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Abstract: This paper presents a systematic fault analysis and diagnosis method of a PEM fuel cell
control system using a model-based approach. With a model-based approach, it is possible to analyze
the causal relationship and effect of probable faults in the system, and to diagnose them under the
assumption that the model and the process are similar. With a model-based approach, it is possible to
analyze the causal relationship and effect of probable faults in the system and diagnose them under
the assumption that the model and the process are similar. In this work, a model-based approach was
adopted for fault analysis and diagnosis, and its methods are suggested. A PEM fuel cell is mathe-
matically modelled, analyzed, and verified for the analysis and simulations. Relationships among
variables are shown using an incidence matrix and with a Dulmage–Mendelsohn decomposition of
the matrix. When it is difficult to detect faults due to a deficient degree of redundancy, a bi-partite
graph is used to analyze the effect of faults and to assess the possibility of fault detection through
the appropriate redundant sensor placement. Thereafter, residuals are obtained based on analytical
redundancies of the system, and a fault signature matrix is subsequently constructed. A fault de-
tection and isolation (FDI) algorithm is developed based on a fault signature matrix that describes
the connection between faults and residuals. The simulation results demonstrate the validity and
effectiveness of the proposed FDI algorithm for diagnosing faults. With the proposed FDI algorithm,
eight faults could be diagnosed by FDI algorithm with given sensors in the system.

Keywords: PEM fuel cell system fault analysis; PEM fuel cell system fault detecting algorithm;
Dulmage–Mendelsohn decomposition; Bi-partite graph

1. Introduction

There has been ongoing research on hydrogen energy over the last few decades.
“Hydrogen has long been heralded as an alternative to fossil fuel [1]”. It is one of the fuels
that can be used to power automobiles, since PEMFC (polymer electrolyte membrane fuel
cells) can be mounted on fuel cell vehicles. Figure 1 shows the PEM fuel cell diagram. The
movement towards net zero emission has accelerated since the 2015 Paris climate agreement.
It is obvious that road vehicles are a major source of air pollution. Thus, automakers are
shifting from traditional internal combustion engine vehicles to electric vehicles. However,
generating electricity also emits pollutants, so net zero cannot be fully achieved. Green
hydrogen can be considered as a solution for sustainability. Green hydrogen is a term used
for hydrogen that is produced from renewable energy so that there is zero emission of
carbon throughout the whole process of energy generation and consumption.

There have been several novel works on the fault diagnosis of fuel cell systems. Most
of these studies were conducted with one of two methodologies: a data analysis approach
or a model-based approach. Nowadays, the data analysis approach in the fault analysis
and diagnostics of the PEM fuel cell through a machine-learning process is the most
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promising method. The complexity of the PEM fuel cell model can be overcome using data
analysis. Lim et al. presented a component-level fault diagnosis of PEM fuel cell thermal
management systems through support vector machine models with temperature, pressure,
and fan control signal data [2]. Mao et al. conducted research on identifying abnormal
sensors during the PEM fuel cell operation by identifying the state of PEM fuel cells using
the Kernel principal component analysis (KPCA) [3] and single value decomposition of
multiple sensor measurements [4]. Lee et al. proposed a diagnostic method with empirically
obtained residuals and the classification of the fault states with several machine learning
methods [5]. Zhang et al. presented a method of extracting features from measurements
with a back propagation neural network (BPNN), and the converted feature maps were
deployed to realize the fault classification with a convolutional neural network (CNN) [6].
Liu et al. proposed a discrete hidden Markov model (DHMM) fault diagnosis strategy
with a K-means clustering algorithm to filter the outlying sample points to solve the fault
classification problems of fuel cell tramways [7]. Yang et al. developed an improved
data-driven fault diagnosis algorithm for the SOFC system to solve the problems that
make a fault diagnostic algorithm less implementable on the system [8]. A random forest
algorithm combined with a mean impact value (MIV) index was used to extract important
characteristic parameters and train the fault classifier.
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On the other hand, a model-based analysis makes it difficult to deal with complex
systems. However, when it comes to system analysis, it is more reliable since the analysis
was conducted mathematically by examining the effect of fault throughout the whole
system. Petrone et al. introduced studies on model-based diagnosis methodologies for
PEMFCs [9]. Escobet et al. presented a model-based fault diagnosis of a PEM fuel cell by
computing residuals with an analytical relationship [10]. Relative residual fault sensitiv-
ity was suggested, and the residual threshold was easily determined, regardless of the
magnitude of each signal. Aitouche et al. developed an approach for deriving nonlinear
analytical redundancy via parity space [11]. With this parity space approach, the authors
overcame the difficulty of generating analytical redundancy of a nonlinear system com-
pared to it being done in a linear system. Bougatef et al. and Lira et al. worked on the fault
diagnosis of PEM fuel cells with a LPV (linear parameter varying) observer [12,13]. PEM
fuel cell models were considered as LPV systems in both studies, and the LPV observer
helped overcome difficulties in online measurement parameters, which are an online mea-
surable state dependent parameter and a time delay dependent parameter. Rubio et al.
proposed a methodology for diagnosing the performance degradation of PEM fuel cells
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by making equivalent-circuit models of the PEM fuel cell impedance and proving the rela-
tionships between the parameters of the equivalent-circuit model and the electrochemical
cell model [14].

