
Citation: Li, C.; Yang, X.; Luo, S.;

Song, M.; Li, W. Towards

Domain-Specific Knowledge Graph

Construction for Flight Control

Aided Maintenance. Appl. Sci. 2022,

12, 12736. https://doi.org/10.3390/

app122412736

Academic Editor: Valentino Santucci

Received: 16 November 2022

Accepted: 8 December 2022

Published: 12 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Towards Domain-Specific Knowledge Graph Construction for
Flight Control Aided Maintenance
Chuanyou Li 1,2,* , Xinhang Yang 3, Shance Luo 3, Mingzhe Song 4 and Wei Li 5

1 School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
2 MOE Key Laboratory of Computer Network and Information Integration, Southeast University,

Nanjing 211189, China
3 Southeast University—Monash University Joint Graduate School, Soochow 215123, China
4 Advanced Technology Research Institute, Beijing Institute of Technology, Jinan 250300, China
5 China Southern Airlines, Beijing 102604, China
* Correspondence: cyli@seu.edu.cn

Abstract: Flight control is a key system of modern aircraft. During each flight, pilots use flight control
to control the forces of flight and also the aircraft’s direction and attitude. Whether flight control
can work properly is closely related to safety such that daily maintenance is an essential task of
airlines. Flight control maintenance heavily relies on expert knowledge. To facilitate knowledge
achievement, aircraft manufacturers and airlines normally provide structural manuals for consulting.
On the other hand, computer-aided maintenance systems are adopted for improving daily main-
tenance efficiency. However, we find that grass-roots engineers of airlines still inevitably consult
unstructured technical manuals from time to time, for example, when meeting an unusual problem
or an unfamiliar type of aircraft. Achieving effective knowledge from unstructured data is ineffi-
cient and inconvenient. Aiming at the problem, we propose a knowledge-graph-based maintenance
prototype system as a complementary solution. The knowledge graph we built is dedicated for
unstructured manuals referring to flight control. We first build ontology to represent key concepts
and relation types and then perform entity-relation extraction adopting a pipeline paradigm with
natural language processing techniques. To fully utilize domain-specific features, we present a hybrid
method consisting of dedicated rules and a machine learning model for entity recognition. As for
relation extraction, we leverage a two-stage Bi-LSTM (bi-directional long short-term memory net-
works) based method to improve the extraction precision by solving a sample imbalanced problem.
We conduct comprehensive experiments to study the technical feasibility on real manuals from
airlines. The average precision of entity recognition reaches 85%, and the average precision of relation
extraction comes to 61%. Finally, we design a flight control maintenance prototype system based on
the knowledge graph constructed and a graph database Neo4j. The prototype system takes alarm
messages represented in natural language as the input and returns maintenance suggestions to serve
grass-roots engineers.

Keywords: knowledge graph construction; named entity recognition; relation extraction; flight
control system; aided maintenance system

1. Introduction

In modern aircraft, flight control is the most critical system that must perform every
flight mission safely. Generally, a flight control system is composed of elevator control,
rudder control, and aileron control. During the lifetime of any aircraft, the flight control
system inevitably has some sort of problem. For example, the linkages among different me-
chanical components could be loose due to overloading, aging, or fatigue-related problems.
Maintaining the flight control system is indispensable and already is part of the routines of
airlines.

Appl. Sci. 2022, 12, 12736. https://doi.org/10.3390/app122412736 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122412736
https://doi.org/10.3390/app122412736
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8725-6417
https://doi.org/10.3390/app122412736
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122412736?type=check_update&version=2

Appl. Sci. 2022, 12, 12736 2 of 20

Flight control system maintenance is a task heavily relying on expert experiences that
are usually accumulated and recorded in documents. For example, from the perspective
of the manufacturer of aircraft carriers, manuals such as a TSM (trouble-shooting manual)
are provided to guide daily maintenance and fault diagnosis. On the other hand, airline
companies also keep massive logs of fault diagnosis for future maintenance and staff
training. According to our investigation, a TSM and logs of fault diagnosis are the basis of
daily maintenance. A common feature of them is that they are structural and can be easily
stored in a relational database. When meeting a trouble code, grass-roots engineers are
capable of consulting the database to obtain effective information for fault localization.

As new aircraft are introduced, the complexity of flight control system grows. It is more
and more usual that grass-roots engineers cannot quickly diagnose a problem based only on
structural data. To aid engineers, computer-assisted diagnostic systems have appeared [1–6].
These systems rely on building a fault diagnosis model either by expert knowledge or massive
historical records. However, when confronted with a new aircraft type or unusual problems,
model-based methods are often inadequate, and engineers need to consult a set of unstructured
data such as technical training manuals, flight control system instructions, etc.to localize the
faults. Consulting unstructured data is inefficient and inconvenient. Aiming at the problem,
we would like to study a knowledge-graph-based method, where effective information is
first extracted to build a semantic knowledge base, and then an aided maintenance prototype
system is built based on the knowledge extracted.

A knowledge graph built on open-source information, e.g., Wikipedia, is common. A
flight control system is domain-specific such that existing open-source knowledge graphs
are not adaptive. Until now, only a few studies on knowledge graphs have examined
flight control [7,8]. However, they mainly focused on knowledge referring to faults (e.g.,
TSM) but did not draw enough attention to knowledge in other important manuals written
with unstructured text. Combining with the current flight control system maintenance, we
suggest that a system that can quickly provide knowledge from unstructured manuals is
still missing. Hence, we will design a knowledge-graph-based system to fix the gap.

Building a knowledge graph in a new area is systematic and consists of both manual
and automation work. The system overview is depicted in Figure 1. The target data
are unstructured manuals referring to flight control. After format conversion and de-
noising, we analyze the manuals to understand the semantics and build ontology to
represent key concepts and relation types. Next, we label named entities and relations in
each sentence in order to perform automatic knowledge extraction by natural language
processing techniques. In our case, knowledge extraction is conducted by two sequential
tasks: NER (named entity recognition) and RE (relation extraction). For named entity
recognition, we present a hybrid method that combines a rule-based-algorithm and a
machine-learning-based algorithm. Note that entity recognition is usually difficult to be
performed by defining rules. Fortunately, flight control systems are domain-specific, and
we found that some entities always appear regularly which gives us a good opportunity to
recognize them by defining specific rules. For most entities, we use a machine-learning-
based algorithm consisting of a Transformer encoder and a CRF (conditional random field)
layer to perform recognition. In addition, to leverage features of flight control systems, we
not only use the model word2vec but also POS (part of speech), domain-specific phrases,
and high-frequency word information to obtain the embedding of each token. As for
the relation extraction, we perform a two-stage Bi-LSTM (bi-directional long short-term
memory networks) based method to relieve the sample imbalanced problem. During the
first stage, a binary classification is settled that determines whether there exists a relation
between a given pair of entities. After that, the second stage is carried out to differentiate
the relation type. Based on the entities and relations extracted, a set of triples are achieved,
and then a knowledge graph is constructed. Finally, a knowledge-graph-based prototype
system is implemented on Neo4j to return possible fault locations.

Appl. Sci. 2022, 12, 12736 3 of 20

Ap
p.

D
at

a
So

ur
ce

D
at

a
Pr

oc
es

si
ng

O
nt

ol
og

y
An

no
ta

tio
n

Format
conversion Denoising

Unstructured Manuals Referring to
Flight Control System

Regular Extractor

Transformer + CRF

Bi-LSTM + Attention

N
ER

R
E

Pr
ot

ot
yp

e
Sy

st
em Query

Suggestions

Kn
ow

le
dg

e
G

ra
ph

Figure 1. System overview.

