
����������
�������

Citation: Zhao, P.; Yuan, Y.; Guo, T.

Extensible Hierarchical Multi-Agent

Reinforcement-Learning Algorithm

in Traffic Signal Control. Appl. Sci.

2022, 12, 12783. https://doi.org/

10.3390/app122412783

Academic Editors: Vicent Botti and

Vicente Julian

Received: 17 November 2022

Accepted: 10 December 2022

Published: 13 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Extensible Hierarchical Multi-Agent Reinforcement-Learning
Algorithm in Traffic Signal Control
Pengqian Zhao , Yuyu Yuan * and Ting Guo

Key Laboratory of Trustworthy Distributed Computing and Service, Ministry of Education, School of Computer
Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications,
Beijing 100876, China
* Correspondence: yuanyuyu@bupt.edu.cn

Abstract: Reinforcement-learning (RL) algorithms have made great achievements in many scenarios.
However, in large-scale traffic signal control (TSC) scenarios, RL still falls into local optima when
controlling multiple signal lights. To solve this problem, we propose a novel goal-based multi-
agent hierarchical model (GMHM). Specifically, we divide the traffic environment into several
regions. The region contains a virtual manager and several workers who control the traffic lights.
The manager assigns goals to each worker by observing the environment, and the worker makes
decisions according to the environment state and the goal. For the worker, we adapted the goal-based
multi-agent deep deterministic policy gradient (MADDPG) algorithm combined with hierarchical
reinforcement learning. In this way, we simplify tasks and allow agents to cooperate more efficiently.
We carried out experiments on both grid traffic scenarios and real-world scenarios in the SUMO
simulator. The experimental results show the performance advantages of our algorithm compared
with state-of-the-art algorithms.

Keywords: reinforcement learning; multi-agent system; traffic signal control; hierarchical
reinforcement learning

1. Introduction

As the population grows and the number of vehicles increases, the problem of traffic
jams is playing out in cities all over the world. Traffic congestion will reduce people’s travel
efficiency, increase fuel consumption and affect the normal operation of society. Therefore,
experts came up with traffic signal control, which aims to find a strategy that can alleviate
traffic jams based on real-time traffic conditions. Early TSC [1,2] simply designed the traffic
signal program and switched the program according to the road information provided by
the sensor. Such algorithms rely heavily on the manual formulation of programs. However,
the traffic situation in the real world is very complex and changes all the time. Therefore,
we need a more flexible and comprehensive strategy to solve this problem.

In recent years, with the development of neural networks and computational power
resources, deep reinforcement learning (DRL) has been widely used in various serialization
decision scenarios [3–6]. Compared with traditional methods, DRL abstracts TSC problem
as a Markov decision process (MDP) without heuristic assumptions and rules made by
experts. In the process of interacting with the environment, DRL searches for an optimal
policy based on the feedback given by the environment. Classical reinforcement learning is
divided into two categories: value based and policy based. Deep Q-Network [7] is a well-
known value-based reinforcement-learning algorithm which uses neural networks to fit the
action-state value function of an agent so as to find the optimal action. Policy gradient [8]
is a classic policy-based algorithm which uses neural networks to directly fit agent policies
to seek optimal actions. These classical reinforcement-learning algorithms have excellent
performance in various scenarios, such as video games [9,10], robot control [11,12], and

Appl. Sci. 2022, 12, 12783. https://doi.org/10.3390/app122412783 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122412783
https://doi.org/10.3390/app122412783
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9351-5748
https://doi.org/10.3390/app122412783
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122412783?type=check_update&version=1

Appl. Sci. 2022, 12, 12783 2 of 14

autonomous driving [13,14], etc. However, single-agent RL is not suitable for solving
the traffic problem. When the TSC scene is too large, the environment state can be very
complex. In addition, when there are too many intersections, the action space will also face
the problem of an exponential increase. Therefore, more and more people have begun to
study multi-agent reinforcement-learning (MARL) algorithms in complex environments.

The development of multi-agent reinforcement learning has also formed two cate-
gories, namely, independent learning and centralized learning. Centralized learning [15,16]
usually has a centralized network which receives information from other agents to make
comprehensive judgments. However, this method also needs to solve the problem of the
large joint action space when facing the large-scale TSC problem. The independent learning
method [17,18] does not exist centralized network, and each agent is independent of the
others. These agents treat other agents as part of the environment when they interact with
it. However, this method is prone to non-stationary problems: the update of an agent’s own
policy relies on the other agents, but the policies of other agents also change dynamically.
Based on this situation, [19] multi-agent advantage actor critic (MA2C) can be used to
solve the TSC problem. The algorithm obtains the state information of neighbors through
communication and directly joins in its decision-making process without establishing a
centralized network. At the same time, MA2C sets a spatial discount factor according to the
location relationship, focusing on the situation of neighbors that are closer to themselves.