In this study, we address model-based fault diagnosis and the development of fault
detection and isolation for PEM fuel cell control systems. Polverino et al. and Rosich et al.
conducted a model-based fault diagnosis on the PEM fuel cell system with a similar
methodology, applying the Dulmage–Mendelsohn decomposition [15,16]. Polverino’s
research introduces the fault diagnosis of the PEM fuel cell system in a general case and
proposes how fault diagnosis can be improved with different system models. In this paper,
components of the PEM fuel cell control system are in consideration and assumed to have
faults to be diagnosed. The work in this paper is distinguished from the work carried
out by Rosich by counting in the fault of various sensors in the PEM fuel cell control
system. Furthermore, this work not only applies the Dulmage–Mendelsohn decomposition
technique on the system model for fault diagnosis but also investigates how variables effect
the detectability of the fault diagnosis system, especially when it comes to the variables
related with the air compressor map. The paper is organized as follows. First, we provide
an overview of PEM fuel cell systems. Next, we discuss the fault analysis of the system and
a strategy for developing FDI algorithms. Finally, FDI algorithms were implemented on
simulation models and the analysis of simulation results.

2. PEMFC System Model and Verification

PEM fuel cells convert chemical energy into electrical energy through electrochemical
reactions. Hydrogen is oxidized and split into hydrogen ions and electrons at the anode.
Hydrogen ions travel across the electrolyte and electrons move through the electric circuit
planted in the stack. On the cathode, they are combined with oxygen, and water is
formed as a by-product. An electric potential is formed between the electrodes through the
electrochemical reaction in the cell. Cells are stacked up to achieve a higher voltage and are
used to construct a stack system. The PEM fuel cell system consists of a fuel cell stack and
balance of plant (BoP). The BoP includes the air supply system, fuel supply system, and
thermal management system. In this study, we address faults in the air supply system, fuel
supply system, and fuel cell stack system. The Table 1 below shows sensors and actuators
used in respective systems.

Table 1. List of sensors and actuators in subsystems.

Subsystem Type Component

Air supply

Sensor Air flow sensor
Air pressure sensor

Actuator Air compressor
Air shut-off valve

Fuel supply

Sensor Fuel flow sensor
Fuel pressure sensor

Actuator Fuel flow valve
Ejector

Fuel cell Stack Sensor Voltage sensor

Sensor
Sensor Coolant temp. sensor

Actuator Coolant pump
Coolant flow valve

2.1. PEMFC Model
2.1.1. Air Supply System

Sufficient reactants must be provided for the fuel cell stack to produce the required
amount of electric energy. Therefore, air from the atmosphere is compressed using an air
compressor so that the air flows into the fuel cell stack for power generation. The air flow
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rate is determined by the motor speed and the pressure difference between the atmosphere
and supply manifold. Though the relationship can often be determined from a 3-D look-up
table, faults cannot be mathematically analyzed with the look-up table. Therefore, in
this paper, a mathematical model of the air compressor is used for the model-based fault
analysis. Table 2 shows the coefficient values of air compressor equations. The equations
are obtained from a surface-fitted function with Jensen and Kristensen’s method from
Pukrushpan’s model [17].

