
Citation: Wen, K.; Chu, J.; Chen, Y.;

Liang, D.; Zhang, C.; Cai, J. A

Multiorder Attentional Spatial

Interactive Convolutional Neural

Network (MoAS-CNN) for

Low-Resolution Haptic Recognition.

Appl. Sci. 2022, 12, 12715.

https://doi.org/10.3390/

app122412715

Academic Editor: Rocco Furferi

Received: 30 September 2022

Accepted: 29 November 2022

Published: 12 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Multiorder Attentional Spatial Interactive Convolutional Neural
Network (MoAS-CNN) for Low-Resolution Haptic Recognition
Kailin Wen 1,2 , Jie Chu 1,*, Yu Chen 1,3, Dong Liang 1,3, Chengkai Zhang 2 and Jueping Cai 1,*

1 School of Microelectronics, Xidian University, Xi’an 710071, China
2 Suzhou Honghu Qiji Electronic Technology Co., Ltd., Suzhou 215008, China
3 The 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang 050081, China
* Correspondence: chujie@xidian.edu.cn (J.C.); jpcai@mail.xidian.edu.cn (J.C.)

Abstract: In haptic recognition, pressure information is usually represented as an image, and then
used for feature extraction and classification. Deep learning that processes haptic information in
end-to-end manner has attracted attention. This study proposes a multiorder attentional spatial
interactive convolutional neural network (MoAS-CNN) for haptic recognition. The asymmetric
dual-stream all convolutional neural network with integrated channel attention module is applied
for automatic first-order feature extraction. Later on, the spatial interactive features based on the
overall feature map are computed to improve the second-order description capability. Finally, the
multiorder features are summed to improve the feature utilization efficiency. To validate the MoAS-
CNN, we construct a haptic acquisition platform based on three-scale pressure arrays and collect
haptic letter-shape (A–Z) datasets with complex contours. The recognition accuracies are 95.73% for
16 × 16, 98.37% for 20 × 20 and 98.65% for 32 × 32, which significantly exceeds the traditional first-
and second-order CNNs and local SIFT feature.

Keywords: haptic recognition; convolutional neural network; channel attention; spatial interactive
second-order feature; multiorder feature

1. Introduction

Haptic interpretation is an important component of perception, providing real-time
feedback on changes in the external environment, and has been widely used in practical
applications, such as smart machines, wearable devices, and human–computer interac-
tion [1,2]. The essence of haptic recognition is the recharacterization and feature extraction
of pressure information to obtain multiple properties of the contact object, which is the
basis for subsequent actions such as grasping, manipulating, and moving. The generic
method is to consider the haptic information as a two-dimensional image. Therefore,
visual data-based approaches are introduced for understanding haptic information. SIFT,
SURF, chain code and other descriptors combined with clustering are applied for haptic
recognition [3,4]. Pohtongkam et al. applied the BoW technique using SIFT for feature
extraction and k-nearest neighbors (KNN) for evaluation to achieve object recognition by a
tactile glove [5]. These local feature methods require manual feature design for specific task
and are labor-intensive. Recent research has proved that convolutional neural networks
(CNNs) are suitable for two-dimensional information and can automatically learn features
and recognize objects [6,7]. Therefore, the haptic information can be ported to the CNN for
automatic recognition. Gandarias et al. proposed classical transfer CNN models combined
with transfer learning to identify large items [8]. Polic et al. designed a CNN encoder
structure to reduce the dimensionality of the optical-based tactile sensor image output [9].
Cao et al. trained an end-to-end CNN for tactile recognition using residual orthogonal
tiling and pyramid convolution ensemble [10].

Although the existing CNN methods can achieve better recognition performance than
traditional artificial features, there are still the following challenges. Firstly, the size and pixels’
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amount of haptic image depend on the density and area of the pressure sensor, and thus
they are at least two orders of magnitude lower than visual RGB images [11,12]. Current
mainstream CNNs are constructed for high-resolution visual images. The nonlinear fitting
capability is enhanced by deepening the network [13]. However, the low-resolution haptic
image limits the configured network depth, so the features extracted by shallow CNN are
insufficient. Secondly, the inevitable nonideal effects of the sensing element itself reduce the
accuracy of the original information mapping. Due to the flexible requirements and complex
manufacturing process of the sensing elements, the pseudo-outputs caused by elastic coupling
and restricted response range are inevitable, resulting in blurred pressure images [14]. In
addition, the fineness of the haptic image relies on the sensitivity and response range of the
sensor, which is much lower than that of the visual image. Different objects show similar
shapes, so more distinguishable features are needed. The traditional shallow CNNs are not
adequate in feature extraction capability and feature utilization efficiency.