Although MA2C solves the above problems, it does not guarantee effective cooperation
in large-scale TSC problems and still suffers from local optima. In this kind of multi-agent
environment, establishing effective collaboration is the most direct way to accomplish
the task. Feudal multi-agent actor-critic (FMA2C) [20] proposes to combine hierarchical
reinforcement learning with MA2C to establish collaboration. FMA2C stratifies the problem
and uses the upper layer to obtain more environmental information to assign goals to
the lower layer. The lower level makes decisions based on the goals and environmental
information it receives. The guidance of the upper layer for the lower layer enables the agent
to make long-term decisions and, thus, solve the TSC problem more efficiently. However,
FMA2C does not take full advantage of the target. The lower layer only considers the goal
and state at the same time when making decisions and does not establish relationships
with other agents.

Therefore, in this paper, we propose a novel goal-based multi-agent hierarchical model
(GMHM) to solve the large-scale TSC problem. We first divide the environment into
independent regions, each containing multiple traffic lights. In this region, we abstract an
upper agent and use those traffic lights as lower agents. The upper agent assigns specific
goals to the lower agents according to the environment information and the mutual position
of subordinate agents. After receiving a goal, the lower agent not only considers that when
making decisions but also infers its neighbor’s actions from the neighbor’s goals. The lower
agent uses the goal to gain a more comprehensive understanding of the environment and to
take full account of its neighbors. In this way, our algorithm ensures effective cooperation
between agents.

The main contributions of our paper are as follows: First, we investigate the devel-
opment of multi-agent reinforcement-learning algorithms in TSC problems and propose a
goal-based multi-agent hierarchical model for existing problems. Second, we describe our
proposed model in detail. For the upper agent, we use a transformer structure to assign
specific goals to each lower agent. For the lower agents, we added the concept of goals
to the MADDPG algorithm to make it more efficient to cooperate. Finally, we verify the
advantages of our proposed algorithm over the state-of-the-art algorithms through several
experiments.

The rest of the paper is structured as follows: Section 2 briefly elaborates on the
background knowledge of reinforcement learning. Section 3 introduces the related work of
reinforcement learning in solving TSC problems. In Section 4, we describe our proposed
GMHM algorithm in detail. In Section 5, the effectiveness of our proposed algorithm is
verified by experiments. Section 6 carries on the simple summary.

Appl. Sci. 2022, 12, 12783 3 of 14

2. Background

We define the interaction process between the agent and the environment as a Markov
decision process (MDP) [21]. In a multi-agent system, MDP can be represented by a
quintuple as M = (S, A, R, T, γ). Among them, S is the state space of the agent, A is the
action space, R : S × A × S → R is the reward function, T : S × A × S → [0, 1] is the
state transition function, and γ ∈ [0, 1] is the discount factor. In a partially observable
environment, each agent can only observe the environment around itself to obtain an
observation O : S → O. Each agent uses their policy to obtain an action by observing
the environment πθ : S → A. After performing the action, the environment will reward
each agent. Accordingly, the purpose of the agent is to maximize the cumulative reward
Rθ = Eτ∼pθ(τ)

[R(τ)].
In the mainstream algorithm of reinforcement learning, the value-based DQN fits the

state value function through the neural network, thereby solving the dimensional disaster
problem of the state space. The loss function of the network is:

L(θi) = Es,a,r,s′ [(r + γmaxa′Q(s′, a′; θ−i)−Q(s, a; θi))
2] (1)

The policy-based PG algorithm [8] directly fits the policy, and the update function of
the network is:

∇θ J(πθ) = E[∇θ log π(a|s)Qπ(s, a)] (2)

The proposal of DDPG [22] solves the continuous action space problem. Unlike DQN
and PG output action distribution, DDPG directly outputs a deterministic action. At the
same time, DDPG uses a generalized AC architecture [23], where the actor aims to find the
action that maximizes the Q value, and the critic aims to estimate the action value. The loss
function of the critic net is:

L(φ) = ∇φ
1
|B| ∑

(s,a,r,s′ ,d)∈B
(Qφ(s, a)− y)2 (3)

where
y = r + γQφ(s′, µθ(s′)) (4)

MADDPG, on the other hand, extends DDPG to a multi-agent environment. The
algorithm first predicts the opponent’s actions by fitting their policies. Then, a centralized
action value network is constructed, which combines the joint action and the environment
state to obtain its action state value. The algorithm solves the non-stationary problem by
introducing the actions of other agents. Critic can be updated by minimizing the loss:

L(θi) = Ex,a,r,x′ [(Q
µ
i (x, a1, . . . , aN)− y)2, y = ri + γQµ′

i (x′, a′1, . . . , a′N)|a′j=µ′j(oj)
(5)

and the actor‘s policy gradient is computed by:

∇θi J(µi) = Ex,a∼D[∇θi µi(ai|oi)∇ai Q
µ
i (x, a1, . . . , aN)|ai = µi(oi)] (6)

Hierarchical reinforcement learning is very effective in solving complex or reward-
sparse environments. This method uses the idea of divide and conquer to decompose
the problem: the upper layer makes long-term decisions, and the lower layer makes real-
time decisions. Hierarchical reinforcement learning includes option based [24,25] and goal
based [26–28]. The former will pre-train multiple sub-policies, and then the upper layer will
switch the sub-policies according to the environment state. The latter formulates long-term
goals for the lower layer, and the lower layer achieves this goal through its policy.