M =
Uc√

γRaTcp,IN
(1)

U c =
dc

2
√

θ
ωcp (2)

φmax = a4M4 + a3M3 + a2M2 + a1M + a0 (3)

β = b2M2 + b1M + b0 (4)

ψmax = c5M5 + c4M4

+c3M3 + c2M2 + c1M + c0
(5)

ψ = CpTcp,IN

[( pcp,OUT
pcp,IN

) γ−1
γ − 1

]
(

Uc2

2

) (6)

φ = φmax

[
1− exp

(
β

(
ψ

ψmax
− 1
))]

(7)

Wcp =
δ√
θ

πφρadc
2Uc

4
(8)

Table 2. Coefficient values of air compressor equations.

Coefficient Value

a4
a3
a2
a1
a0
b2
b1
b0
c5
c4
c3
c2
c1
c0

−3.69906−5

2.70399−4

−5.36235−4

−4.63685−5

2.21195−3

1.76567
−1.34837
2.44419
−9.78755−3

0.10581
−0.42937
0.80121
−0.68344
0.43331

The air mass flow rate through a compressor Wcp is derived from the air compressor
motor speed ωcp, temperature of the air in the supply manifold Tcp,IN , and pressure of
the air in the supply manifold pcp,OUT , but the mass flow rate is also regulated by the air
shut-off valve. M is the inlet Mach number and φmax, β, and ψmax are polynomial functions
of the M. ψ is the dimensionless head parameter and φ is the normalized compressor
flow rate. Uc is compressor blade tip speed, γ is the ratio of the specific heats of the
gas at constant pressure, Ra is the air gas constant, dc is the compressor diameter, θ is
corrected temperature, δ is corrected pressure, and ρa is air density. The air shut-off valve
is normally open, and a fault can occur. A fault is specified as in the proportional electric
valve described by Isermann [18]. The amount of air that passes through the valve is
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defined as the air flow rate ratio φair, f low and is controlled by its input uvalve,air. The fault
variable fvalve,air describes the fault in the valve, and d1 is the characteristic coefficient of
the valve.

φair, f low = (1− fvalve,air)×
[
1 +

(
(1− d1)× (uvalve,air − 1) + d1 × (uvalve,air − 1)2

)]
(9)

Wair = Wcp × φair, f low (10)

2.1.2. Fuel Supply System

In the fuel supply system, the amount of fuel ejected is determined by a control
algorithm. Before the fuel goes into the anode for the chemical reaction, the mass flow rate
of the fuel is also regulated by the fuel flow valve. The fuel flow valve is a normally closed
electrical proportional valve that controls the mass flow rate of fuel. Not enough fuel flows
to the anode when the coil is burned. Therefore, the valve performance is defined as noted
below, which is similar to the valve of an air supply system.

φH2, f low =
(
1− fvalve,H2

)
×
[
1 +

(
(1− d2)×

(
uvalve,H2 − 1

)
+ d1 ×

(
uvalve,H2 − 1

)2
)] (11)

WH2 = Wan,IN × φH2, f low (12)

Modeling of the hydrogen inlet pressure is determined and modeled based on a study
by Zuhaili et al., which focuses on hydrogen inlet pressure parameter analysis [19].

2.1.3. Humidifier

Humidifiers in fuel cell systems provide water vapor to prevent too much water
(which is produced from the electrochemical reaction) from being absorbed into the dry air.
It prevents the cathode from drying out and the anode from suffering from low humidity
because of electroosmotic drag. Meanwhile, the electrolyte membrane of the fuel cell
system must also be sufficiently hydrated to maintain hydrogen ion conductivity. When
the moisture in the electrolyte membrane is insufficient, the hydrogen ion conductivity
decreases as it dries and causes the membrane to contract. The contraction of the membrane
leads to the separation of the electrode and the membrane, and the gap between them will
eventually increase the contact resistance. On the other hand, when an excess of water is
supplied, it becomes difficult for the reactive gas to access the surface of the porous catalyst,
and the stack performance is greatly reduced. Furthermore, since excessive humidification
causes flooding in cells, it must be adequately controlled. The performances of fuel cells in
different humidification conditions were studied by Kim et al. [20] They showed that both
the anode and cathode had the best performance at relative humidity values of 100 percent
compared to other conditions.