The main contributions of this paper are summarized in the following:

1. We construct a knowledge graph via natural language processing techniques aiming at
extracting effective knowledge from unstructured manuals referring to flight control
systems.

2. To facilitate daily maintenance of flight control, an aided maintenance prototype
system is implemented based on the knowledge graph we constructed. The system
takes fault alarms as inputs and outputs suggestions for faults localization.

3. We set up comprehensive experiments to verify the proposed methodology. The
precision of entity recognition and relation extraction, respectively, comes to 0.85 and
0.61, ensuring the availability of our prototype system.

The rest of this paper is organized as follows. Section 2 sketches out the related
work, and Section 3 briefly introduces data pre-processing. In Section 4, we introduce
the process of knowledge graph construction for flight control from ontology building
to entity-relation extraction. Section 5 sets up experiments to evaluate the performance
of entity recognition and relation extraction. Ablation experiments are also conducted
to evaluate the effectiveness of domain-specific information used for token embedding.
Section 6 briefly introduces a maintenance prototype built upon our knowledge graph.
Finally, Section 7 brings concluding remarks and future work.

2. Related Work

In this paper, we aim at constructing a domain-specific knowledge graph for flight-
control-aided maintenance. In the following text, we summarize techniques of maintenance
and fault diagnosis in aircraft systems and introduce techniques referring to knowledge
graph construction.

2.1. Fault Diagnosis in Aircraft Systems

Fault diagnosis methods in aircraft systems generally fall in three categories: (1) model-
based method; (2) signal-based method; and (3) data-driven-based method. In model-based
methods, fault diagnosis models are usually obtained by physical principles and systems
identifications. Once a model is achieved, fault identification or a detection algorithm
is designed to monitor the consistency between the measured outputs and the model
outputs [1,2]. Signal-based methods utilize measured signals rather than input–output
models. Faults are reflected in the measured signals. By extracting the features of mea-

Appl. Sci. 2022, 12, 12736 4 of 20

sured signals, a fault diagnosis algorithm could be designed according to the symptoms
observed and prior experiences [3,4]. Recently, data-driven methods have received a lot of
attention [5,6]. This kind of method relies on historical data rather than establishing models
or signal patterns. Generally, fault diagnosis is considered as a classification problem
handled by deep neural networks using labeled or unlabeled data.

The method leveraged in our work is also data driven. Different from [5,6], we first
build a knowledge graph from unstructured manuals and then design a maintenance
prototype system to locate possible faults. We noticed that a few studies are conducted by
the same knowledge-graph-based methodology [7,8]. However, they mainly focus on struc-
tural data such as TSM (trouble-shooting manual) and maintenance records to construct a
knowledge graph. According to our investigation, consulting TSM or maintenance records
is convenient in the current digital system. However, when confronted with a new aircraft
type or unusual problems, it is inefficient to consult other unstructured manuals. Our work
pays more attention to this gap where effective knowledge is extracted from unstructured
data to support a better query.

2.2. Knowledge Graph Construction

A knowledge graph is a structured semantic knowledge base that can symbolically
describe concepts and their relations. The basic unit of a knowledge graph is presented
in the form of a triple 〈head, relation, tail〉, where head and tail are two types of entities
that connect to each other through the relation. A knowledge graph is crucial in modern
intelligent systems, such as recommendation [9,10], semantic searching [11,12], and QA
(question-answering) [13,14]. By integrating fine-grained knowledge, these intelligent
systems could feed back more accuracy and diversity results to human users. In the follow-
ing, we focus on knowledge graph construction from the perspective of natural language
processing where ontology building and entity-relation extraction are summarized.

2.2.1. Ontology Building

There is no unified methodology for ontology building. The three common methods
are, respectively, the skeletal method [15], the seven-step method [16], and the cyclic acquisi-
tion method [17]. The skeletal method has four main stages: (1) identify purpose; (2) build-
ing the ontology; (3) evaluation; and (4) documentation. In addition, it is necessary to clarify
the principles and guidelines for each stage. Compared with the skeletal method, the seven-
step method is more delicate. It first specifies concepts and then adds attributes and rela-
tions. The seven steps are, respectively, (1) determine the domain and scope of the ontology;
(2) consider reusing existing ontology; (3) enumerate important terms in the ontology;
(4) define the classes and the class hierarchy; (5) define the properties of each class;
(6) define the facets; and (7) create instances. The cyclic acquisition method is more
adaptive for domain-specific ontology building. It first specifies a generic core ontology
used as a top level structure and then acquires domain-specific concepts by a dictionary con-
taining important corporate terms in natural language. Next, domain-unspecific concepts
are removed by using a domain-specific and a general corpus of texts. Finally, relations
between concepts are learned. The resulting domain-related ontology can be evaluated
to decide whether it is necessary to repeat the above process to do further corrections
or optimizations.

A flight control system is domain-specific. In this paper, we comprehensively leverage
the ideas from the seven-step method and the cyclic acquisition method to construct
ontology of the vertical area and then perform entity and relation extraction.

2.2.2. Entity and Relation Extraction

During the past decades, many works on named entity recognition and relation
extraction have been proposed. Generally, there are two paradigms, pipeline extraction
and joint extraction. Pipeline extraction takes entity recognition and relation extraction
as two sequential tasks. Joint extraction follows a different method in that entity-relation

Appl. Sci. 2022, 12, 12736 5 of 20

extraction is considered as a single task. In the following text, we briefly summarize both
the pipeline and joint extraction methods.

In the pipeline method, entity extraction, also known as NER (named entity recogni-
tion) is performed before relation extraction. NER usually refers to the automatic identifica-
tion of named entities from text. In general, NER falls into two categories: (1) rule-based
method [18]; and (2) machine-learning-based [19–25]. Rule-based methods are common
in early research. However, the rule-based method is poor in scalability due to the diffi-
culties of handling various text features. With the development of semiconductor and big
data technologies, machine-learning-based methods have become dominant. This kind of
method first succeeded in formal text, such as news articles [19,20], and then succeeded
in informal text, such as emails, blogs [21], and tweets [22]. With the rise in deep learning
techniques, NER could be modeled as a sequence annotation problem. We noted that
Bi-LSTM has been widely used as a fundamental encoder for NER as it can efficiently
uses both the past and future input features [23]. Recently, Transformer has been widely
adopted in NLP (natural language processing) tasks because of its advantageous perfor-
mance. Many researchers began to study NER by using Transformer encoder. For example,
H. Yan et al. [24] proposed a model named TENER adopting a Transformer encoder to
model the character-level features and word-level features. By incorporating the attention
scheme, the proposed model showed its effectiveness for NER. However, the above works
on NER are mainly conducted on open datasets in a general domain. Our work deals
with flight control that is domain-specific. Like many other typical vertical areas [26,27],
there exist many domain-specific terminologies but there is a lack of reasonable-sized and
high-quality annotated datasets. In order to sufficiently leverage domain-specificity, we
present a hybrid method to perform NER that combines a rule-based algorithm and a
machine-learning-based algorithm. The rationality of the rule-based algorithm lies in some
entities always appearing regularly. As for the machine learning algorithm, we leverage a
popular methodology that is a combination of Transformer encoder and CRF (conditional
random field) layer.

Relation extraction relies on extracted entities and aims at digging out the semantic
connections between entities. The method of relation extraction can be divided into three
categories: (1) rules- and features-based method [28,29]; (2) kernel-based method [30,31];
and (3) deep-learning-based method [32–34]. The first two categories of methods depend
on manual feature extraction, and the performance strongly relies on the quality of the ex-
tracted features. Similar to the progress of NER techniques, the deep-learning-based method
gradually dominates. For example, P. Zhou et al. [32] studied a Bi-LSTM-based method,
T. Wu et al. [33] proposed a curriculum-meta learning method, and N. Zhang et al. [34]
used knowledge graph embeddings and graph convolution networks to handle the long
tail distribution problem. As for our case, sample imbalance is prominent. We leverage a
two-stage Bi-LSTM-based model to relieve the problem. The first stage is a binary classi-
fication that picks out pairs of entities having a kind of relation. The second stage takes
charge of distinguishing relation types.