3. Related Work

Reinforcement learning has been used in TSC for a long time. Early reinforcement-
learning algorithms such as [1,2] are limited by computing power and technology, and can

Appl. Sci. 2022, 12, 12783 4 of 14

only study a single traffic light. With the development of deep learning, reinforcement learn-
ing solves the high-dimensional state input problem through neural networks [7]. The devel-
opment of traffic simulators has also given us a suitable environment to conduct research.

A more realistic TSC scenario contains multiple traffic lights. Therefore, the research
of multi-agent reinforcement learning is also continuously advancing in this field. Ref. [29]
uses mean-field theory to consider multiple neighbors as a whole. Ref. [19] extends the
actor–critic algorithm to consider discounted neighbor agent policies and states. Ref. [30]
proposes a reward function based on maximizing pressure to optimize policy. Ref. [20]
combines hierarchical reinforcement learning with MA2C, using upper layers to guide the
cooperation of semaphores. Ref. [31] uses graph attention networks to facilitate communi-
cation between agents. In terms of the experimental environment, ref. [30–33] use Cityflow,
and [19,20] use SUMO.

Our algorithm is inspired by FMA2C, but has a different network structure. At the
same time, our algorithm has been more fully considered in the design, generation, and
utilization of the goals.

4. Method

In this section, we detail the architecture, definition and learning process of our
proposed model. First, we give the concrete architecture of GMHM, and then introduce the
essential elements of our proposed algorithm. Finally, the policy learning process of the
upper and lower layers in GMHM is described in detail.

4.1. Hierarchical Architecture

First, we will define the environment. We abstract TSC environment as a gird network
consisting of edges and intersections G = (V , E), where V represents an intersection, and
edge e = (vi, vj) ∈ E represents a road between two intersections vi, vj ∈ V . In this paper, a
lower agent is defined as a traffic light located at a certain intersection. The agent decides
to switch the traffic signal by observing the situation at the intersection, which is the direct
unit for traffic regulation. We divide the whole environment into multiple disjoint regions
G = G1 × · · · × GK, each region Gi = v1, . . . vk contains k signal lights controlled by the
agent, and roads connecting each intersection. Through this division of regions, we realize
the simplification of the large-scale TSC problem

In each region of the two-layer architecture, the upper layer is a virtual manager agent,
and the lower layer agent is called worker who controls the intersections. In each region,
the task of the manager is to assign goals to the various workers under its command based
on the traffic conditions in the region. This goal is the manager’s desired future state for
the worker-controlled intersection. Workers combine environmental states and assigned
goals to make decisions and change environmental states by toggling traffic signals. In this
way, we divided the entire mission at the strategic and tactical levels.

If we only consider the situation in one region, the overall traffic situation still cannot
be effectively alleviated. Therefore, we need to incorporate consideration of neighbors
at both levels. Neighbors of the region are defined as N , so we ontain the manager‘s
neighbor NM and worker‘s neighbor NW . We established a two-layer communication
channel to assist the operation of the layered architecture. Among them, the manager will
communicate with the neighbor manager to obtain the traffic situation in the neighbor
region. In addition to obtaining the environmental state of the neighbor worker, the worker
also obtains the phased goals of the neighbor workers.

Therefore, the agent–environment interaction process in GMHM is as follows: the
manager combines the state of the environment and the states of neighbors to generate
goals for workers. Workers combine environment state, neighbor state, self-goal, and
neighbor-goal to generate actions and submit them to the environment. The environment
executes actions submitted by workers to move to the next state and gives feedback to
workers and managers. In this way, after considering the state of neighbors, both manager
and worker obtain more sufficient environmental information, and their decision making

Appl. Sci. 2022, 12, 12783 5 of 14

is more assured. At the same time, it also solves the instability caused by the mutual
adaptation of agents in a multi-agent environment. This also ensures that when multiple
regions are combined into a larger traffic environment, managers and workers can work
with neighbors to resolve traffic jams.

4.2. Markov Decision Process in TSC

The quintuple of the Markov decision process is an abstract overview of the
reinforcement-learning process, which can be defined differently in different scenarios.
In the hierarchical traffic-signal control problem, the MDP of managers and workers are:
MM = (SM, AM, RM, T, γM),MW = (SW , AW , RW , T, γW), respectively. In particular, we
adopt SUMO as the experimental environment in this paper. We use various parameters in
SUMO to defineMM andMW in detail.

SM and SW are the state spaces of manager and worker, respectively. However, TSC
is a partially observable environment, which means that the manager and the worker can
only obtain an observation OM and OW of their own surrounding environment. We define
the worker’s local observation as OW = (wait[l], pressure[l]) where l is each incoming lane
for this worker. The wait is the accumulated waiting time of the vehicle closest to the
intersection at the current moment. Pressure refers to max-pressure [30], which defines the
traffic pressure in this direction. More specifically, pressure is equal to the number of vehicles
on the target road minus the number of vehicles on the current road. For the manager, we
define its local observation as OM = (pressure1, pressure2, pressure3, pressure4), which is
the vehicle pressure situation in four directions in this region.