2.1.4. Fuel Cell Stack

Hydrogen and air are supplied to the anode and cathode, respectively, and they react
with the electrolyte to form ions. In the process of forming water from electrochemical
reactions between the generated ions, electrons are generated at the anode and move to
the cathode, eventually generating electricity. An electric potential is formed between the
electrodes, and the electrode potential, E, is determined by the Nernst equation, which is
shown below.

E = E0 +
RTf c

2F
ln

pH2 p1/2
O2

pH2O
(13)
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A standard reversible cell potential E0 of 1.229 V was obtained. When the entropy
change of the reaction is assumed to be constant, the equation can be written as:

E = 1.229− 0.85× 10−3
(

Tf c − 298.15
)
+ 4.3085× 10−5Tf c

[
ln
(

pH2

)
+

1
2

ln
(

pO2

)]
(14)

When the cell is in operation, it is followed by three losses: activation loss, ohmic loss,
and concentration loss. Therefore, the actual voltage of the fuel cell is written as follows.

v f c = E− vact − vohm − vconc (15)

2.2. Model Verification

It is aimed to utilize the model to analyze faults and develop a fault diagnostic
algorithm. The algorithm is then implemented on PEM fuel cell simulation models to
validate the fault classifying performance. A PEM fuel cell simulation model is acquired
from Mathworks [21]. In fault diagnosis, the modeling error between the model for fault
analysis and the model for simulation makes it difficult to diagnose faults. Therefore, the
model for fault analysis is verified to see if it is appropriate for making the algorithm. The
simulation model from Mathworks was considered accurate because its composition of
the system was fully set. It includes a fuel processing unit, air processing unit, thermal
management system, and fuel cell stack to be simulated synchronously. As shown in
Figures 2 and 3, the normalized stack current and cell voltage of the simulation model
and fault analysis model are shown in the graphs. Since the parameters and control logics
differ from each other, normalized outputs are compared with the same electrical load on
both models. The model for fault analysis shows similar trends compared to the model for
simulations, and fault analysis was conducted.
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3. Fault Analysis

Fault analysis can be conducted with a mathematical model of PEM fuel cells. When a
fault occurs, it propagates through variables that are related by mathematical equations.
On the basis of this principle, the direction of the fault must be clarified by examining the
relationship among equations. When the values of the known variables (e.g., control input,
sensor measurement) are determined, the values of unknown variables can also be obtained
with equations. Therefore, an incidence matrix, which is a logical matrix used to present the
relationship between variables, is used. There are known variables and unknown variables,
which are the variables that cannot be measured, and faults.

After clarifying the relationship between the variables of the model, the Dulmage–
Mendelsohn decomposition is applied to the incidence matrix to determine the equation set
with redundancy. With the Dulmage–Mendelsohn decomposition, equations are classified
into three parts: the overdetermined part, the determined part, and the underdetermined
part [22]. In the overdetermined case, the number of equations is greater than the number of
unknown variables by more than one. To specify the unknown variables, the same number
of unknown variables and unique equations are required. When there are more equations
than unknown variables, the redundant equations can be used to determine the fault. The
value of the fault variable will be zero in the case where there is no fault. The number
of redundant equations is called the degree of redundancy. As the degree of redundancy
increases, there are more methods to obtain the values of fault variables. In the determined
case, the number of equations is the same as the number of unknown variables. Therefore,
unknown variables can be specified, but there are no redundant equations and there is no
possibility of determining the value of the fault variable. In the underdetermined case, the
number of equations is less than the number of unknown variables that are related. There
is no possibility of unknown variables nor of fault variables being determined.