Generally, pipeline extraction has two drawbacks. One is that the potential connection
between entity and relation cannot be captured, and the other one is accumulative error.
Aiming at the two drawbacks, some recent research studied joint extraction [35–38]. In
this paper, we do not yet follow joint extraction. As we are in front of a vertical area with
limited corpus, starting with the pipeline paradigm is easier for understanding the semantic
features and on the other hand more natural for leveraging manually extracted features,
e.g., defining specific rules for part of entity recognition. In addition, we also noted that
there exist a set of generative methods proposed for knowledge graph construction. As
our method is discriminative, we will not elaborate on them. More details referring to the
generative methods can be found in [39].

Appl. Sci. 2022, 12, 12736 6 of 20

3. Data Pre-Processing

Our input data are unstructured and formatted as PDFs. There are not only textual
descriptions but also schematic diagrams. The information we take as input is pure text
such that we choose to use the toolkit PDFMiner [40] for text parsing and TXT format
conversion. Note that the PDFMiner also extracts irrelevant text such as directory, headings,
headers, footers, and page numbers. We take them as noise. We extract the features of
useless noise in the following. A visualized example on noise text is given in Figure 2. As
long as a text line meets one of the following features, it will be removed.

数据标注：

在获得了所有的句子之后，我们需要对它们进行数据标注。Label-studio 是一

款开源的数据标注工具，它支持 txt、csv 和 json 等多种格式的导入，也支持 csv
和 json 等多多种方式的导出，而且配置简单、灵活易用，所以我们选择它进行

标注任务。
首先，我们需要在 label-studio 中添加我们任务相关的标签，像 equipment 标

签，我们可以在工具的配置栏中进行添加，然后该标签就会出现在显示栏中,如
图所示：

关系标签也可以通过类似的方式进行添加。然后，我们就可以在文本上贴上相应

的标签完成实体标注，如图所示：

那么，“rudder”被打上了”EQUIPMENT”的标签，”yaw control”被打上了”CONTROL”

的标签，”hydraulic actuator”被打上了”POWER”的标签。

关系的标注则是在实体之间进行连线然后选择两者之间的关系，如图所示：

: Footer

: Header

: Page number

: Directory

Mark explanation

: Headline

Figure 2. An example of texts that are considered noise.

1. Directory: the lines containing a sequence of ellipsis;
2. Headline: the lines only including words with uppercase letters;
3. Header: “Single Aisle TECHNICAL TRAINING MANUAL" constitutes the header

appearing in each page;
4. Footer: “T1 + T2 (IAE V2500) (Lvl 2&3)”, “27—FLIGHT CONTROLS” and “Feb 01,

2011” as part of the footers in each page. There also exists a line consisting of words
with uppercase letters;

5. Page number: the word “page” following by an integer number.

With the features extracted, the process of de-noising is completed by matching specific
rules. In the example of Figure 2, tests in the colored boxes will be suppressed by de-noising.
After de-noising, the remaining texts are separated into a sequence of sentences according
to where a full stop appears.

4. Knowledge Graph Construction for Flight Control System
4.1. Ontology Building

The ontology development in our work is carried out in several rounds for corrections
and optimization. In each round, the development is referred to the method proposed by
Natalya F. Noy et al. [16].

Figure 3 summarizes the ontology we built including entity types and semantic rela-
tions. The whole flight control system includes five kinds of entities that are, respectively,
Equipment, Computer, System, Power, and Function (Figure 3a). The Equipment class rep-
resents physical units used in the system, such as “elevator”, “rudder”, “flap”, etc. The
Computer class includes computers, such as “slat flap control computer”, “elevator aileron
computer”, “sec”, etc., leveraged in flight control for calculations and issuing commands.
The entity class System represents different kinds of subsystems, such as “centralized
fault display system”, “mechanical trim system”, and “efcs”. The Power class represents
power sources, e.g., “electrical motor”, “hydraulic actuator”, et al. Finally, the Function
class represents various functions that can be achieved in the flight control system, e.g.,
“turn coordination”, “yaw damping”, “aileron droop”, “pitch control”, “roll control”,

Appl. Sci. 2022, 12, 12736 7 of 20

“yaw control”, etc. Based on the five entity classes, we define relations according to the
semantic between different entities. Figure 3b leverages directed lines to depict all possible
relations appeared between a pair of entity classes. Relations defined are, respectively,
consistOf, control, achieve, sendMsgTo, connectTo, locateOn, drive, and acronym. ConsistOf
expresses that one unit is composed of several other units. Control represents one unit
controls multiple other units; for example, a dedicated computer controls some mechanical
components. Achieve is defined to express one component achieving a kind of function.
SendMsgTo defines one component sending commands or messages to other components.
LocatedOn reflects on some kind of positional relationship. Drive represents power sources.
Finally, acronym is used to express an entity’s acronym.

FC

E

C S

F

P

FC Flight Control P Power

E Equipment C Computer

F Function

S System

CE

connectedTo

sendMsgTo

control

S

F

se
nd

M
sg

To

P

locatedOn

drive

consistOf ac
ro

ny
m

se

nd
M

sg
To

drive
acronym
consistOf
locatedOn

connectedTo

acronym

（a）Entity class （b）Entity - Relation

achieveac
hi
ev

e

Figure 3. Overview of ontology.

4.2. Annotation

Ground truth is achieved by data annotation that is necessary for machine learning
model training and verification. According to our knowledge, there is no known open
labeled dataset of a flight control system especially covering those unstructured manuals.
Hence, we conducted data annotation. We leverage an open-source toolkit Label-studio [41]
to label the entities and relations according to the achieved ontology.

Labeling entities has two stages: (1) add each label name (representing every entity
class); and (2) assign each entity a corresponding label. Relation annotation is performed
by connecting two labeled entities with a specific type. Figure 4 shows that we have five
different entity labels. In the instance “the rudder is powered by hydraulic actuator operating
in parallel”, “rudder” and “hydraulic actuator” are labeled, respectively, by Equipment and
Power, and the relation between them is annotated by drive. After achieving a labeled dataset,
we design methods for automatic named entity recognition and relation extraction.

4.3. Named Entity Recognition and Relation Extraction

In this section, we elaborate on the way of named entity recognition and relation
extraction. As a flight control system is domain-specific, few referential experiences could
be referred to. We adopt the basic pipeline paradigm to reach a milestone.

By careful study of the annotated text, we note that different entity classes have
different features. The entity class Power is special: entities of this class always appear
regularly such that the appearance can be described by specific rules. Unfortunately, not all
entity classes show such properties. Hence, we adopt a hybrid method that first leverages
a rule-based algorithm to recognize the entities belonging to Power and then an algorithm
to recognize the remaining entities.

Appl. Sci. 2022, 12, 12736 8 of 20

Entity annotation

Relation annotation

Stage (1):

Stage (2):

Figure 4. An example of entity and relation annotation.

