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Abstract: The insufficient learning ability of traditional convolutional neural network for key fault
features, as well as the characteristic distribution of vibration data of rolling bearing collected under
variable working conditions is inconsistent, and decreases the bearing fault diagnosis accuracy. To
address the problem, a deep subdomain adaptation split attention network (SPDSAN) is proposed
for intelligent fault diagnosis of bearings. Firstly, the time-frequency diagram of a vibration signal is
obtained by the continuous wavelet transform to show the time-frequency characteristics. Secondly,
a residual split-attention network (ResNeSt) that integrates multi-path and channel attention mecha-
nisms is constructed to extract the key features of rolling bearings to prevent feature loss. Then, a
subdomain adaptation layer is added to ResNeSt to align the distribution of related subdomain data
by minimizing the local maximum mean difference. Finally, the SPDSAN model is validated using
the Case Western Reserve University datasets. The results show that the average diagnostic accuracy
of the proposed method is 99.9% when the test set samples are not labeled, which is higher compared
to the accuracy of other mainstream intelligent fault diagnosis models.

Keywords: subdomain adaptive; split attention; transfer learning; fault diagnosis

1. Introduction

Rotating machinery is widely used in aerospace, automobile manufacturing, wind
power generation and other important engineering fields. Rolling bearing is a key com-
ponent in rotating machinery. Because this mechanical equipment often operates under
complex working conditions, bearings are prone to pitting, breaking, gluing and other
failures, which will lead to the paralysis of the mechanical equipment and cause significant
economic losses [1]. Statistical analysis results provided by multiple studies have shown
that more than 40% of the equipment faults are related to bearings [2]. Thus, how to
improve the fault diagnosis of bearings under variable working conditions is related to the
stable operation of the whole equipment and production line.

The traditional fault diagnosis method determines the equipment health state by
establishing the corresponding dynamic model. For instance, Ambrokiewicz et al. [3] not
only considered the bearing internal stiffness, damping, clearance and other nonlinear
characteristics, but also took the bearing external load, eccentricity and other characteristics
as factors affecting the normal operation of the bearing ball. The dynamics model of
the ball bearing motion process with two degrees of freedom was established to reveal
the dimensionless relationship and the influence on the system response. In the study
by Huangfu et al. [4], the traditional loaded tooth contact analysis (LTCA) method was
extended to calculate the mesh stiffness and contact stress of spalled gear pairs, and
established a novel dynamic model for spalled gear pairs to describe the dynamic response
of the gear pair under different spall modes. Such methods heavily rely on the researcher
expertise, and specific devices are needed to establish specific dynamic models, greatly
limiting their applicability [5].

Appl. Sci. 2022, 12, 12762. https://doi.org/10.3390/app122412762 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122412762
https://doi.org/10.3390/app122412762
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9048-6494
https://doi.org/10.3390/app122412762
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122412762?type=check_update&version=2


Appl. Sci. 2022, 12, 12762 2 of 13

In addition, some scholars analyze the characteristic frequency of faults. For instance,
Arkadiusz et al. [6] used Fourier transform and recurrence analysis to analyze the vibration
signal during engine operation, and could accurately determine the location of the failed
cylinder. In order to solve the problem that composite bearing faults are difficult to diagnose,
Wang et al. [7] first established a functional model of bearing vibration signals, and then
a single fault frequency feature set was separated through decoupling, so as to complete
the diagnosis of composite faults. Almounajjed et al. [8] used discrete wavelet to analyze
the electric signal of the motor in time domain, remove the interference components, and
successfully extract the more obvious fault characteristic frequency. This kind of research is
mainly based on the purpose of removing noise interference to extract the characteristic
fault frequency of bearings, but this method requires a large number of marker signal
samples, and also requires manual selection of features. In addition, the above research
focused on the validity of a single working condition verification method, and there is a
lack of exploration and research on fault diagnosis under variable working conditions.

In recent years, machine learning has accelerated the development of intelligent fault
diagnosis through technologies such as ensemble learning [9], support vector machine
(SVM) [10], and artificial neural networks [11]. However, such fault diagnosis methods
require additional processing of data characteristics and cannot provide fast diagnostic
services [12,13].