As the number of sensors in the system increases, the degree of redundancy tends to
get higher since only a single fault is considered. When multi-fault is considered, the degree
of redundancy will remain the same, even though additional sensors are applied in the
system because of the possibility of the fault of added sensors. Hardware redundancy and
the structural conversion of the system for increasing the number of relations of variables
are the solutions to increase the degree of redundancy in multi-fault cases.

Prior to the fault analysis, components that are vulnerable to faults are chosen: faults
in sensors, faults in actuators, and faults chosen from the study of the fault tree analysis
(FTA) on PEM fuel cells [23,24]. Faults in sensors and actuators from Table 1 are both
considered. From FTA, hydrogen leakage of PEMFCs and membrane degradation shows
the highest mean failure rate among others. The failure rate was calculated from a Weibull
distribution, which is used for lifespan data analysis. Furthermore, the stack voltage drop
arises from PEMFC degradation. Fault equations are added into the system equation set,
and fault analysis is conducted.

The incidence matrix shows the relationship between variables. With the incidence
matrix, the overdetermined part of the result of the Dulmage–Mendelsohn decomposition
is shown in Figure 4. Analytical redundancy exists in the overdetermined part, and single
faults in this area are detectable. Faults not included in the overdetermined part were
undetectable due to a lack of redundancy, and appropriate sensor placement is required to
diagnose those faults.

In the overdetermined case, residuals are obtained from a bi-partite graph. Bi-partite
graphs link variables and show how they are affected by other related variables. The
residual is calculated from the difference between measured outputs, between estimated
values of a variable, or between the measured output and estimated values. Figure 5 shows
the relationship among variables in residual 5, which is derived from the overdetermined
part in Figure 3. Using the same procedure, every useful residual to be adopted in forming
a diagnostic algorithm is calculated and is shown in Table 3. Residual 5 and residual 6 in
Table 3 are the differences between the estimated values of the normalized compressor flow
rate φ̂ determined in different ways, as shown in Figure 6.
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Table 3. List of residuals obtained and respective inputs.

Residual Input

R1 = Wan,IN1 −Wan,IN2
Fuel flow sensor 1
Fuel flow sensor 2

R2 = Wan,IN1 − Ŵan,IN
Fuel flow sensor 1
Fuel valve input

R3 = Wan,IN2 − Ŵan,IN
Fuel flow sensor 2
Fuel valve input

R4 = Wcp1 −Wcp2
Air flow sensor 1
Air flow sensor 2

R5 = φ− φ̂

Air flow sensor 1
Air valve input

Motor speed sensor
Air pressure sensor

R6 = φ− φ̂

Air flow sensor 2
Air valve input

Motor speed sensor
Air pressure sensor

R7 = Tcp,OUT − T̂cp,OUT
Air pressure sensor

Air temperature sensor

R8 = ωcp − ω̂cp
Motor speed sensor

Motor input

R9 = Wcp − Ŵcp

Air flow sensor 1
Air valve input

Air pressure sensor
Motor input

R10 = Wcp − Ŵcp

Air flow sensor 1
Air valve input

Motor speed
Air temperature sensor
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When one actuator fault is considered in the air supply system, it is clear whether
the fault is from the sensor or actuator due to the redundancy of the system. However,
when two actuators (air compressor motor and air flow valve) are considered, the system
loses its redundancy, and the faults are not able to be isolated. The reason for this is that
it is impossible to define whether the mass flow rate changed as a result of a valve fault
or because the measured value deviated from the real value. To solve this problem, an
additional flow sensor is needed. Valve faults and sensor faults can be isolated by adding
a redundant flow sensor in the system as a hardware redundancy to detect sensor fault.
Additionally, a redundant fuel flow sensor is added in the fuel supply system due to the
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low degree of redundancy of the system. Thus, there are two air flow sensors and two fuel
flow sensors to diagnose the fault between sensors and actuators with given sensors in
the system.