The rule-based entity recognition method is designed based on regular expression which
is a logical formula for string operations. Regular expression uses predefined specific characters
and their combinations to form a pattern string. The pattern string is indeed a filter used to re-
trieve or replace the text conforming to the pattern. Figure 5 is the pseudo-code of the rule-based
entity recognition algorithm dedicated to the Power class. For each input sentence, we first obtain
POS (part of speech) of each token (line 3) by NLTK (natural language toolkit) [42], a famous
toolkit for natural language processing. We then leverage regular expression to identify all noun
phrases (line 4). The rule appears in line 4 and is defined to be rule = <NN.*|JJ>*<NN.*> ∨
<JJ>*<CC><JJ>*<NN.*>, where “NN” means a noun, “.” represents any character except \n
and \r, “*” means the token or the token sequence in <> before “*” can appear multiple times,
“|” expresses logic or, “JJ” means an adjective and “CC” refers to a conjunction. The first regular
expression is used for the case that a sequence of nouns or a sequence of adjectives describe a key
noun phrase, while the second one handles the scenario that two sequences of adjectives concate-
nated by a conjunction and describe a key noun phrase. The two rules are mutually exclusive,
i.e., matching any one of them is enough. Finally, we apply a simple matching that ends with
“motor” or “actuator” to differentiate whether there is a noun phrase belonging to the Power class
(lines 6–9). Let us consider the sentence “One valve block is given for each hydraulic motor” as
an example. The set of noun phrases Seqnoun returned from line 4 is {“valve block”, “hydraulic
motor”}. It can be seen that “hydraulic motor” ends with motor such that it is an entity of Power.

1: Input: a set of sentences;
2: for each sentence do
3: Seq← partO f Speech(sentence);
4: Seqnoun ← nounPhrase_extraction(Seq, rule);
5: for each phrase in Seqnoun do
6: if phrase ends by “motor” or “actuator” then
7: phrase is an entity of Power ;
8: end if
9: end for

10: end for

Figure 5. Extract entities belonging to Power.

The entity classes beyond Power are not easy to recognize with manual-defined rules,
so we propose a machine-learning-based algorithm to handle them. Entity recognition is
now modeled as a sequence annotation problem. Let us use a set S = {w1, w2, w3, . . . , wn}
to express a sentence, where wi is a token (word). Our target is to build a model f such that
f (S) = ylabel , where f (S) is the annotation sequence output by the model f and ylabel is the
real annotation sequence.

Appl. Sci. 2022, 12, 12736 9 of 20

The entity recognition model f we designed is based on a popular strategy combining
Transformer encoder with a CRF (conditional random field) layer [24,43]. Figure 6 provides
an overview of the recognition model. The Transformer encoder includes a position encoding
layer and an encoder that mainly consists of multi-head self-attention and a feed-forward
fully connected layer. Meanwhile, residual connection and normalization are used to connect
the outputs of different hidden layers. When achieving output from the Transformer encoder,
we leverage a linear and CRF layer to output the sequence of predicated labels.

M
ulti-head self-

attention

A
dd &

 norm

Fnn

Positional
encoding

A
dd &

 norm

Linear &
 C

R
F

Em
bedding

Input sentence

Transformer encoder

output

residual
connection

residual
connection

CRF

Figure 6. Named entity recognition.

For each sentence, Transformer takes its embedding as the input, which is a tensor
consisting of the embedding of every token. To combine the character of the flight control
system, we customize word embedding delicately by adopting information from POS,
domain-specific phrase, and whether it is a high-frequency word. Specifically, there are
five steps:

Step (1): The model word2vec [44] is used to achieve an embedding for every token
wi ∈ S. This process is represented by Equation (1), where WORDi is the embedding obtained.

WORDi = embedding(wi) (1)

Step (2): As entities are all noun phrases, we take POS into the embedding.
For a sentence S = {w1, w2, . . . , wn}, we use the toolkit NLTK to obtain a corresponding
sequence of POS: Spos = {pos1, pos2, . . . , posn}. Embedding related to POS is represented
by Equation (2), where POSi is the output embedding.

POSi = embeddingpos(posi) (2)

Step (3): We consider domain-specific phrases and add such information into embed-
ding. Let Sph = {ph1, ph2, . . . , phm} include the domain-specific phrases in the dictionary
of terms. For a token wi ∈ S, if wi matches one domain-specific phrase phj, then PHRASEj
obtained from Equation (3) is the embedding of the domain-specific phrase. If wi is not a
domain-specific phrase, we leverage a default embedding.

PHRASEi = embeddingph(phi) (3)

Step (4): We leverage the information of whether wi is a high-frequency word.
If wi appears with high frequency, we denote it as “True”. Otherwise, we denote it as
“False”. For a sentence S, we can obtain a corresponding sequence {h f1, h f2, . . . , h fn},
where each h fi ∈ {True, False}. For each token wi, HFi achieved from Equation (4) is the
embedding referring to the information of high frequency

HFi = embeddingh f (h fi) (4)

Step (5): Finally, all the partial embedding vectors are concatenated together as a
complete one for the word wi:

total_embeddingi = [WORDi; POSi; PHRASEi; HFi] (5)

Appl. Sci. 2022, 12, 12736 10 of 20

For a sentence S, embedding of each token is organized as a tensor which is the input
of the Transformer encoder. The linear and CRF layer is used for label predication. The
linear operation is for dimension transformation whose output is a sequence of vectors
{~v1,~v2, . . . ,~vn} corresponding to the n tokens of sentence S. CRF takes charges of scoring
each candidate label sequence. For example, consider {`0, `1, `2, . . . , `n, `n+1} is a candidate
label sequence, where `0 and `n+1 are two auxiliary labels representing, respectively, the
starting and ending tags of the sentence. The score of a candidate label sequence is obtained
by Equation (6), where Pi,`i

is the probability that wi’s label is `i, and T is a probability
transition matrix with dimension (n + 2)× (n + 2).

Score(`1, `2, . . . , `n) =
n

∑
i=1

Pi,`i
+

n

∑
i=0

T`i ,`i+1
(6)

Finally, a Softmax of all possible label sequences yields the probability (Equation (7)).
The candidate label sequence with the highest probability is selected as the output.

Pr(`1, `2, . . . , `n|S) =
eScore(`1,`2,...,`n)

∑Score(˜̀1, ˜̀2,..., ˜̀n)
eScore(˜̀1, ˜̀2,...,˜̀n)

(7)

Relation extraction is the task to predict the relation between two entities. As the
importance of global semantic information, we consider Bi-LSTM + self-attention mech-
anism [32] to perform relation extraction. The attention mechanism adopted here aims
at effectively obtaining key information. The schematic diagram of relation extraction is
depicted in Figure 7.

Self-attention

Softm
ax

O
utput

B
i-LSTM

Em
bedding

Input: <e
1 , e

2 , S>
Relation extraction

Figure 7. Relation extraction.

The input {e1, e2, S} is a sentence S together with two entities e1 and e2. The model
will predict whether in the sentence S there exists a pre-defined relation from e1 to e2, i.e.,
for such a relation e1 and e2 are, respectively, the head and tail entities. Different from [32],
for each token wi in S, we will obtain its embedding which is concatenated by WORDi,
POSi, HeadPi and TailPi. WORDi and POSi are, respectively, from Equations (1) and (2).
HeadPi and TailPi are relative position embeddings obtained by Equations (8) and (9).

HeadPi = embeddingpo(hi) (8)

TailPi = embeddingpo(ti) (9)

hi and ti in the above two equations are two relative positions of wi, respectively, to the
given head and tail entities. For a sentence S, we can obtain two relative position sequences
Sh = {h1, h2, . . . , hn} and St = {t1, t2, . . . , tn}. For example, suppose a sentence S is
“the rudder does the yaw control”. The head and tail entities here are, respectively,
“yaw control” and “rudder”. There are six tokens in S such that the position sequence
relative to “yaw control” is Sh = {−4,−3,−2,−1, 0, 0}, and the position sequence relative
to “rudder” is St = {−1, 0, 1, 2, 3, 4}. Embeddings are then put into a Bi-LSTM with the
self-attention model to extract features. Finally, a Softmax layer generates the output.