As another branch of machine learning, deep neural network has been successfully
applied in the field of fault diagnosis due to its advantages of feature self-extraction [14].
As a representative of the current deep neural network, convolutional neural network
(CNN) has the characteristics of parameter sharing and translation invariance, which
can extract more robust features. Wang et al. [15] established a multi-scale convolutional
neural network model by integrating feature extraction and pattern recognition for fault
diagnosis. Further, Wu et al. [16] proposed solving the data imbalance problem by using a
convolutional neural network with a minimum–maximization objective function. Next,
Wang et al. [17] introduced the 1× 1 convolution kernel, replacing the fully connected layer
of the traditional convolutional neural network with global average pooling, aiming to
reduce the model training parameters. Although CNN has achieved good results, it faces
the following two problems in the field of bearing fault diagnosis: 1© The maximum pooling
or average pooling used by CNN directly merges the information, which leads to the key
information being unable to be identified. 2© It must be satisfied that the training set and
the test set have the same probability distribution, but it is difficult to meet this assumption
because of the complex and changeable working conditions in practical engineering. When
the working condition of the equipment changes greatly, the recognition effect of CNN
model will decrease significantly.

To solve problem 1©, a split attention module is introduced into the network, and a
multi-channel structure and attention mechanism are adopted to enrich the diversity of
fault features, strengthen the connection between fault features, improve the network’s
learning of fault features, and avoid the loss of key fault features. To solve problem 2©,
some scholars introduce the idea of transfer learning (TL) [18]. TL can solve the problem of
cross-domain distribution difference and is widely used in the field of fault diagnosis. For
instance, Yang et al. [19] used polynomial kernel-induced distance to measure and evaluate
the distributional difference between the source and target domains. Chen et al. [20] used
enhanced transfer convolution network to solve the decision boundary confusion problem
in two domains. Further, Cheng et al. [21] introduced the adversarial idea and trained
the classifier to confuse the sample features of the two domains; this was carried out to
align the domains. However, such transfer learning methods only consider the distribution
differences of the whole domain, not the distribution differences of related subdomains. As
shown in Figure 1a, intra-domain data chaos will occur after global adaptation. Similar
characteristics of fault samples may be wrongly classified.
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Figure 1. Results of different methods on domain adaptation problem. (a) target domain adapta-
tion based on global domain adaptation method; (b) target domains adaptation based on related
subdomain adaptation method.

Aiming to mitigate said deficiencies, the authors proposed a bearing fault diagnosis
model based on the deep subdomain adaptive split attention network (SPDSAN). This
method extracts the signal features through the residual network fused with multipath and
channel attention mechanisms. Next, local maximum mean discrepancy (LMMD) is used
to align distributions of related subdomains in two domains—as shown in Figure 1b. The
scientific contributions of this paper are as follows:

1. The vibration signal was transformed into a time-frequency graph by continuous
wavelet transform as the learning object of the network. Compared with the one-
dimensional vibration signal, the time-frequency graph can not only provide the time-
domain and frequency-domain characteristics of the fault, but also avoid the network
to learn the single dimensional characteristics and affect the diagnosis accuracy.

2. The split attention module was introduced into the feature extraction network, and
the multi-channel structure and attention mechanism were adopted to enrich the
feature map diversity and improve the ability of the network to learn fault features.

3. LMMD was used to measure the difference of relevant subdomains in the source
domain and target domain data, and the distribution of relevant subdomains under
the same category was adjusted to capture the fine-grained information of each
category, so as to achieve the subdomain alignment.

4. The method performance was compared to several widely used intelligent bearing
fault diagnosis methods, and its effectiveness was verified.