4. FDI Algorithm

In the obtained residuals, a unique combination of faults is developed to obtain
the fault signature matrix, as constructed in Figure 7. In the fault signature matrix, the
combination of residual signals makes it possible to classify the fault, and a fault detection
and isolation algorithm is developed.
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According to the result of the fault analysis, the nonlinearity of the air compressor
map makes it difficult to detect faults. In the map shown in Figure 8, the motor speed
and pressure ratio of the supply manifold inlet air pressure and outlet pressure are inputs,
and the air flow rate is the output. When there was a fault in the pressure variable, the
fault must be propagated to the air flow rate variable and to the residual. However, the
air flow rate remains the same regardless of the pressure ratio when the motor speed is
over 70,000 rpm, and this problem raises the possibility of a fault not being detected by the
residual. In this case, an adequate FDI algorithm must be implemented to overcome the
problem. Furthermore, the sensitivity of each fault must be considered, and it is expressed
as the ratio between the amount of change in the residual and the amount of change in
the fault.
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When the sensitivity of the residual is high, the fault tends to be detected more easily
than when the sensitivity is low. For a better classification of the faults, a FDI algorithm is
constructed with a top-down method based on the sensitivity of residuals. The flow of the
FDI algorithm is presented in Figure 9. The threshold of each residual is chosen empirically
rather than by following a general guideline since sensor noise tended to be amplified
while being delivered over variables and showing residual overlap.
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5. Simulation Results

To validate the performance of the FDI algorithm, the simulation environment was
arranged with a PEM fuel cell model for simulation and FDI algorithm implementation.
Faults in sensors and actuators were defined for the simulation.

Faults in sensors were defined as additive faults resulting in an abnormal dc offset. In
actuators, faults were defined as follows: additive faults in the fuel flow valve caused by
weakening in the spring tension, additive faults in the air shut-off valve caused by overheat-
ing, burn out coils and multiplicative faults of minus 10 percent caused by demagnetization
in overheated permanent magnets. The result of the air pressure sensor fault is shown in
Figure 10. At t = 70 s, the air pressure sensor fault was set to −3000 Pa ( f ypsm = −3000).
Through the FDI algorithm in the decision-making process, the fault was classified as an
air pressure sensor fault and is shown on fault indicators in Figure 11. The proposed FDI
algorithm shows the capability of diagnosing faults in the case of pressure sensor faults
and in every other fault case.
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As mentioned in the fault analysis section, residual 9 in Figure 10 goes below the
threshold value in the presence of a fault because of the compressor map characteristic.
Therefore, the fault diagnostic algorithm must be designed to not misjudge the state of
the system.

6. Conclusions

In this paper, a study of the model-based fault analysis and diagnosis of PEM fuel
cells was conducted. The PEM fuel cell system model, including sensors and actuators,
was defined and faults in the system were analyzed. The analysis of possible faults in the
system could be carried out with the idea of sorting out the related variables in the system.
Dulmage–Mendelsohn decomposition was a powerful method of reordering variables with
relativeness. Variables in overdetermined parts were candidates of faults that could be
detected. Based on the information from the fault analysis, residuals from known variables
were calculated via a bi-partite graph, and a FDI algorithm was developed. The algorithm
could be made much simpler with the fault signature matrix by separating variables into
relative sets. The algorithm was validated on a PEM fuel cell model for simulation by being
implemented in a simulation environment. As a result, residuals could detect changes
in the system and the FDI algorithm could determine the fault. Eight faults (except for
hardware redundancy) could be diagnosed by the FDI algorithms with given sensors in
the system.

The model-based method of designing a FDI algorithm throughout the paper had
proven its effectiveness by sorting out faults in the PEM fuel cell system. Although the
machine-learning method can overcome the complexity of the system in diagnosing fault,
it still has its limit in the analysis of the target system. This particular method had its
significance especially in closely examining the PEM fuel cell system since it has a com-
plicated relation of variables, such as flow rate, pressure, temperature, and many others.
Furthermore, the algorithm can be easily modified in case there is a change of components
in the system based on the information about the system studied. The methodology shown
in the paper has its power in having a deeper look into how components of the system
affect one another more than other methods of detecting fault.



