
i=1 |s

i
t|2 and therefore Λt ≈ $IMT . Denote the

frequency domain representation of the received signal vector at receive antenna j as rj =

F(yj)
T and r = [rH

1 , · · · , rH
MR

]H . In addition, denote si = [si
1, · · · , si

K]
T and its frequency

domain representation as si = Fsi. Then, denote r = Ω[(s1)H , · · · , (sMT )H ]H . Define
Ψ = ΩΛΩH + σ2IKMR×KMT ,where Λ = (Es − $)IKMR×KMT , and γi = (1/K) Tr(ΞH

i ΨΞi).
Then, the outputs from the MMSE-FDE can be expressed as [29]

zi = γ−1
i FHΞH

i Ψ−1(r− r) + si. (A11)

Equivalently, with the AWGN channel assumption, the output, the tth entry in zi, can
be written in the form

zi
t = si

t + νi
t (A12)

where νi
t is modeled as zero-mean circularly-symmetric Gaussian distributed with variance

given by
σ2

ν,i,t = γ−1
i − (Es − $). (A13)



Appl. Sci. 2022, 12, 12803 21 of 22

The extrinsic LLRs, which are subsequently fed to the decoder as intrinsic LLRs, can
be derived by using the equivalent output form (1) and the bits-to-symbol mapping. If
BPSK is used, the extrinsic LLR sequences of the code bits are simply given by

λe[ci
t] =

4Re{e−jθi
t zi

t}
γ−1

i − (Es − $)
(A14)

where ci
t and θi

t are the transmitted code bit and the respective rotation applied at time t on
ith antenna, respectively. Note that ci

t and θi
t belong to a particular stream and we drop the

stream index for simplicity.
During the decoding process, binary code decoders such as BCJR decoders can be

used to return the extrinsic LLRs of the code bits, denoted as λc
e[ci

t], which will then be used
to generate the soft estimates:

ci
t = tanh

(
1
2

λc
e[c

i
t]

)
. (A15)

The soft estimates of the transmitted symbols via the bits-to-symbol mapping followed
by the respective rotation can be generated and fed to the MMSE-FDE described above.
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