Note that we do not simply use the above model to directly perform relation ex-
traction due to us confronting a non-negligible sample imbalance problem. For example,

Appl. Sci. 2022, 12, 12736 11 of 20

in the sentence “The left blue and right green actuators are controlled by ELAC 1, and
the other two actuators by ELAC 2”, there are four named entities: “left blue and right
green actuators”, “ELAC 1”, “actuators”, and “ELAC 2”. Among the 4 entities, there are
12 tuples. However, only two of them have a specific semantic relation: 〈“ELAC 1”, control,
“left blue and right green actuators”〉; 〈“ELAC 2”, control, “actuators”〉. For the other 10 tu-
ples, no relation exists. We take non-relation as a negative sample. Clearly, the number of
negative samples dominates the dataset. In order to relieve the imbalance problem, we
present a two-stage relation extraction process by leveraging the model in Figure 7. During
the first stage, we train a particular relation extraction model that only takes charge of a
binary classification: deciding whether there exists a defined relation between two given
entities. During the section stage, we train another model to differentiate concrete relation
types. Note that in the second stage it is not necessarily to consider an empty relation again
such that the imbalance problem is relieved.

5. Experiments
5.1. Experimental Setup

We conducted experiments to verify the effectiveness of the entity-relation extraction
methods proposed. The experiments were implemented by PyTorch 0.4.1 and CUDA 9.1.
The hardware platform was composed of two Nvidia Geforce RTX 3090 (24 G) GPUs and
an Intel 10980XE CPU. The testing input was “AIRBUS Training and Flight Operations
Support and Services” which is an unstructured PDF and describes the composition of the
flight control system. After de-noising, we obtained 1890 named entities and 4878 relations
(4092 relations belonging to Other). Entity-relation extraction is based on sentences such
that 90% of sentences were selected randomly for training, and the remaining 10% sentences
were left for testing. Training epochs were set to 80, and the learning rate was 10−3. We
recorded P (Precision), R (Recall) and F1 score to evaluate the performance of NER and
relation extraction. P, R, and F1 were calculated by Equations (10)–(12), respectively.

P =
TP

TP + FP
(10)

R =
TP

TP + FN
(11)

F1 = 2× P× R
P + R

(12)

TP (true positive), FP (false positive) and FN (false negative) in Equations (10) and (11)
are, respectively, the number of entities (or relations) extracted correctly, false alarms, and
missing entities (or relations). Table 1 provides important dimension of embeddings
leveraged in both the entity recognition and relation extraction algorithms (referring to
Equations (1)–(4), (8) and (9)).

Table 1. The dimension of important embeddings.

Embedding Dimension

WORDi 50

POSi 20

PHRASEi 30

HFi 10

HeadPi 10

TailPi 10

Appl. Sci. 2022, 12, 12736 12 of 20

5.2. Experimental Results
5.2.1. Named Entity Recognition

We first implemented NER. Remember that for a token embedding, we concatenated in-
formation from word2vec, POS, domain-specific phrase, and whether it is a high-frequency
token (appearing more than 20 times). We first performed a series of ablation experiments
in order to verify the effectiveness of added information. Results are given in Tables 2–5.
In each table, the criteria demonstrated are, respectively, Precision, Recall, and F1.

Table 2. The results of only using embeddings from word2vec: total_embeddingi = [WORDi].

Types of Entity Precision Recall F1

Equipment 0.85 0.73 0.79

System 0.75 0.60 0.67

Computer 0.79 0.88 0.83

Function 0.62 0.67 0.64

Total 0.81 0.74 0.77

Table 3. The results of concatenating embeddings from part of speech: total_embeddingi =

[WORDi; POSi].

Types of Entity Precision Recall F1

Equipment 0.87 0.75 0.80

System 0.80 0.80 0.80

Computer 0.83 0.88 0.86

Function 0.58 0.58 0.58

Total 0.83 0.75 0.79

Table 4. The results of concatenating embeddings from domain-specific phrases: total_embeddingi =

[WORDi; POSi; PHRASEi].

Types of Entity Precision Recall F1

Equipment 0.85 0.75 0.80

System 1.00 0.80 0.89

Computer 0.83 0.88 0.86

Function 0.59 0.83 0.69

Total 0.82 0.82 0.82

Table 5. The final results of NER: total_embeddingi = [WORDi; POSi; PHRASEi; HFi].

Types of Entity Precision Recall F1

Equipment 0.87 0.80 0.84

System 1.00 0.80 0.80

Computer 0.89 0.94 0.91

Function 0.54 0.58 0.56

TotalML 0.84 0.80 0.82

Power (by rule) 1.00 1.00 1.00

Total 0.85 0.81 0.83

Appl. Sci. 2022, 12, 12736 13 of 20

From Tables 2–5, the performance of named entity recognition improves in general.
Adding information of part of speech and information of domain-specific features can help
the model to better distinguish entities. We provide two sentences as an example to show
the progress of entity recognition.

1. If the aircraft reaches the pitch attitude protection nose up limit, then the flight control
computer will override pilot demand and keep the aircraft within the safe flight limit.

2. In case of failure of both elac 1 servo control, then elac 2 does the computation and
control its servo control.

In the first sentence, “flight control computer” is an entity that can be correctly recog-
nized if integrating information from part of speech and domain-specific features. However,
if only using embeddings from word2vec, the model can only recognize “computer”, mak-
ing a mistake on entity boundary. In the second sentence, the last two words “servo control”
is an entity. Again, it cannot be recognized as an entity if only using embeddings from
word2vec.

Table 5 integrates results from both the machine-learning-based algorithm and the
rule-based algorithm. As the Power class is special, the rule-based method already covers
all possible cases such that all entities of Power can be recognized accurately. Combining all
results (the last row of Table 5), we think that the performance of named entity recognition
reaches a reasonable level.

In addition, we have noticed the weakness of the current method, especially when
recognizing entities of the Function class. Testing results on all the three criteria are not good
compared with results on other entity classes. After a careful study, we find that entities
belonging to Function are diverse from each other. Training samples are not abundant
enough to extract a variety of diverse features. Hence, missing recognition and wrong
entity boundaries are more prone to happen compared with recognizing entities of other
classes. For example, we find that the model always recognizes “rudder deflection” rather
than “rudder deflection limitation” due to both of them being a kind of function. On
the other hand, we find that recognizing entities ended by “extension” is difficult for the
model. For example, the model fails to recognize “ground spoiler extension”. The training
set does not directly include “ground spoiler extension” but has “flap extension” and
“speed brake extension”. However, due to the number of samples being limited, the model
does not achieve enough features. To fix these drawback, on the one hand, we add more
domain-specific corpus, e.g., adopting some textbook in a flight control system. On the
other hand, more fine-grained techniques could be involved such as Pointer Network to
handle nested entities.

5.2.2. Relation Extraction

The results of relation extraction are given, respectively, in Tables 6–9. The criteria
demonstrated are still P (Precision), R (Recall), and F1 score. Let us combine the results to
explain one by one.

Table 6. Binary relation extraction.

Types of Relation Precision Recall F1

defined relation 0.89 0.81 0.85

Other 0.98 0.99 0.98

Appl. Sci. 2022, 12, 12736 14 of 20

Table 7. Two-stage method: relation extraction results based on annotated entities.

Types of Relation Precision Recall F1

ConsistOf 1.00 0.75 0.86

Control 0.80 1.00 0.92

Achieve 0.00 0.00 0.00

Acronym 0.71 1.00 0.83

Drive 0.56 1.00 0.92

SendMsgTo 1.00 0.50 0.67

ConnectedTo 1.00 1.00 1.00

LocatedOn 1.00 1.00 1.00

Average 0.86 0.77 0.81

Table 8. One-stage method: relation extraction results based on annotated entities.