Appl. Sci. 2022, 12, 12733 14 of 15

Author Contributions: Formal analysis, B.K. and W.N.; project administration, B.K., W.N. and H.L.;
resources, B.K. and W.N.; software, B.K. and W.N.; validation, B.K. and W.N.; writing—original draft
preparation, B.K.; writing—review and editing, B.K. and H.L.; supervision, H.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by the Korea Institute of Energy Technology Eval-
uation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20223030030010,
Development and demonstration of optimized fuel-cell hybrid system technology for hydrogen bus).
This paper is the result of research carried out by a research fund and technical support from HMC.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Miller, J.; Keohane, D. Car Groups Throw Spanner in Works of EU’s Hydrogen Drive. Financial Times, 10 March 2021. Available

online: https://arstechnica.com/cars/2021/03/car-groups-throw-spanner-in-works-of-eus-hydrogen-drive/ (accessed on
30 November 2022).

2. Lim, I.S.; Park, J.Y.; Choi, E.J.; Kim, M.S. Efficient fault diagnosis method of PEMFC thermal management system for various
current densities. Int. J. Hydrog. Energy 2021, 46, 2543–2554. [CrossRef]

3. Mao, L.; Jackson, L.; Dunnett, S. Fault diagnosis of practical polymer electrolyte membrane (PEM) fuel cell system with data-driven
approaches. Fuel Cells 2017, 17, 247–258. [CrossRef]

4. Mao, L.; Jackson, L.; Davies, B. Investigation of PEMFC fault diagnosis with consideration of sensor reliability. Int. J. Hydrog.
Energy 2018, 43, 16941–16948. [CrossRef]

5. Lee, W.-Y.; Oh, H.; Kim, M.; Choi, Y.-Y.; Sohn, Y.-J.; Kim, S.-G. Hierarchical fault diagnostic method for a polymer electrolyte fuel
cell system. Int. J. Hydrog. Energy 2020, 45, 25733–25746. [CrossRef]

6. Zhang, X.; Guo, X. Fault diagnosis of proton exchange membrane fuel cell system of tram based on information fusion and deep
learning. Int. J. Hydrog. Energy 2021, 46, 30828–30840. [CrossRef]

7. Liu, J.; Li, Q.; Chen, W.; Cao, T. A discrete hidden Markov model fault diagnosis strategy based on K-means clustering dedicated
to PEM fuel cell systems of tramways. Int. J. Hydrog. Energy 2018, 43, 12428–12441. [CrossRef]

8. Yang, J.; Li, Z.; Bian, R.; Su, Z. Fault diagnosis of SOFC system based on single cell voltage analysis. Int. J. Hydrog. Energy 2021,
46, 24531–24545. [CrossRef]

9. Petrone, R.; Zheng, Z.; Hissel, D.; Péra, M.-C.; Pianese, C.; Sorrentino, M.; Béchérif, M.; Yousfi-Steiner, N. A review on model-based
diagnosis methodologies for PEMFCs. Int. J. Hydrog. Energy 2013, 38, 7077–7091. [CrossRef]

10. Escobet, T.; Feroldi, D.; De Lira, S.; Puig, V.; Quevedo, J.; Riera, J.; Serra, M. Model-based fault diagnosis in PEM fuel cell systems.
J. Power Sources 2009, 192, 216–223. [CrossRef]

11. Aitouche, A.; Yang, Q.; Bouamama, B.O. Fault detection and isolation of PEM fuel cell system based on nonlinear analytical
redundancy: An application via parity space approach. Eur. Phys. J.-Appl. Phys. 2011, 54, 23408. [CrossRef]

12. Bougatef, Z.; Abdelkrim, N.; Aitouche, A.; Abdelkrim, M.N. Fault detection of a PEMFC system based on delayed LPV observer.
Int. J. Hydrog. Energy 2020, 45, 11233–11241. [CrossRef]

13. De Lira, S.; Puig, V.; Quevedo, J. Robust lpv model-based sensor fault diagnosis and estimation for a pem fuel cell system. In
Proceedings of the 2010 Conference on Control and Fault-Tolerant Systems (SysTol), Nice, France, 6–8 October 2010; pp. 819–824.