We define a manager’s action as the goals assigned to each subordinate worker. In
order to help workers to measure the completion of the goal, we keep the form of the goal
consistent with OW . At the same time, goals also represent the future state that managers
expect workers to achieve. For workers, the action space includes the individual switching
commands of the traffic lights. For example, red lights in the east–west direction, go straight
in the north–south direction or turn left in the east–west direction.

Finally, the most important thing is the setting of the reward function. The reward
function represents the task we expect the agent to solve. As a manager, we expect to
assign the correct goals to each subordinate. Therefore, we can take the state change
between two decisions as the reward RM

t = ∑l pressuret+k,l − pressuret,l , where l is each
direction. For workers, their reward function is divided into two parts: RM = Re + Rg.
Re = −∑l(pressurel + waitl) is the environmental reward, which is the feedback of the
agent’s action. Rg = σ(OW , g) is the intrinsic reward, which represents the completion of
the worker’s goal and σ(X, Y) = XTY/(|X||Y|) . T is state transition functions, which are
determined by the environment.

4.3. Learning Process

In ordinary reinforcement learning, the agent performs a complete round of observa-
tion, decision making, feedback, and learning at every moment. However, in hierarchical
reinforcement learning, the goal given by the manager to the worker cannot be completed
in one time step. The goal requires the worker to achieve through a period of hard work.
Therefore, the decision frequency of managers and workers is different. The manager
makes a decision at every d time step, and the worker still makes an instant decision.
Figure 1 shows the network structure of managers and workers.

We assign each manager a DDPG algorithm to make decisions. At time step t (if it is
time to make a decision), manager Mi observes the environment and obtains local state
LS. Through communication, Mi can obtain the states of its neighbors NM

i so that Mi has a
wider range of environmental conditions LS+NS. Since workers are distributed differently
across regions, we expect managers to set specific goals for each worker. Therefore, we
added the transformer structure to DDPG. According to the location relationship, we assign
different attention weights to different workers. In this way, we can obtain the action output
A of the manager, which is the goal LG of the worker.

Appl. Sci. 2022, 12, 12783 6 of 14

Figure 1. The architecture of our goal-based multi-agent hierarchical model. The red part is manager‘s
network. The green part is worker‘s network. Workers make decisions based on goals passed on to
them by managers.

DDPG is designed based on actor–critic architecture. The actor network is parameter-
ized as µM

θ , the critic network is parameterized as QM
φ . Therefore, the loss function of its

actor network is:
∇θM J(µθM) = E[∇θM µθM (s)Qµ(s, a)|a = µθM] (7)

The loss function of critic network is Equation (3), where the network’s parameter is
named φM.

Moreover, DDPG uses soft-update to update the parameter of the target network:

θ′ ←− τθ + (1− τ)θ′

φ′ ←− τφ + (1− τ)φ′
(8)

Likewise, we assign the MADDPG algorithm to each worker where we use πW
θ and

QW
φ to represent actor net and critic net. Workers decide how to switch traffic signals

by observing the environment. As shown in Figure 1 at time t, workers will first collect
information, including their local state LS, neighbors’ states NS, their own goals LG, and
their neighbors’ goals NG. Using convolutional neural networks, we can extract features
from these data. Since the instantaneous state S does not reflect the continuous change in
the environment, we use long short-term memory (LSTM) to memorize the state of the
environment to obtain the hidden state. In this way, we can make decisions based on the
hidden state, and, thus, obtain the action. The updated formula of the actor network and
critic network is

∇θi J(πM
i) = Eo,a,g∼D[∇θi π

M
i (ai|oi, gi)∇ai Q

πM

i (x, a1, . . . , aN)|ai = πM
i (oi, gi)] (9)

where Q is a goal-based action-value function which uses state, goal and the actions of all
agents as input and outputs the Q-value of Wi. The original MADDPG algorithm speculates
on other agents’ actions by fitting their policies. However, in the TSC problem, each worker
has the same task. Therefore, we use our own policy to predict the actions aj = πW

θi
(OM

j) of
other agents.

The update method of the action value function is

L(φi) = ED[(Q
φM

i (x, a1, . . . , aN)− y)2, y = ri + γQφ′

i (x‘, a‘1, . . . , a′N)|a‘j=φ‘j(oj ,gj)
(10)

We train managers to obtain a better task allocation policy and train workers to obtain
a better traffic-signal switching policy. At the same time, the upper and lower layers realize

Appl. Sci. 2022, 12, 12783 7 of 14

the cooperation between the agents by considering their neighbor states and neighbor goals.
Through the division and splicing of regions, we can solve the large-scale TSC problem.
The main procedure of our algorithm is shown in Algorithm 1.

Algorithm 1 Goal-based multi-agent hierarchical model

1: Initialize the actor net of each manager and each worker πM, πW with θM and θW . Use
φM and φW to represent the parameters of their critic network. Initialize learning rate α.