2. Related Works
2.1. Problem Description

Transfer learning is applying the knowledge learned in the source domain as “ex-
perience” to the target domain, given that the source domain contains several labeled
samples and meets the network training requirements. Samples in the target domain do
not contain labels and are used as network final test sets. In this study, the source domain
is the rolling bearing fault state signal collected under working condition A by laboratory
simulation of the bearing fault. Furthermore, the target domain is the bearing fault state
signal collected under working condition B. Let Ds =

{(
xs

i , ys
i
)}ns

i=1 be the data in the source
domain, where ns is the number of fault samples in Ds, xs

i is the i-th sample in Ds, and ys
i

is its corresponding fault label. Assuming that the health status of bearings has class C,
and ys

ij = 1, j = 1, 2, · · · , C indicates that the sample belongs to the j-th type fault. Further,

Dt =
{(

xt
j

)}nt

j=1
is the target domain, nt is the number of fault samples in Dt, and xt

j is

the j-th sample in Dt. The probability distributions of Ds and Dt are denoted as P and Q,
respectively. It should be noted that P 6= Q.
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2.2. ResNeSt-Split Attention Network

CNN has a strong ability to learn signal features. However, with the deepening of the
network, the CNN gradient will disappear [22]. In 2015, He et al. [23] proposed ResNet
residual neural network. Using the residual block structure combined with “Shortcut
Connections”, the previous residual block can flow into the following block without
obstruction. Thus, the problem of gradient disappearance caused by the network being
too deep is avoided. Residual neural network (ResNet) used in this paper adds multiple
split-attention (SA) block modules based on the ResNet. Moreover, residual split-attention
networks (ResNeSt) combine the multipath structure with the channel attention mechanism,
expressing the channel attention as a feature map group and weighting different branch
feature channels to generate the final feature map (see Figure 2).
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Figure 2. ResNeSt structure.

Firstly, the input feature map was divided into K branches, and each branch was
subdivided into R subgroups. Hence, the total number of feature maps was G = K × R.
Secondly, 1× 1, 3× 3 convolution operation was carried out for each subgroup, and different
weights were assigned to each subgroup through the SA module before it was finally
aggregated. The feature map outputs obtained via aggregation and the residual module
were combined linearly. Figure 3 shows the SA module.
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In the SA module, the combined feature Ûk of the k-th branch was obtained by element-
wise summation and fusion of R subgroups:

Ûk = ∑Rk
j=R(k−1)+1 Uj, j ∈ 1, 2, · · · , SK; k ∈ 1, 2, · · · , K (1)

where Uj represents the j-th input feature in the SA module (the output feature after 3 × 3
convolution shown in Figure 3).

Ûk ∈ RH×W× C
K , k ∈ 1, 2, · · · , K (2)

where H, W, and C/K represent the length, width, and the number of channels of each
output feature map, respectively.

The global information obtained by global pooling of the fused feature maps was
calculated next:

rk
c =

1
H ×W ∑H

i=1 ∑W
j=1 Ûk

c (i, j) (3)

where rk
c represents the c-th channel value of the 1 × 1 × C/K feature map of Ûk following

the global pooling. Further, Ûk
c (i, j) represents the value at pixel (i,j) in the c-th channel of

Ûk.
Next, rk adaptively calculates the weight of each subgroup through the fully connected

layer:

ak
i (c) =


exp(Gc

i (r
k))

∑Rk
j=0 exp(Gc

i (r
k))

R > 1
1

1+exp(−Gc
i (r

k))
R = 1

(4)

where ak
i (c) is the weight of the i-th subgroup and Gc

i is the weight function composed of
two fully connected layers and a ReLU activation function.

Therefore, the final weighted fusion feature Vk ∈ RH×W×C is generated by multiplying
the original feature of each subgroup with the weight of each channel. The output of the
c-th channel is as follows:

Vr
k = ∑R

i=1 ak
i (c)UR(k−1)+i, i ∈ 1, 2, · · · , R (5)

where Vk
c represents the weighted fusion features of the c-th channel of each branch and

US(k−1)+i represents features of the S(k− 1) + i-th subgroup.