To address the low-resolution and blur problem in haptic perception, a multiorder
attentional spatial interactive convolutional neural network (MoAS-CNN) is proposed and
a pressure information acquisition platform is built (flowchart of the overall framework is
shown in Figure 1). The former improves the nonlinear fitting capability of the network
by deepening the network and adding channel responses to enhance the representation
of first-order high-level features; introducing spatial interactive second-order features to
enhance the representation of edges and fusing multiorder features to enhance the efficiency
of feature utilization. The latter validates the proposed method by constructing haptic letter
shapes with complex edges.
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The remainder of the paper is organized as follows. Section 2 discusses the nonideal
characteristics about haptic images and the inadequacy of shallow CNN. In Section 3, the
MoAS-CNN is proposed and each part is described. The Section 4 is dedicated to validate the
proposed method using a three-scale sensor array and comparison experiments with other
first-order and second-order CNNs. The discussion and conclusion are in Sections 5 and 6.
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2. Problem of Insufficient Shallow CNN for Haptic Images

The original haptic information mapping of the sensing elements plays a crucial role
in recognition. However, the following challenges remain. The density and area limitations
as well as elastic coupling cannot be avoided due to the complex process and adhesion
requirements of the sensor. In addition, the depth of field of an image depends on the
sensitivity and response range of the sensing element. The resulting pixel and mapping
quality of haptic images are both lower than those of visual images. The letter shape has
complicated edges, which can sufficiently illustrate the issue. As shown in Figure 2a, the
haptic images of 26 letter shapes are acquired by a 32 × 32 array sensor. It can be observed
that the haptic images are low-resolution accompanied by blurring. Different categories
show similar shapes, such as “V” and “Y,” “O” and “D.” The haptic image has only one
channel and is grayscale, so the histogram is used as a quantitative measurement. As
shown in Figure 2b, the grayscale distribution of different categories is in statistics, and the
histograms of different letter shapes are easily confused. To further quantify the similarity,
the Bhattacharyya coefficient is used as the proxy between each of the 26 letter shapes and
is calculated as:

Cor(IA, IB) =
n

∑
i=1

√
IB(x, y)IA(x, y) (1)

where I (x, y) denotes the gray value of the haptic image at (x, y). A large positive number
indicates a strong correlation between different pressure images and potential confusion.
As shown in Figure 2c, different haptic shapes show strong positive interactions. Most of
the correlation coefficients are in the range of 0.7–0.85, with certain categories reaching
above 0.9, including K and X, G and Q, and O and U.
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Figure 2. Nonideal effects of haptic images. (a)The letter-shape samples obtained by a 32 × 32 sensor
array, (b) the grayscale distribution histograms of the samples, (c) the Bhattacharyya coefficient of the
26 letter shapes.

The current mainstream CNNs are designed for visual images that improve feature
fitting by deepening the network. However, these nonideal effects of haptic images lead to a
reduction in the differences between categories, so more distinguishable features are desired.
Nevertheless, constrained by the sensor density and integrated area, the pixels of a haptic
image are usually at 102 (RGB is above 104), making it impossible to improve nonlinear fitting
by deepening the network, and only shallow networks can be configured [10,11]. Therefore,
shallow CNNs with more powerful fitting ability need to be explored.

3. Haptic Recognition Method
3.1. MoAS-CNN Framework

Aiming to improve the feature description and utilization efficiency of the network, a
shallow MoAS-CNN is constructed. Figure 3a illustrates the proposed structure, where
spatial interactive-based second-order features enhance the nonlinear response of the
network and a hybrid strategy of summing up the multiorder features makes the extracted
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features fully utilized. It consists of three parts: first-order feature extractor, second-order
feature generation, and multiorder feature hybridization.
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In particular, for low-resolution pressure inputs, the samples contain limited informa-
tion and additional dimensionality reduction of the features is not expected. In our case,
the pooling layers are removed and only the convolutional layers are retained to reduce
the feature dimensionality loss [15,16]. An all-convolutional dual-stream neural network
with the channel attention module inserted is constructed as a first-order feature extractor.
The channel attention module based on squeeze and excitation operations is added for im-
proving the first-order feature response. For second-order response, a cross-stream spatial
interactive feature is generated to improve the feature nonlinear description. High-order
features have been proved to be more sensitive to texture and edges [17,18]. Six {3 × 3}
convolutional kernels (steam1) and three {5× 5} convolutional kernels (steam2) are applied.
Multiorder features are fused to enhance the utilization of different orders of features by
summation. Features of different orders have different emphases, and complementary uti-
lization promotes the overall nonlinearity of the network without wasting information [19].
This is beneficial for applications where the original information mapping is not sufficient
or the network depth is limited.