2: for each episodes do
3: for t=1,T do
4: for each manager k ∈ 1..m do
5: sample gk from πM

k
6: for each worker i ∈ Gk do
7: sample ai from πW

i
8: execute action ai and receive rW

t,i and OW
t+1,i

9: end for
10: receive rM

t,k and OM
t+1,k

11: end for
12: end for
13: for each manager k ∈ 1..m at every d steps do
14: compute ∇θM

k
, ∇φM

k
by Equation (7), Equation (3)

15: end for
16: for each worker i ∈ Gk do
17: compute ∇θW

i
, ∇φW

i
by Equation (9), Equation (10)

18: end for
19: update their actor network and critic network θt+1 ← θt − α∇θ , φt+1 ← φt − α∇φ

20: end for

5. Experiments and Results

In this section, we introduce the experimental environment and the baseline algorithm,
respectively. Then, we enumerate the specific parameters involved in the experiment and
analyze the experimental results at the end.

5.1. Baseline

In this experiment, we use the MADDPG, MA2C and FMA2C as the baseline to
compare with our algorithm. Among them, MADDPG is a classic algorithm in the multi-
agent field. The algorithm can be applied in competitive or cooperative scenarios by setting
different reward functions. The workers in our algorithm are improvements based on
MADDPG. At present, variants of the MADDPG algorithm have been applied in many
scenarios and achieved good results.

MA2C is an extension of the A2C algorithm in a multi-agent TSC environment. In
this algorithm, each agent can obtain the policy and action information of other agents
to improve its local observability. At the same time, a spatial discount factor is designed
according to the location information between the agents to weaken the signals of the
farther agents, so that they can focus more on their surroundings. FMA2C is a combination
of hierarchical reinforcement learning and MA2C algorithm. The algorithm designs a
hierarchical MDP suitable for the TSC environment and proposes a specific form of the
goal. The MA2C is implemented based on the source code released in the paper [19].
FMA2C implements a hierarchical architecture based on the MA2C. Similar to FMA2C,
our proposed algorithm is a combination of hierarchical reinforcement learning and the
MADDPG algorithm.

Appl. Sci. 2022, 12, 12783 8 of 14

5.2. Environment

At present, two kinds of simulators, SUMO and CityFlow, are widely used in the
research of TSC problems. They can both customize the environment or simulate real-
world road conditions. We chose SUMO as the simulator in our experiments. SUMO is an
open-source, microscopic multi-modal traffic simulation software. It can be fine tuned for
each vehicle, making it ideal for traffic-control research. SUMO realizes the customization
of the environment by writing road-network files and vehicle files, and can also simulate
the real environment by importing various types of map files. At the same time, SUMO
comes with a variety of vehicle-following models and lane-changing models to simulate
realistic vehicle-driving situations. SUMO provides a TraCI interface based on Python so
that the algorithm and the environment can be easily connected. In conclusion, SUMO is a
suitable environment to simulate and verify TSC problems.

5.3. Model Setting

In SUMO, we adopted the Krauss car-following model and the basic lane-changing
model to make the vehicle as close to reality as possible while driving normally. We set the
length of an episode to 720 steps, which is equivalent to 3600 s in the simulator. For each
training, we ran four million seconds, about 1200 episodes. The region size was set to 4 (to
include four workers).

For the manager, we used the structure of DDPG, including four neural networks.
We used two fully connected layers with 128 units and 64 units for state extraction and
transformer for attention assignment. We set γ = 0.97, α = 0.75, batch size to 120, learning
rate to 0.001 and decision frequency d to 6 s.

For the worker, we used the structure of MADDPG, which also consists of four neural
networks. We used two neural networks with 128 units and 64 units and long short-term
memory models with 64 units to process the environmental state. For the Q function in it,
we determined the input size of the function according to the number of neighbors of the
agent. At the same time, we set γ = 0.95, α = 0.75, batch size to 120, learning rate to 0.001
and decision frequency to 1 s.

5.4. Grid Network

As Figure 2 shows, we first conducted experiments in a symmetric-grid traffic environ-
ment. There are 16 (4 × 4) traffic lights in the environment. The road connecting the signal
lights has two lanes, a left turn lane, and a straight right turn lane. The maximum speed of
vehicles is 20 m/s, the minimum clearance between vehicles is 2 m, and the road length
is 200 m. At the same time, we set up multiple time-based traffic flows. We defined six
kinds of traffic flow. We use F1–F6 to represent each traffic flow; they had different origin
and destination (OD) pairs. The six types of traffic flow represent different real-world
situations.

For example, F1 and F2 start generating vehicles first. At 900 s, the traffic flow of F1
peaks 660 veh/h and decreases to 0 at 1800 s. Meanwhile, at 900 s, F3 and F4 start to spawn
vehicles in the environment. When F3 reaches the vertex, F5 and F6 start running. Finally,
F3 ends at 2400 s and F5 ends at 3600 s. In this way, through different time settings and
different OD settings, the traffic flow is overlapped in time and space. In addition, each
traffic flow is coming from different directions, which causes moer easily traffic congestion.

Appl. Sci. 2022, 12, 12783 9 of 14

Figure 2. A traffic grid of 16 intersection with time-variant traffic-flow groups.

Taking Figure 3 as an example, the horizontal axis represents the number of training
times, and the vertical axis represents the average cumulative reward. The thicker lines
represent changes in workers’ average reward. This reward represents the environmental
reward of the worker so that our curve can more clearly measure the intuitive change traffic
lights make to the environment. The shaded part refers to the standard deviation of the
experimental results, which represents the fluctuation in the algorithm performance. We
used five sets of random seeds to verify each algorithm to reflect the average performance
of the algorithm.

