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1. Introduction

Intelligent and resilient infrastructure and smart cities make up a rapidly emerging
field that is redefining the future of urban development and ways of preserving the existing
infrastructure against natural hazards. Sensing, and especially networked sensing and
monitoring, has been an integral part of a growing field. The analysis and interpretation of
a large volume of data (collected by the sensor network or digital images) and the extraction
of critical information that can determine the state of health, reliability, and safety, as well
as the life cycle assessment of these infrastructures (including feature extraction), require
advanced and more realistic computational models to be developed, as well as analysis tools
that can predict the behavior of these systems under complex and even hazardous loading
environments and identify potential sources of damage and deterioration in real time.

Over the past several years, a series of artificial-intelligence-based methodologies,
including machine learning methods, have been proposed for model updating, diagnos-
tics, data interpretation, and feature extraction for the heath monitoring of infrastructure
systems. This rapidly emerging field of research has demonstrated superiority within sys-
tem identification, feature extraction, damage identification, and even the direct response
prediction of dynamical systems, and has shown promises for a wide range of practical
applications. A typical integrating structural control and health monitoring structure is
shown in Figure 1.

This Special Issue aims to stress the importance of developing and introducing AI-
based methodologies for the structural health monitoring of infrastructure systems and the
analysis and feature extraction of sensor data.

The keywords of this Special Issue are as follows:

• Structural health monitoring;
• Deep learning;
• Artificial intelligence;
• Data analytics;
• Damage detection;
• System identification;
• Feature extraction;
• Machine learning;
• Sensor network;
• Intelligent infrastructure systems.
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• Intelligent infrastructure systems. 

 
Figure 1. The main stages of typical integrating structural control and health monitoring systems. 

Given the interdisciplinary nature of this topic, the proposed Special Issue will be a 
collection of contributions from scholars in several fields, and will cover topics such as: 
artificial neural networks; deep learning neural networks; system identification; Big Data 
in infrastructure systems; optimization; probabilistic methods for SHM combined with AI 
methods; and dynamic response prediction via AI methodologies. 

2. Contributions 
This Special Issue, comprising a total of sixteen research articles, is dedicated to re-

cent developments in artificial-intelligence-based methods for structural health monitor-
ing. The first two studies explored the bridges’ cable monitoring system. Lu et al. [1] pro-
posed a novel and intelligent approach for reliably evaluating the system of cable-sup-
ported bridges under stochastic traffic load by utilizing deep belief networks (DBNs). 
They introduced the theoretical basis for utilizing DBNs to approximate the structural 
load, and presented a computational framework to illustrate the procedures followed to 
evaluate the bridge system reliability via DBNs. Hou et al. [2] proposed a novel method 
for identifying time-varying cable tension based on the variational mode decomposition 
(VMD) method. This recent method decomposes signals and adaptively estimates instan-
taneous frequencies combined with the Hilbert–Huang transform method, where the 
time-varying modal frequencies were identified from stay cable acceleration data, and 
then the time-varying cable tension was identified by the relationship between cable ten-
sion and identified fundamental frequency. 

The next two research articles [3,4] of the Special Issue proposed a non-probabilistic 
surrogate model based on wavelet weighted least squares support vector machine 
(WWLS SVM) to address the problem of uncertainty in vibration-based damage detection. 
The input data for WWLSSVM consist of selected wavelet packet decomposition (WPD) 
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Given the interdisciplinary nature of this topic, the proposed Special Issue will be a
collection of contributions from scholars in several fields, and will cover topics such as:
artificial neural networks; deep learning neural networks; system identification; Big Data
in infrastructure systems; optimization; probabilistic methods for SHM combined with AI
methods; and dynamic response prediction via AI methodologies.

2. Contributions

This Special Issue, comprising a total of sixteen research articles, is dedicated to recent
developments in artificial-intelligence-based methods for structural health monitoring. The
first two studies explored the bridges’ cable monitoring system. Lu et al. [1] proposed a
novel and intelligent approach for reliably evaluating the system of cable-supported bridges
under stochastic traffic load by utilizing deep belief networks (DBNs). They introduced
the theoretical basis for utilizing DBNs to approximate the structural load, and presented
a computational framework to illustrate the procedures followed to evaluate the bridge
system reliability via DBNs. Hou et al. [2] proposed a novel method for identifying time-
varying cable tension based on the variational mode decomposition (VMD) method. This
recent method decomposes signals and adaptively estimates instantaneous frequencies
combined with the Hilbert–Huang transform method, where the time-varying modal
frequencies were identified from stay cable acceleration data, and then the time-varying
cable tension was identified by the relationship between cable tension and identified
fundamental frequency.