Types of Relation Precision Recall F1

ConsistOf 1.00 0.25 0.40

Control 1.00 1.00 1.00

Achieve 0.00 0.00 0.00

Acronym 0.71 1.00 0.83

Drive 0.80 0.67 0.73

SendMsgTo 0.75 0.75 0.75

ConnectedTo 0.67 1.00 0.80

LocatedOn 0.67 1.00 0.80

Average 0.75 0.68 0.71

Table 9. Relation extraction based on recognized entities.

Types of Relation Precision Recall F1

ConsistOf 0.75 0.75 0.75

Control 0.67 0.50 0.57

Achieve 0.00 0.00 0.00

Acronym 0.43 0.60 0.50

Drive 0.75 0.50 0.60

SendMsgTo 1.00 0.25 0.40

ConnectedTo 1.00 0.50 0.67

LocatedOn 0.50 0.50 0.50

Average 0.61 0.45 0.52

Remember that we leverage a two-stage relation extraction procedure, where the first
stage is a binary classification problem. We involve this stage aiming at eliminating the
impact generated by excessive negative samples. Results in Table 6 show the model can
well differentiate (up to 98%) the cases having no defined relation, and meanwhile it can
correctly keep more than 80% defined relations. During the second stage, we train a model to
distinguish different types of defined relations. Table 7 provides the results of the two-stage
method. It can be seen that with prior knowledge on correct pair of entities, the model can
well recognize the type of relations: the average Precision reaches 0.86 and the average F1
reaches 0.81. We also noticed that relation Achieve cannot be extracted by the model. The
problem arises from the binary classification. At this stage model extract common features
of all existence relations. Unfortunately, samples of Achieve are diverse and the number is
limited such that the model is prone to make a mistake. To demonstrate the effectiveness of
the two-stage method, we also give out the results by directly training the model (named

Appl. Sci. 2022, 12, 12736 15 of 20

one-stage) for comparison. The results are provided in Table 8. It can be seen that by the
one-stage method, the average performance decreases by more 10 percentages.

Note that results in Table 7 are obtained based on correct entities. To obtain the final
results for knowledge graph construction, it is necessary to combine with the named entity
recognition. Table 9 provides the final results on relation extraction. Compared with results
in Table 7, there exists an apparent performance decrease. Faults in NER directly encumber
the relation extraction. As long as an entity is not correctly recognized, all the relations
related to such entity cannot be correctly extracted too. To continue improving the quality
of entity-relation extraction, it is necessary to add more corpus and on the other hand, to
reduce the accumulation error, for example, adopting the joint extraction paradigm.

5.3. A Case Study of Knowledge Graph Construction

In this section, we provide a concrete case study to show the process of knowledge
graph construction. We extract three sentences from the input document referring to a
flight control system and take them as the input of the case study.

1. In flight, the elac transmits the yaw damp and turn coordination signal to the flight
augmentation computer (fac);

2. tiThe side stick sends electrical order to the elevator aileron computer (elac) and
spoiler elevator computer (sec);

3. Elac normally controls the elevator and trimmable horizontal stabilizer (ths).

By executing NER, we obtain three entities {“elac”, “flight augmentation computer”,
“fac”} from the first sentence,five entities {“side stick”, “elevator aileron computer”, “elacs”,
“spoiler elevator computer”, “sec”} from the second sentence, and four entities {“elac”,
“elevator”, “trimmable horizontal stabilizer”, “ths”} from the third sentence.

As a relation exists in a pair of entities, we first enumerate all permutations for a
pair of entities within a sentence. For example, six entity pairs can be obtained from the
first sentence, which are, respectively: 〈“elac”, “flight augmentation computer”〉, 〈“elac”,
“fac”〉, 〈“flight augmentation computer”, “elac”〉, 〈“fac”, “elac”〉, 〈“flight augmentation
computer”, “fac”〉, and 〈“fac”, “flight augmentation computer”〉. Similarly, there are 20 and
12 entity pairs that can be enumerated, respectively, from the second and the third sentences.
In the first stage of relation extraction, we keep the entity pairs if there exists a defined
relation. For instance, among the six entity pairs from the first sentence, 〈“elac”, “flight aug-
mentation computer”〉 and 〈“flight augmentation computer”, “fac”〉 are kept. During the
second stage, definite relation types are recognized, for example, 〈“elac”, sendMsgTo, “flight
augmentation computer”〉 and 〈“flight augmentation computer”, acronym, “fac”〉. After
extracting all relations from the three sentences, the corresponding partial knowledge graph
(see Figure 8) is constructed based on Neo4j.

fac

elevator
aileron

computer

flight
augmentation

computer

spoiler
elevator

computer

elac

sec

side
stick

elevator

trimmable
horizontal
stabilizer

ths

Figure 8. A case study of knowledge graph construction.

Appl. Sci. 2022, 12, 12736 16 of 20

6. Application for Aided Maintenance of Flight Control System

After entity-relation extraction, we construct a domain-specific knowledge graph by
organizing a set of triples. The knowledge graph constructed is stored in Neo4j that is
a high-performance NOSQL graphical database. Different from a relational database to
represent data in tables, Neo4j adopts nodes and edges to represent data, where nodes are
specific entities, and edges are relations between entities. Based on Neo4j, we implement a
web-based human–computer interaction system prototype aimed at aided maintenance
for grass-roots engineers. The main interface of the system is given in Figure 9, where the
search box takes the input of a query.

勹flight control maintain prototypE X I +

。 G CD File I D:/flight_control_maintain_system/templates/index.html

Flight Control Aided Maintenance I
。

[JI X

A、 龙 令 仓

�
�

+.

�

l
知

a

函

＋

Figure 9. Main interface of flight control aided maintenance system.

In a real maintenance scenario, grass-roots engineers normally start with alarm mes-
sages, e.g., “F/CTL L + R ELEV FAULT”, “F/CTL SEC 1 FAULT”, etc. According to current
processing specification, engineers first consult the alarms from TSM and historical records
(in relational database). If the problem is solved according to official recommended op-
erations or accumulated fault diagnosis experiences, the maintenance is complete. When
engineers need more information from unstructured data, our prototype system works. As
for the above two examples, the alarm messages will be typed into the search box. Named
entity recognition is then carried out to capture all entities (“ELEV” and “SEC 1”) from the
alarm messages. Next, a query of “ELEV” and “SEC 1” is performed on the knowledge
graph. For “ELEV”, the query first finds that it is an acronym for “elevator” such that a
recursive query of “elevator” happens automatically to obtain more information.

In the knowledge graph, the triples related to “elevator” are
〈“actuator”, drive, “elevator”〉, 〈“elac”, control, “elevator”〉, and the triples related to
“sec 1” are 〈“sfcc”, sendMsgTo, “sec 1”〉, 〈“sec 1”, sendMsgTo, “bscu”〉, and
〈“sec 1”, sendMsgTo, “spoiler”〉. Because “actuator” drives “elevator” and “elac” con-
trols “elevator”, it could be the case that a failure appears in “actuator” or “elac”, and it
also could be the case the connection between “actuator” and “elevator” or the connection
between “elac” and “elevator” suffered a failure. As for “sec 1”, it could be the case that
it fails to receive or send key messages such that the system recommends to check “sfcc”
and the related connection cables. Query results from our prototype system are shown,
respectively, in Figures 10 and 11.