Figure 3. Experiment results in grid network. The curves in the figure show the performance of each
algorithm on different indicators.

Appl. Sci. 2022, 12, 12783 10 of 14

As can be seen from the figure, the effect of MADDPG is not very good. Both MA2C
and FMA2C converge to a local optimal state along with the learning process. Our algorithm
GMHM also achieves convergence and has the highest level of reward.

For MADDPG, each agent needs to maintain the policies of other agents and make
predictions. When the number of agents is too large, the prediction of the joint actions will
become more and more inaccurate. Considering other agents equally and ignoring the
influence of the location factor also leads to poor performance of MADDPG. Both MA2C
and FMA2C are algorithms that have been applied in the TSC field, so both can learn an
effective policy. However, they did not obtain a good final result due to some problems in
the algorithm itself. Our proposed algorithm comprehensively considers the relationship
between the upper and lower layers. The attention mechanism is used by transformer
to assign specific goals to workers at different locations while allowing workers to fully
consider the goal information of neighbor workers. These tricks make our algorithm more
stable and better than other algorithms.

5.5. Monaco

In addition to grid environments, we also validated the robustness and scalability
of our algorithm in real-world environments. As the Figure 4 shows, we sampled thirty
controllable traffic lights in real Monaco city traffic and marked them in blue. We can
also see that there are different types of intersections in this traffic network, which are
not symmetrical like the grid traffic environment. An intersection may be connected
by three roads, four roads, or even five roads. Therefore, different intersections have
specific environmental states and action-space configurations. According to the positional
relationship of these 30 traffic lights, we divided them into four regions, including 10, 8, 6,
and 6 traffic lights, respectively.

Figure 4. Monaco transport network with various intersections.

Different types of traffic lights and different sizes of regional settings reflect the
scalability and adaptability of our algorithm. In this environment, we set up four sets of
flows, F1–F4. Its origin and destination are rectangular areas located on the edge of the
map, and each pair of OD passes through the center of the map.

The figures show the performance of our algorithm in the Monaco urban traffic scene,
respectively. In the average reward, we can see that the GMHM performs the best, with
fast convergence and a high final reward level. Figure 5 shows the average queue length
and waiting time for GMHM in Monaco cities. The performance advantage of GMHM over
other algorithms can also be seen.

Appl. Sci. 2022, 12, 12783 11 of 14

Figure 5. Experiment results in Monaco traffic network. The top two figures are the results of our
method applied to A3C. The bottom two figures are the experiment results based on PPO.

5.6. Discussion

This section elaborates on the experimental environment, baseline algorithms and
experimental results in detail. Experiments in the SUMO simulator demonstrate the effec-
tiveness of hierarchical-based multi-agent reinforcement-learning algorithms in solving
traffic congestion problems. The level of cumulative average reward reflects the over-
all performance of the algorithm. The three indicators of average queue length, speed
and waiting time measure the degree of congestion in the traffic system from different
dimensions. Based on these four aspects, we make an overall comparison of different
algorithms in Table 1. It can be seen from the results that the basic MADDPG algorithm
performs generally in the face of specific environments. However, MA2C and FMA2C
include additional considerations in multi-agent cooperation, and their effects weer also
improved. Finally, our proposed GMHM algorithm fully considers the key element of the
goal. The GMHM algorithm generates more reasonable goals through the transformer
in the upper layer, and uses the goals in the lower MADDPG algorithm to speculate on
the neighbors. In this way, we achieve collaboration between layers and within layers to
adequately solve the TSC problem.

Table 1. Overall performance of different algorithms in the grid network and Monaco network.

Metrics
Grid Network Monaco Network

GMHM FMA2C MA2C MADDPG GMHM FMA2C MA2C MADDPG

Reward −137.6 −692.7 −714.5 −1131.6 −16.3 −53.7 −158.4 −221.9

Queue length 0.27 0.89 1.73 1.85 0.47 1.35 1.98 2.33

Speed 8.29 7.94 3.17 2.88 11.69 9.74 4.02 2.53

Waiting time 10.9 39.7 42.6 105.3 9.6 40.3 75.7 79.2

Appl. Sci. 2022, 12, 12783 12 of 14

6. Conclusions

This paper proposes a novel goal-based multi-agent hierarchical model to solve large-
scale TSC problems. We first divide the environment into disjoint regions, each containing
several traffic lights. We abstract a manager as the upper agent in the area, and the actual
traffic light as the lower agent called a worker. The purpose of the manager is to assign
a long-term goal to workers in different locations by observing the environment. The
worker will make actual action decisions based on the state of the environment and the goal
received. In the decision-making process, the worker will fully consider the situation of
the neighbor agents, and infer the neighbor’s actions through its policy and the neighbor’s
goal. This not only solves the instability problem but also realizes the cooperation between
the agents. Based on such an architecture, we can solve large-scale TSC problems by
splicing regions.