2.3. Subdomain Adaptation

Maximum mean discrepancy (MMD) is widely used to evaluate the distribution
difference between Ds and Dt [24]. However, using MMD to align the global distribution
ignores the relationship between the source and the target domain’s relevant subdomains,
losing each subclass’s fine-grained information. As such, it usually causes data confusion
between both domains. Therefore, this paper introduced LMMD to align the distribution
between the relevant subdomains. LMMD is expressed as:

dH(P, Q)
4
= Ec‖EP(c)

[
φ(xs)−EQ(c) [φ(xt)]

]
‖2
H (6)

where xs and xt represent the sample instances in Ds and Dt, respectively, P and Q are the
distributions followed by these domains, ‖ · ‖H is the regenerating kernel Hilbert space
(RKHS), φ(·) is the mapping function, and E(·) represents the mathematical expectation
of the subclass. This paper introduces the concept of weights, which can be simplified
as follows: 

∧
dH(P, Q) = 1

C

C
∑

c=1
‖ ∑

xi∈Ds

ωsc
i φ(xs

i )− ∑
xj∈Dt

ωtc
j φ(xt

j)‖
2

H
ωc

i =
yic

∑(xj ,yj)∈D yjc

(7)
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where ωsc
i and ωtc

j are the weights of xs
i and xt

j belonging to subclass c, respectively. In
this study, one-hot coding was used to calculate the weight ω of each sample belonging to
the class. Further, yic is the c-th element of the source-domain label vector yi, representing
the probability that the sample belongs to class c. For target domain samples without
labels, the pseudo-label yt

j output by the SoftMax was used to calculate the weight ωtc
i of

sample xt
i belonging to class c. Finally, the SPDSAN will generate activation functions in l

layer, namely
{

zsl
i

}ns

i=1
and

{
ztl

j

}nt

j=1
to achieve the deep network adaptation. Therefore,

the subdomain adaptation function is:

∧
dH(P, Q) = 1

C

C
∑

c=1
[

ns
∑

i=1

ns
∑

j=1
ωsc

i ωsc
j K(zsl

i , zsl
j )

+
nt
∑

i=1

nt
∑

j=1
ωtc

i ωtc
j K(ztl

i , ztl
j )

−2
ns
∑

i=1

nt
∑

j=1
ωsc

i ωsc
j K(zsl

i , ztl
j )]

(8)

where zl denotes the lth (l ∈ L = {1, 2, · · · , |L|}) layer activation.

3. Method
3.1. The SPDSAN Diagnostic Process

The SPDSAN model process proposed in this paper is shown in Figure 4. It includes
the time-frequency image generation, the domain-shared feature extractor, subdomain
adaptation, and fault classification.
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The diagnostic process was carried out as follows: firstly, the vibration signal was
transformed into a time-frequency image as the network learning object. Secondly, the
ResNeSt-50 was used to extract image signal features. By assigning different weights to
channels, the ResNeSt-50 integrated channel attention mechanism improved the weight of
fault features in the sample population, thus enabling, the network to learn more about
the fault features in the sample. To reduce the training time and accelerate the model
convergence, the ResNeSt-50 model was pre-trained using the ImageNet 2012 data for
the general feature extraction. Then, the LMMD was used to measure the distribution
differences of related subdomains in the subdomain adaptation layer, which was used as
the optimization target LossB of the SPDSAN model. Finally, the error between the true
ys

i of Ds and the classifier-predicted label ŷs
i was assumed as the optimization objective

LossA.
In sum, the training goal of the SPDSAN is to minimize LossA and LossB to achieve

higher diagnostic accuracy in the final diagnosis.
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3.2. Target Optimization

The SPDSAN extracts the domain-transferable feature representations through deep
feature representation learning and local maximum mean error learning. There are two
optimization objectives in the training process:

1. Minimizing the difference of LossA between the real and the predicted label of the
source domain sample. This will increase the classifier accuracy when diagnosing the
source domain sample.

2. Minimize the LMMD of LossB between the source and the target domain.

The LossA can be expressed as:

LossA =
ns

∑
i=1

Js( f (xs
i ), ys

i ) (9)

where f (·) is the predicted output of the source domain samples on the classifier and Js is
the cross-entropy loss function.

The final optimization objective J can be calculated as follows:

J = min
1
ns

LossA+ αLossB (10)

where LossB =
∧
dH(P, Q) and α is the trade-off parameter between the domain adaptation

loss and the classifier loss.

4. Experiment and Analysis

All the presented experiments were completed using i7-9700K processor, 128 GB
running memory, RTX 3070 TI graphics card, and Windows 10 operating system, while
Pytorch was used as the code framework. The batch size of each training was 16, and the
stochastic gradient descent algorithm was used for training. The momentum was 0.9, and
the learning rate was ηθ = 0.01/(1 + αθ)β, where α = 10, β = 0.75, and θ linearly changed
from 0 to 1 during the training process [25].