Appl. Sci. 2022, 12, 12736 17 of 20

x

勹flight control maintain prototypE X I +

0 � CD File I D:/flight_control_maintain_system/templates/result.html A、 6- � 合 龟

＠

一
．
．

Flight Control Aided Maintenance I
Pd-- lF/CTL L+R ELEV FAUL甘]Q

I
relation graph I suggestions

Q

士

参

血

知

9

a

elac

／口
C二二】、elev elevator c;,0�

0

�acronym -0(
名．

今尸"'actuator

vo

I .Please check actuator

2.Please check the
connection between elac
and elevator

＋

Figure 10. Example of querying “F/CTL L + R ELEV FAULT”.

�flight control maintain prototyp, X I 十 x

0 � CD A、 0_ � 合 仓

9

•
•

Flight Control Aided Maintenance

。 IF/CTL SEC 1 FAUL甘]Q

I
relation graph I suggestions I

Q

令

今

白

梦

0

函

亟

口
o

/

＋

sec 1
令

令
孕

岑

4
`

i

g

o

n

入
0

es

c

念
g

长
s
e
夕

口

spoiler

�o

I .Please check the
connection between sec I
and sfcc

2.Please check sfcc

File | D:/flight_control_maintain_system/templates/result.html

Figure 11. Example of querying “F/CTL SEC 1 FAULT”.

7. Conclusions

In this paper, we propose a knowledge-graph-based system prototype in order to
facilitate achieving knowledge from unstructured data for daily flight control maintenance.
We first build ontology and then perform entity-relation extraction by leveraging natural
language processing techniques. Finally, we design and implement a flight control main-
tenance system prototype based on the knowledge graph constructed whose duty is to
return maintenance suggestions for grass-roots engineers.

Our work is a start-up of promoting flight control maintenance by leveraging informa-
tion technologies. In our prototype system, a natural language-processing-based method
plays a key role. However, in the vertical area of flight control, the lack of sufficient corpus
restrains the performance of a machine learning model. Hence, we will improve our system
from three aspects in the future. First, finding more corpus in this area, such as textbooks,
research papers or even related technical web pages. Second, adopting more techniques to
improve the extraction model, such as joint extraction, Pointer Network, pretrained word
embedding model such as BERT (bidirectional encoder representation from Transformers),
and generative methods. Finally, we will expand the system to adopt all structured data to
replace the current relation-database-based system.

Appl. Sci. 2022, 12, 12736 18 of 20

Author Contributions: Conceptualization, C.L., M.S. and W.L.; formal analysis, M.S. and W.L.;
funding acquisition, C.L.; investigation, S.L.; methodology, X.Y., M.S. and W.L.; project administration,
C.L. and M.S.; resources, W.L.; software, X.Y. and S.L.; supervision, W.L.; validation, W.L.; writing—
original draft, C.L.; writing—review and editing, C.L., X.Y., S.L. and W.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China under Grant
61902063, by the Provincial Natural Science Foundation of Jiangsu, China under Grant BK20190342,
and by the Open Project Program of the State Key Laboratory of Mathematical Engineering and
Advanced Computing by Grant 2020A04.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

NLP Natural Language Processing
NER Named Entity Recognition
RE Relation Extraction
NLTK Natural Language Toolkit
POS Part of Speech
TSM Trouble-Shooting Manual
Bi-LSTM Bi-directional Long Short-term Memory networks
CRF Conditional Random Field
QA Question-Answering
P Precision
R Recall
TP True Positive
FP False Positive
FN False Negative
BERT Bidirectional Encoder Representation from Transformers

References
1. Goupil, P. Oscillatory failure case detection in the A380 electrical flight control system by analytical redundancy. Control Eng.

Pract. 2010, 18, 1110–1119. [CrossRef]
2. Bobrinskoy, A.; Cazaurang, F.; GATTI, M.; Guerineau, O.; Bluteau, B. Model-based fault detection and isolation design for

flight-critical actuators in a Harsh environment. In Proceedings of the 31st IEEE/AIAA Conference on Digital Avionics Systems
(DASC), Williamsburg, VA, USA, 14–18 October 2012; pp. 1–17.

3. Lin, C.; Liu, C. Failure Detection and Adaptive Compensation for Fault Tolerable Flight Control Systems. IEEE Trans. Ind. Inform.
2007, 3, 322–331. [CrossRef]

4. Van Eykeren, L.; Chu, Q. Fault Detection and Isolation for Inertial Reference Units. In Proceedings of the AIAA Conference on
Guidance, Navigation, and Control (GNC), Boston, MA, USA, 19–22 August 2013; pp. 1–10.

5. Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE
Trans. Ind. Electron. 2018, 65, 5990–5998. [CrossRef]

6. Song, X.; Zheng, Z.; Guan, Z.; Yang, D.; Liu, R. Deep learning Fault Diagnosis in Flight Control System of Carrier-Based Aircraft.
In Proceedings of the 17th IEEE International Conference on Control & Automation (ICCA), Naples, Italy, 27–30 June 2022;
pp. 492–497.

7. Tang, X.; Wang, J.; Wu, C.; Hu, B.; Noman, S.M. Constructing Aircraft Fault Knowledge Graph for Intelligent Aided Diagnosis.
In Proceedings of the 4th International Conference on Information Technologies and Electrical Engineering, Changde, China,
29–31 October 2021; pp. 1–4.

8. Zhang, S.; Zhang, Y.; Yang, Y.; Cheng, W.; Zhao, H.; Li, Y. Knowledge Graph Construction for Fault Diagnosis of Aircraft
Environmental Control System. In Proceedings of the Global Reliability and Prognostics and Health Management (PHM-
Nanjing), Nanjing, China, 15–17 October 2021; pp. 1–5.

http://doi.org/10.1016/j.conengprac.2009.04.003
http://dx.doi.org/10.1109/TII.2007.913064
http://dx.doi.org/10.1109/TIE.2017.2774777

Appl. Sci. 2022, 12, 12736 19 of 20

9. Wang, H.; Zhang, F.; Zhao, M.; Li, W.; Xie, X.; Guo, M. Multi-Task Feature Learning for Knowledge Graph Enhanced
Recommendation. In Proceedings of the World Wide Web Conference (WWW), San Francisco, CA, USA, 13–17 May 2019;
pp. 2000–2010.

10. Bellini, V.; Anelli, V.W.; Noia, T.D.; Sciascio, E.D. Auto-Encoding User Ratings via Knowledge Graphs in Recommendation
Scenarios. In Proceedings of the 2nd Workshop on Deep Learning for Recommender Systems, Como, Italy, 27 August 2017;
pp. 60–66.

11. Zhang, N.; Jia, Q.; Deng, S.; Chen, X.; Ye, H.; Chen, H.; Tou, H.; Huang, G.; Wang, Z.; Hua, N.; et al. AliCG: Fine-grained and
Evolvable Conceptual Graph Construction for Semantic Search at Alibaba. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Virtual Event, 14–18 August 2021; pp. 3895–3905.

12. Shi, Y.; Cheng, G.; Tran, T.; Kharlamov, E.; Shen, Y. Efficient Computation of Semantically Cohesive Subgraphs for Keyword-Based
Knowledge Graph Exploration. In Proceedings of the Web Conference, Virtual Event, 19–23 April 2021; pp. 1410–1421.

13. Bordes, A.; Chopra, S.; Weston, J. Question Answering with Subgraph Embeddings. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 615–620.

14. He, Y.; Zhu, Z.; Zhang, Y.; Chen, Q.; Caverlee, J. Infusing Disease Knowledge into BERT for Health Question Answering,
Medical Inference and Disease Name Recognition. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP), Online, 16–20 November 2020; pp. 4604–4614.