We built a symmetrical mesh environment and an actual Monaco city environment in
SUMO. The experimental results, respectively, verify the effectiveness of our algorithm and
the excellent performance compared to SOTA in the real world. At the same time, the TSC
problem can be abstracted as a flow control problem. Therefore, the algorithm can also be
applied to network traffic [34], power dispatch [35,36], energy pipeline transportation [37],
and so on.

Author Contributions: Conceptualization, Y.Y., P.Z. and T.G.; Formal analysis, P.Z.; Investigation, P.Z.
and T.G.; Methodology, P.Z.; Project administration, Y.Y.; Resources, P.Z.; Software, P.Z.; Supervision,
T.G.; Validation, P.Z.; Visualization, P.Z.; Writing—original draft, P.Z.; Writing—review & editing, Y.Y.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RL Reinforcement learning
TSC Traffic signal control
GMHM Goal-based multi-agent hierarchical model
MADDPG Multi-agent deep deterministic policy gradient
SUMO Simulation of urban mobility
SOTA State of the art
DRL Deep reinforcement learning
MDP Markov decision process
MARL Multi-agent reinforcement learning
MA2C Multi-agent advantage actor critic
FMA2C Feudal multi-agent actor-critic
DQN Deep Q-network
DDPG Deep deterministic policy gradient
LSTM Long short-term memory

References
1. Hunt, P.; Robertson, D.; Bretherton, R.; Royle, M.C. The SCOOT on-line traffic signal optimisation technique. Traffic Eng. Control

1982, 23, 190–192.
2. Luk, J. Two traffic-responsive area traffic control methods: SCAT and SCOOT. Traffic Eng. Control 1984, 25, 14.
3. Yuan, Y.; Guo, T.; Zhao, P.; Jiang, H. Adherence Improves Cooperation in Sequential Social Dilemmas. Appl. Sci. 2022, 12, 8004.

[CrossRef]

http://doi.org/10.3390/app12168004

Appl. Sci. 2022, 12, 12783 13 of 14

4. Yuan, Y.; Zhao, P.; Guo, T.; Jiang, H. Counterfactual-Based Action Evaluation Algorithm in Multi-Agent Reinforcement Learning.
Appl. Sci. 2022, 12, 3439. [CrossRef]

5. Ibarz, J.; Tan, J.; Finn, C.; Kalakrishnan, M.; Pastor, P.; Levine, S. How to train your robot with deep reinforcement learning:
Lessons we have learned. Int. J. Robot. Res. 2021, 40, 698–721. [CrossRef]

6. Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.; Laskin, M.; Abbeel, P.; Srinivas, A.; Mordatch, I. Decision transformer:
Reinforcement learning via sequence modeling. Adv. Neural Inf. Process. Syst. 2021, 34, 15084–15097.

7. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

8. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
9. Afsar, M.M.; Crump, T.; Far, B. Reinforcement learning based recommender systems: A survey. ACM Comput. Surv. (CSUR) 2021.

[CrossRef]
10. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.;

et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef]
11. Rudin, N.; Hoeller, D.; Reist, P.; Hutter, M. Learning to walk in minutes using massively parallel deep reinforcement learning. In

Proceedings of the Conference on Robot Learning, PMLR, London, UK, 8–11 November 2021; pp. 91–100.
12. Zhao, W.; Queralta, J.P.; Westerlund, T. Sim-to-real transfer in deep reinforcement learning for robotics: A survey. In Proceedings

of the 2020 IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia, 1–4 December 2020; pp. 737–744.
13. Kiran, B.R.; Sobh, I.; Talpaert, V.; Mannion, P.; Al Sallab, A.A.; Yogamani, S.; Pérez, P. Deep reinforcement learning for autonomous

driving: A survey. IEEE Trans. Intell. Transp. Syst. 2021, 23, 4909–4926. [CrossRef]
14. Chen, J.; Li, S.E.; Tomizuka, M. Interpretable end-to-end urban autonomous driving with latent deep reinforcement learning.

IEEE Trans. Intell. Transp. Syst. 2021, 23, 5068–5078. [CrossRef]
15. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive

environments. Adv. Neural Inf. Process. Syst. 2017, 30, 6379–6390.
16. Rashid, T.; Samvelyan, M.; Schroeder, C.; Farquhar, G.; Foerster, J.; Whiteson, S. Qmix: Monotonic value function factorisation

for deep multi-agent reinforcement learning. In Proceedings of the International Conference on Machine Learning, PMLR,
Stockholm, Sweden, 10–15 July 2018; pp. 4295–4304.

17. Tampuu, A.; Matiisen, T.; Kodelja, D.; Kuzovkin, I.; Korjus, K.; Aru, J.; Aru, J.; Vicente, R. Multiagent cooperation and competition
with deep reinforcement learning. PLoS ONE 2017, 12, e0172395. [CrossRef] [PubMed]

18. de Witt, C.S.; Gupta, T.; Makoviichuk, D.; Makoviychuk, V.; Torr, P.H.; Sun, M.; Whiteson, S. Is independent learning all you need
in the starcraft multi-agent challenge? arXiv 2020, arXiv:2011.09533.