The next two research articles [3,4] of the Special Issue proposed a non-probabilistic
surrogate model based on wavelet weighted least squares support vector machine (WWLS
SVM) to address the problem of uncertainty in vibration-based damage detection. The input
data for WWLSSVM consist of selected wavelet packet decomposition (WPD) features of the
structural response signals, and the output is the Young’s modulus of structural elements.
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For damage segmentation purposes, Shi et al. [5] proposed ways to improve the
damage segmentation framework using two methods to train VGG-Unet models. They
collected and manually labeled 200 corrosion images of steel and 500 crack images of rubber
bearing to build the training dataset. The first method involves squashing segmentation
to input squashed images from high resolution directly into the VGG-Unet model, while
the second method, cropping segmentation, uses cropped images with a size of 224 × 224
as the input images. Meanwhile, in the study by Hoskere et al. [6], the structure damage
segmentation was used alongside an open-source software platform “InstaDa” for the
fast pixel-wise annotation of damage by utilizing binary masks to aid user input. They
described details of InstaDam’s software architecture and presented some of its key features.
They also proposed several benefits of InstaDam by comparing it to the Image Labeler app
in Matlab, and various comparisons were made between the InstaDam results. Moreover,
experiments were conducted where two employed student annotators were given the task
of annotating damage levels in a small dataset of images using Matlab.

Yazdchi et al. [7] is investigated the effect of nano-MgO on the durability of normal
concrete under freeze–thaw conditions. They also created a total of 98 cubic 10 × 10 × 10
concrete samples for the compressive strength test, while 78 cylindrical concrete 10 × 20
samples were considered for the tensile strength and permeability tests to build the training
dataset for gene expression programming (GEP) algorithm. They then applied GEP and
three formulations were derived to predict the mechanical properties of concrete containing
nano-MgO by randomly using 80% of the dataset for the training process and 20% for
formulation testing.

Machine learning (ML)-aided structural health monitoring (SHM) can rapidly evaluate
the safety and integrity of the infrastructure. The next two research articles [8,9] in this
Special Issue introduced the framework of applying the ML algorithm for damage identi-
fication purposes. Muin et al. [8] used low dimensionality, namely cumulative absolute
velocity (CAV)-based features, to enable the use of ML for rapid damage assessment. This
experiment was performed to identify the appropriate features and the ML algorithm using
data from a simulated single-degree-of-freedom system. Gao et al. [9] combined time series
(TS) modeling and ML classification to automatically extract damage features and overcome
the limitation of non-stationarity. They also proposed a two-stage framework, namely
auto-regressive integrated moving-average machine learning (ARIMA-ML) with modules
for pre-processing, model parameter determination, feature extraction, and classification.

The research article of Altabey et al. [10] proposed a novel deep learning framework for
the crack identification for steel pipelines by extracting features from 3D shadow modeling.
They also developed a novel deep neural network to process the 3D images from 3D shadow
maps. The proposed automatic crack identification method successfully and efficiently
processed 3D images and accurately diagnosed corrosion cracks.

Moreover, Finotti et al. [11] used a deep learning algorithm, called the sparse auto-
encoder (SAE), to evaluate the algorithm when applied to characterize structural anomalies.
They also explored the SAE’s performance in a supervised damage detection approach to
consolidate its application in the structural health monitoring (SHM) field, especially when
dealing with real-case structures.

For the long-term management and monitoring of bridges, the next two works [12,13]
featured in the Special Issue proposed new techniques for monitoring vehicle–bridge
interactions and for the long-term management of bridge networks. The proposed decision
support system used advanced prediction models, decision trees, and incremental machine
learning algorithms to generate an optimal decision strategy.

Damage identification methods based on structural modal parameters were influenced
by the structure form, the number of measuring sensors, and noise, resulting in insufficient
modal data and low damage identification accuracy. Su et al. [14] and Zhang et al. [15]
introduced a new framework for structure damage identification using new methods such
as the bat algorithm (BA) [14] and virtual bass method based on damage sparsity [15].
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The last article by Tang et al. [16] provided a framework for understanding natural
disaster scenes from mobile images using deep learning. The authors investigated the
problem of understanding disaster scenes through a deep learning approach. Two attributes
of images were considered, including hazard types and damage levels. Three deep-learning
models were trained, and their performance was assessed.

3. Conclusions

The articles in this Special Issue promote research to evaluate artificial-intelligence-
based methods for structural health monitoring mostly via numerical approaches. As a
Guest Editor, I believe that the overall quality of the methodologies and achievements
presented in this Special Issue helps to progress our understanding of damage identification
in intelligent and resilient infrastructure and smart cities using different artificial intelli-
gence algorithms, consequently aiding the future design and optimization of advanced
intelligence-based structures.
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