15. Uschold, M.; King, M. Towards a Methodology for Building Ontologies. In Proceedings of the Workshop on Basic Ontological
Issues in Knowledge Sharing, held in conjunction with IJCAI 1995, Montreal, QC, Canada, 20–25 August 1995; pp. 1–13.

16. Noy, N.F.; McGuinness, D.L. Ontology Development 101: A Guide to Creating Your First Ontology; Technical Report, Stanford Knowledge
Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880; 2001. Available
online: https://protege.stanford.edu/publications/ontology_development/ontology101.pdf (accessed on 5 June 2022).

17. Kietz, J.U.; Volz, R.; Maedche, A. Extracting a Domain-Specific Ontology from a Corporate Intranet. In Proceedings of the
2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, Lisbon,
Portugal, 13–14 September 2000; pp. 167–175.

18. Rau, L.F. Extracting company names from text. In Proceedings of the 7th IEEE Conference on Artificial Intelligence Application,
Herndon, VA, USA, 5–8 November 1995; pp. 29–32.

19. McCallum, A.; Li, W. Early results for Named Entity Recognition with Conditional Random Fields, Feature Induction and
Web-Enhanced Lexicons. In Proceedings of the 7th Conference on Natural Language Learning, CoNLL, Held in cooperation with
HLT-NAACL, Edmonton, AB, Canada, 31 May–1 June 2003; pp. 188–191.

20. Etzioni, O.; Cafarella, M.J.; Downey, D.; Popescu, A.; Shaked, T.; Soderland, S.; Weld, D.S.; Yates, A. Unsupervised named-entity
extraction from the Web: An experimental study. Artif. Intell. 2005, 165, 91–134. [CrossRef]

21. Wang, Y. Annotating and Recognising Named Entities in Clinical Notes. In Proceedings of the 47th Annual Meeting of the
Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the
AFNLP, Student Research Workshop, Singapore, 2–7 August 2009; pp. 18–26.

22. Liu, X.; Zhang, S.; Wei, F.; Zhou, M. Recognizing Named Entities in Tweets. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, Portland, OG, USA, 19–24 June 2011; pp. 359–367.

23. Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF Models for Sequence Tagging. arXiv 2015, arXiv:1508.01991.
24. Yan, H.; Deng, B.; Li, X.; Qiu, X. TENER: Adapting Transformer Encoder for Named Entity Recognition. arXiv 2019,

arXiv:1911.04474.
25. Liu, Z.; Jiang, F.; Hu, Y.; Shi, C.; Fung, P. NER-BERT: A Pre-trained Model for Low-Resource Entity Tagging. arXiv 2021,

arXiv:2112.00405.
26. Tarcar, A.K.; Tiwari, A.; Rao, D.; Dhaimodker, V.N.; Rebelo, P.; Desai, R. Healthcare NER Models Using Language Model

Pretraining. In Proceedings of the ACM WSDM Health Search and Data Mining Workshop, co-located with the 13th ACM
International WSDM Conference, Houston, TX, USA, 3 February 2020; Volume 2551, pp. 12–18.

27. Syed, M.H.; Chung, S.T. MenuNER: Domain-Adapted BERT Based NER Approach for a Domain with Limited Dataset and Its
Application to Food Menu Domain. Appl. Sci. 2021, 11, 6007. [CrossRef]

28. Kambhatla, N. Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations.
In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL) on Interactive Poster and
Demonstration Sessions, Barcelona, Spain, 21–26 July 2004; pp. 22–25.

29. Zhou, G.; Su, J.; Zhang, J.; Zhang, M. Exploring Various Knowledge in Relation Extraction. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguistics (ACL), Ann Arbor, MI, USA, 25–30 June 2005; pp. 427–434.

30. Culotta, A.; Sorensen, J.S. Dependency Tree Kernels for Relation Extraction. In Proceedings of the 42nd Annual Meeting of the
Association for Computational Linguistics (ACL), Barcelona, Spain, 21–26 July 2004; pp. 423–429.

31. Bunescu, R.C.; Mooney, R.J. A Shortest Path Dependency Kernel for Relation Extraction. In Proceedings of the Human Language
Technology Conference and Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP), Vancouver, BC,
Canada, 6–8 October 2005; pp. 724–731.

32. Zhou, P.; Shi, W.; Tian, J.; Qi, Z.; Li, B.; Hao, H.; Xu, B. Attention-Based Bidirectional Long Short-Term Memory Networks for
Relation Classification. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL),
Berlin, Germany, 7–12 August 2016.

https://protege.stanford.edu/publications/ontology_development/ontology101.pdf
http://dx.doi.org/10.1016/j.artint.2005.03.001
http://dx.doi.org/10.3390/app11136007

Appl. Sci. 2022, 12, 12736 20 of 20

33. Wu, T.; Li, X.; Li, Y.; Haffari, G.; Qi, G.; Zhu, Y.; Xu, G. Curriculum-Meta Learning for Order-Robust Continual Relation Extraction.
In Proceedings of the 35th AAAI Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021; pp. 10363–10369.

34. Zhang, N.; Deng, S.; Sun, Z.; Wang, G.; Chen, X.; Zhang, W.; Chen, H. Long-tail Relation Extraction via Knowledge Graph
Embeddings and Graph Convolution Networks. In Proceedings of the Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, (NAACL-HLT), Minneapolis, MN, USA, 2–7 June
2019; pp. 3016–3025.

35. Miwa, M.; Bansal, M. End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (ACL), Berlin, Germany, 7–12 August 2016.

36. Katiyar, A.; Cardie, C. Going out on a limb: Joint Extraction of Entity Mentions and Relations without Dependency Trees.
In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL), Vancouver, BC, Canada,
30 July–4 August 2017; pp. 917–928.

37. Shang, Y.; Huang, H.; Mao, X. OneRel: Joint Entity and Relation Extraction with One Module in One Step. In Proceedings of the
36th Conference on Artificial Intelligence (AAAI),Virtual Event, 22 February–1 March 2022; pp. 11285–11293.

38. Wei, Z.; Su, J.; Wang, Y.; Tian, Y.; Chang, Y. A Novel Cascade Binary Tagging Framework for Relational Triple Extraction.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ALC), Online, 5–10 July 2020;
pp. 1476–1488.

39. Ye, H.; Zhang, N.; Chen, H.; Chen, H. Generative Knowledge Graph Construction: A Review. arXiv 2022, arXiv:2210.12714.
40. Pdfminer. Available online: https://www.unixuser.org/~euske/python/pdfminer (accessed on 5 June 2022).
41. Label-Studio. Available online: https://labelstud.io (accessed on 15 October 2022).
42. Bird, S; Loper, E.; Klein, E. Natural Language Processing with Python; Technical Report; O’Reilly Media Inc.: Sebastopol, CA, USA, 2009.
43. Li, X.; Yan, H.; Qiu, X.; Huang, X. FLAT: Chinese NER Using Flat-Lattice Transformer. In Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics (ACL), Online, 5–10 July 2020; pp. 6836–6842.
44. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. In Proceedings of the

1st International Conference on Learning Representations, ICLR 2013, Scottsdale, AZ, USA, 2–4 May 2013.

https://www.unixuser.org/~euske/python/pdfminer
https://labelstud.io

	Introduction
	Related Work
	Fault Diagnosis in Aircraft Systems
	Knowledge Graph Construction
	Ontology Building
	Entity and Relation Extraction

	Data Pre-Processing
	Knowledge Graph Construction for Flight Control System
	Ontology Building
	Annotation
	Named Entity Recognition and Relation Extraction

	Experiments
	Experimental Setup
	Experimental Results
	Named Entity Recognition
	Relation Extraction

	A Case Study of Knowledge Graph Construction

	Application for Aided Maintenance of Flight Control System
	Conclusions
	References