14. Rubio, M.; Urquia, A.; Dormido, S. Diagnosis of performance degradation phenomena in PEM fuel cells. Int. J. Hydrog. Energy
2010, 35, 2586–2590. [CrossRef]

15. Polverino, P.; Frisk, E.; Jung, D.; Krysander, M.; Pianese, C. Model-based diagnosis through structural analysis and causal
computation for automotive polymer electrolyte membrane fuel cell systems. J. Power Sources 2017, 357, 26–40. [CrossRef]

16. Rosich, A.; Nejjari, F.; Sarrate, R. Fuel cell system diagnosis based on a causal structural model. IFAC Proc. Vol. 2009, 42, 534–539.
[CrossRef]

17. Pukrushpan, J.T.; Peng, H.; Stefanopoulou, A.G. Control-oriented modeling and analysis for automotive fuel cell systems. J. Dyn.
Syst. Meas. Control 2004, 126, 14–25. [CrossRef]

18. Isermann, R. Fault-Diagnosis Systems; Springer: Berlin/Heidelberg, Germany, 2006.
19. Razali, M.; Abdullah, A.; Mohamed, W.; Khiar, M. Hydrogen inlet pressures parameter analysis of Proton Exchange Membrane

Fuel cell (PEMFC) using spectrogram. ARPN J. Eng. Appl. Sci. 2006, 11, 3875–3882.
20. Kim, S.; Hong, I. Effects of humidity and temperature on a proton exchange membrane fuel cell (PEMFC) stack. J. Ind. Eng. Chem.

2008, 14, 357–364. [CrossRef]

https://arstechnica.com/cars/2021/03/car-groups-throw-spanner-in-works-of-eus-hydrogen-drive/
http://doi.org/10.1016/j.ijhydene.2020.10.085
http://doi.org/10.1002/fuce.201600139
http://doi.org/10.1016/j.ijhydene.2017.11.144
http://doi.org/10.1016/j.ijhydene.2019.10.145
http://doi.org/10.1016/j.ijhydene.2021.05.137
http://doi.org/10.1016/j.ijhydene.2018.04.163
http://doi.org/10.1016/j.ijhydene.2021.04.114
http://doi.org/10.1016/j.ijhydene.2013.03.106
http://doi.org/10.1016/j.jpowsour.2008.12.014
http://doi.org/10.1051/epjap/2011100250
http://doi.org/10.1016/j.ijhydene.2018.11.053
http://doi.org/10.1016/j.ijhydene.2009.03.054
http://doi.org/10.1016/j.jpowsour.2017.04.089
http://doi.org/10.3182/20090630-4-ES-2003.00089
http://doi.org/10.1115/1.1648308
http://doi.org/10.1016/j.jiec.2008.01.007


Appl. Sci. 2022, 12, 12733 15 of 15

21. The Mathworks, Inc. PEM Fuel Cell System (r2021b). 2021. Available online: https://kr.mathworks.com/help/simscape/ug/
pem-fuel-cell-system.html (accessed on 21 October 2022).

22. Frisk, E.; Krysander, M.; Jung, D. A toolbox for analysis and design of model based diagnosis systems for large scale models.
IFAC-PapersOnLine 2017, 50, 3287–3293. [CrossRef]

23. Placca, L.; Kouta, R. Fault tree analysis for PEM fuel cell degradation process modelling. Int. J. Hydrog. Energy 2011, 36, 12393–12405.
[CrossRef]

24. Collong, S.; Kouta, R. Fault tree analysis of proton exchange membrane fuel cell system safety. Int. J. Hydrog. Energy 2015,
40, 8248–8260. [CrossRef]

https://kr.mathworks.com/help/simscape/ug/pem-fuel-cell-system.html
https://kr.mathworks.com/help/simscape/ug/pem-fuel-cell-system.html
http://doi.org/10.1016/j.ifacol.2017.08.504
http://doi.org/10.1016/j.ijhydene.2011.06.093
http://doi.org/10.1016/j.ijhydene.2015.04.101

	Introduction 
	PEMFC System Model and Verification 
	PEMFC Model 
	Air Supply System 
	Fuel Supply System 
	Humidifier 
	Fuel Cell Stack 

	Model Verification 

	Fault Analysis 
	FDI Algorithm 
	Simulation Results 
	Conclusions 
	References