4.1. Introduction to the Fault Datasets

The experimental data in this paper were collected from the bearing fault datasets of
Case Western Reserve University (CWRU) [26] and the bearing model is SKF6205. The
fault data acquisition test bench is shown in Figure 5.
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Figure 5. Data acquisition test bench.

The bearing dataset contains inner ring fault (IF), ball bearing fault (BF), and outer ring
fault (BF) simulated by artificial electric discharge machining; the sampling frequency is
12 kHz. Each fault type contains three signals of different fault sizes (0.1778 mm, 0.3556 mm,
0.5334 mm). The details are shown in Table 1. In this study, four datasets (0, 1, 2, 3 HP)
with different working conditions were generated to simulate the transfer learning tasks.
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Table 1. Details of the CWRU dataset.

Serial Number Healthy State Fault Size/mm

NA Normal 0
IF-0.1 Inner ring fault 0.1778
OF-0.1 Outer ring fault 0.1778
BF-0.1 Ball bearing fault 0.1778
IF-0.3 Inner ring fault 0.3556
OF-0.3 Outer ring fault 0.3556
BF-0.3 Ball bearing fault 0.3556
IF-0.5 Inner ring fault 0.5334
OF-0.5 Outer ring fault 0.5334
BF-0.5 Ball bearing fault 0.5334

4.2. Build Experimental Datasets

Continuous wavelet transform (CWT) is used to convert one-dimensional vibration
signals into time-frequency graphs. Time-frequency graphs contain the time-domain and
frequency-domain features of faults, which can avoid the influence of single feature of
network learning on diagnostic accuracy. Therefore, in this study, the continuous wavelet
transform was used to convert the vibration signal into a two-dimensional time-frequency
image as the input of the network [27].

Firstly, in order to expand the number of datasets, an overlapping sampling technique
was employed in each health condition dataset [28]. As shown in the Figure 6, the original
vibration signal is sliced with a window of 1024 points, and each data sample contains
1024 points. Then, CWT was used to convert the selected 1024 points into a time-frequency
image with a size of 256 × 256, the wavelet base was selected as cmor3-3, and the size
sequence length was 64. In addition, another 1024 continuous sampling points were
selected in the way of overlapping sampling to generate another time-frequency image;
each sample overlaps 500 points.
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Figure 6. Data argument with overlap.

The number of obtained health status samples is shown in Table 2. The 10 health states
under four different loads were alternately used as Ds and Dt for learning and transfer.
Samples in the Dt were not labeled during the network learning process to represent
different fault samples under unknown working conditions.

For example, in the task “Working condition 0-1”, 10 types of health status data under
0 HP load were used as source domain samples, and another 10 under 1 HP load were used
as target domain samples for the transfer learning task.
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Table 2. The CWRU sample size scale.

Healthy State Fault Size 0 HP 1 HP 2 HP 3 HP All

NA 0 486 966 968 968 3388

0.1778 241 242 243 244 970
IF 0.3556 242 242 242 242 968

0.5334 243 242 242 242 969

0.1778 242 243 241 244 970
OF 0.3556 242 242 242 242 968

0.5334 243 242 243 242 970

0.1778 244 241 242 242 969
BF 0.3556 242 243 242 243 970

0.5334 242 242 243 243 970

All —- 2667 3145 3148 3152 12,112

4.3. The Experimental Contrast

In this paper, four widely cited methods were selected for comparative experiments.
These included deep adaptation network (DAN) [29], dynamic adversarial adaption net-
work (DAAN) [30], multi-feature representation adaption network (MRAN) [31], and deep
subdomain adaptation network methods with ResNet-50 as a feature extractor (RDSAN).

The input of the selected comparison method is a time-frequency image with a pixel
value of 246 px × 246 px. The same feature extractor (ResNeSt-50) is used for DAN, DAAN,
and MRAN to ensure that the experimental comparison would be valid. The experimental
results are shown in Table 3. The average diagnostic accuracy of the proposed method
in 12 migration tasks is 99.9%, which is higher than the accuracy obtained using other
diagnostic models.