19. Chu, T.; Wang, J.; Codecà, L.; Li, Z. Multi-agent deep reinforcement learning for large-scale traffic signal control. IEEE Trans.
Intell. Transp. Syst. 2019, 21, 1086–1095. [CrossRef]

20. Ma, J.; Wu, F. Feudal multi-agent deep reinforcement learning for traffic signal control. In Proceedings of the 19th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), Auckland, New Zealand, 9–13 May 2020; pp. 816–824.

21. Zhou, D.; Gu, Q.; Szepesvari, C. Nearly minimax optimal reinforcement learning for linear mixture markov decision processes.
In Proceedings of the Conference on Learning Theory, PMLR, Boulder, CO, USA, 15–19 August 2021; pp. 4532–4576.

22. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

23. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. In Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 19–24
June 2016; pp. 1928–1937.

24. Bacon, P.L.; Harb, J.; Precup, D. The option-critic architecture. In Proceedings of the AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 4–9 February 2017; Volume 31.

25. Tessler, C.; Givony, S.; Zahavy, T.; Mankowitz, D.; Mannor, S. A deep hierarchical approach to lifelong learning in minecraft. In
Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.

26. Kulkarni, T.D.; Narasimhan, K.; Saeedi, A.; Tenenbaum, J. Hierarchical deep reinforcement learning: Integrating temporal
abstraction and intrinsic motivation. Adv. Neural Inf. Process. Syst. 2016, 29, 3675–3683.

27. Vezhnevets, A.S.; Osindero, S.; Schaul, T.; Heess, N.; Jaderberg, M.; Silver, D.; Kavukcuoglu, K. Feudal networks for hierarchical
reinforcement learning. In Proceedings of the International Conference on Machine Learning, PMLR, Sydney, NSW, Australia,
6–11 August 2017; pp. 3540–3549.

28. Andrychowicz, M.; Wolski, F.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Pieter Abbeel, O.; Zaremba, W.
Hindsight experience replay. Adv. Neural Inf. Process. Syst. 2017, 30, 5048–5058.

29. Wang, X.; Ke, L.; Qiao, Z.; Chai, X. Large-scale traffic signal control using a novel multiagent reinforcement learning. IEEE Trans.
Cybern. 2020, 51, 174–187. [CrossRef]

30. Wei, H.; Chen, C.; Zheng, G.; Wu, K.; Gayah, V.; Xu, K.; Li, Z. Presslight: Learning max pressure control to coordinate traffic
signals in arterial network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1290–1298.

http://dx.doi.org/10.3390/app12073439
http://dx.doi.org/10.1177/0278364920987859
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1145/3543846
http://dx.doi.org/10.1038/s41586-019-1724-z
http://dx.doi.org/10.1109/TITS.2021.3054625
http://dx.doi.org/10.1109/TITS.2020.3046646
http://dx.doi.org/10.1371/journal.pone.0172395
http://www.ncbi.nlm.nih.gov/pubmed/28380078
http://dx.doi.org/10.1109/TITS.2019.2901791
http://dx.doi.org/10.1109/TCYB.2020.3015811

Appl. Sci. 2022, 12, 12783 14 of 14

31. Wei, H.; Xu, N.; Zhang, H.; Zheng, G.; Zang, X.; Chen, C.; Zhang, W.; Zhu, Y.; Xu, K.; Li, Z. Colight: Learning network-level
cooperation for traffic signal control. In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, Beijing, China, 3–7 November 2019; pp. 1913–1922.

32. Chen, C.; Wei, H.; Xu, N.; Zheng, G.; Yang, M.; Xiong, Y.; Xu, K.; Li, Z. Toward a thousand lights: Decentralized deep reinforcement
learning for large-scale traffic signal control. In Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence,
New York, NY, USA, 7–12 February 2020.

33. Zang, X.; Yao, H.; Zheng, G.; Xu, N.; Xu, K.; Li, Z. Metalight: Value-based meta-reinforcement learning for traffic signal
control. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 1153–1160.

34. Yang, J.; He, S.; Xu, Y.; Chen, L.; Ren, J. A trusted routing scheme using blockchain and reinforcement learning for wireless sensor
networks. Sensors 2019, 19, 970. [CrossRef]

35. Duan, J.; Shi, D.; Diao, R.; Li, H.; Wang, Z.; Zhang, B.; Bian, D.; Yi, Z. Deep-reinforcement-learning-based autonomous voltage
control for power grid operations. IEEE Trans. Power Syst. 2019, 35, 814–817. [CrossRef]

36. Zhang, Z.; Zhang, D.; Qiu, R.C. Deep reinforcement learning for power system applications: An overview. CSEE J. Power Energy
Syst. 2019, 6, 213–225.

37. Mason, K.; Grijalva, S. A review of reinforcement learning for autonomous building energy management. Comput. Electr. Eng.
2019, 78, 300–312. [CrossRef]

http://dx.doi.org/10.3390/s19040970
http://dx.doi.org/10.1109/TPWRS.2019.2941134
http://dx.doi.org/10.1016/j.compeleceng.2019.07.019

	Introduction
	Background
	Related Work
	Method
	Hierarchical Architecture
	Markov Decision Process in TSC
	Learning Process

	Experiments and Results
	Baseline
	Environment
	Model Setting
	Grid Network
	Monaco
	Discussion

	Conclusions
	References