Table 3. Diagnostic accuracy of different models (%).

Methods/Task 0-1 0-2 0-3 1-0 1-2 1-3 2-0 2-1 2-3 3-0 3-1 3-2 Average

DAN 95.2 99.0 95.6 90.2 96.6 96.3 88.0 93.4 98.8 84.0 90.3 91.5 93.2
DAAN 98.0 97.0 92.0 89.0 99.0 96.0 82.0 93.0 89.0 85.0 82.0 97.0 91.6
MRAN 99.0 100 99.0 94.0 100 99.0 100 99.0 100 97.0 99.0 100 98.8
RDSAN 99.5 99.9 99.8 99.7 100 99.9 99.7 99.3 100 90.5 99.2 100 98.9
SPDSAN 100 100 99.9 99.9 100 99.9 99.9 99.4 99.9 99.5 99.8 100 99.9

Combining Table 3 and Figure 7 shows that the DAN adopts global alignment, with an
average diagnostic accuracy of 91.5%. However, the diagnostic accuracy of each task fluc-
tuates greatly, especially for task 2-0 (only 88%). The reason for such behavior is that global
adaptation aims to align the overall distribution of the Ds and the Dt; thus, the correlation
between each subfield is ignored. The DAAN has the weakest recognition effect, with an
average diagnostic accuracy of 91.6%. The recognition accuracy fluctuates greatly, and its
robustness is the lowest. This is due to the global alignment that is based on adversarial
thinking, requiring a large sample set of Ds and Dt to confuse the domain discrimina-
tor, making it unable to judge the sample domain label to achieve the global alignment.
Therefore, using too few samples is the main reason for its low diagnostic accuracy.

The MRAN makes up for the DAN defect by extracting multi-representation features
of sample images and aligning them in different feature spaces. However, the diagnostic
accuracy in task 1-0 is only 94%. The primary reason is that when the samples of the Ds and
the Dt have high similarity, the extracted multi-representation features are more similar.
Hence, they cannot be classified correctly, yielding an average diagnostic accuracy of 98.8%.

Under the premise of using the subdomain migration method, the average diagnostic
accuracy of RDSAN using Resnet-50 as a feature extractor is 98.8%. This value is lower
than 99.9% obtained for the SPDSAN, proving that the SPDSAN has a stronger ability to
learn fault features.
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4.4. Feature Visualization

In this paper, the t-distribution random adjacent embedding algorithm [32] was used
to visualize the data features of the Dt of 12 transfer learning tasks and present them in the
form of scatter plots, as shown in Figures 8 and 9.
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Each subfigure in Figures 7 and 8 contains 10 health states. Different shapes and colors
represent one health status. It is evident from clustering results that each health state can
be well clustered with distinct regional characteristics through the adaptive alignment
of subdomains. However, in part of the migration task, the 0.5334 mm ball fault was
mistakenly assigned to other health states. This may be due to the signal characteristics of
the fault, which are similar to those of other health states in different periods. Hence, the
diagnosis accuracy of the migration as mentioned above task is slightly lower than that of
other migration tasks.
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5. Conclusions

To address the inconsistency in feature extraction network problems when applied to
bearing fault diagnosis, such as insufficient ability to learn fault features and the charac-
teristic distribution of vibration data of rolling bearing collected under variable working
conditions, the authors proposed the SPDSAN diagnostic model. The experimental re-
sults have shown that the proposed model has higher robustness and diagnostic accuracy
compared to other methods. Based on the results, the following conclusions can be made:

• Compared with ResNet, ResNeSt, which integrates multi-channel and split-attention
mechanisms, can more fully learn the transferable fault features in samples. This
facilitates subsequent transfer learning tasks.

• In the domain adaptation layer, the subdomain alignment method is used to reduce
the distribution difference between the Ds and the Dt, and to reduce the misdiagnosis
caused by the small subdomain distance caused by the global alignment. Therefore, it
is only necessary to train the network with samples under one working condition to
complete the fault diagnosis under all working conditions

• The comparison and analysis of different experimental results show that the proposed
method has good generalization and robustness.
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