3.2. All-Convolutional Neural Network-Based First-Order Feature Extractor with Channel
Attentional Module Inserted

An asymmetric all-convolutional dual-stream CNN is configured as a feature extractor
to automatically extract first-order features. CNN streams of different structures focus
on respective priorities, which can fully mine image features. Mathematically, the feature
maps at ith layer are calculated as:

f i = ϕ(wi ⊗ f i−1 + bi) (2)

where ϕ denotes the activation function ReLU, and w and b represent the convolutional
kernels and bias [20].

To highlight the emphasized parts of the features, the channel attention module
including squeeze and excitation operations is inserted after the convolution layer [21].
As shown in Figure 3b, the feature maps are assigned scaling according to the channel
importance to improve the feature representation. For a set of features f∈Rh×w×c, the
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squeeze operation is performed to obtain the global distribution Z{1 × 1 × c}, reflecting the
features response over the channels. The specific mathematical expression is as follows:

Z = GP( f c)
h×w ,

GP( f c) =
h
∑

i=1

w
∑

j=1
f c(i, j)

(3)

Here, the global average pooling is chosen to compress the feature into real numbers
by spatial dimension. For excitation operation, Z is fed into two fully connected layers to
further learn factor S:

S = ϕ( f c(Z)) (4)

where ϕ denotes the activation function ReLU and fc represents the fully connected layer. These
attention scalings are assigned to the initial feature map to obtain the rescaled feature map f̃ i:

f̃ i = Si × f i (5)

The attentional module is capable of suppressing the 2D features with lower response
in the channel domain and instead increase the 2D features with higher response. After the
squeeze and excitation, the feature maps are visualized in Figure 3b, and the “light and
dark” changes of some feature maps can be clearly observed.

3.3. Spatial Interactive Second-Order Feature

To increase the nonlinear expression of the network, a cross-flow spatial interactive
feature is proposed as a second-order response. In contrast to traditional second-order features
captured by different channels at the same location, spatial interactive features in this work
are generated by convolving single-channel feature maps at different streams with each other.
Different stream branches focus on different extraction priorities, so the proposed method
concerns more on the intrinsic relationship between the overall features in different streams.
For tiny and low-resolution pressure inputs, further exploration of the interactions between
different streams is necessary in the presence of network depth limitation.

The cross-flow spatial interactive feature generation is shown in Figure 4a. The
extracted first-order features of stream1 and stream2 are represented as f stream1 and f stream2.
To make the interstream interaction more adequate, the original features of stream1 f stream1

are reconstructed without loss as f 1-reconstruction. Specifically, the f stream1 are split by interval
sampling and stitched together, transforming the information on width and length to the
channel dimension with no information loss (shown in Figure 5). In the case of this work,
the dimension of the f stream1 {20 × 20 × 64} is adjusted to f 1-reconstruction {5 × 5 × 1024}.
The reconstructed feature of stream 1 f 1-reconstruction and the features of stream2 f stream2 are
subjected to an interactive operation, achieving a second-order feature.

The obtained second-order feature is performed in a sum pooling step to finally obtain
the cross-flow spatial interactive feature f 2-order:

f 2nd-order =
nc

∑
i=1

( f 1-reconstruction ⊗ f stream2) (6)

To further improve the cross-flow spatial interactive feature representation, f 2-order:is nor-
malized by element-wise signed square root followed by L2 regularization as f 2-order-norm [16]:

f 2nd-order-norm =
sign( f 2-order)×

√
f 2-order∥∥∥∥sign( f 2-order)×

√
f 2-order

∥∥∥∥
2

(7)

where sign represent the symbolic function.
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3.4. Multiorder Feature Hybrid

Different orders of features have different emphases and can be utilized in a more
complementary way. Without adding additional parameters, the multiorder feature hybrid
strategy is proposed to enhance the efficiency of feature utilization. The features of different
orders are summed to obtain the fused features, as shown in:

y f usion = f steam1 + f steam2 + g( f steam1 � f steam1) + g( f steam2 � f steam2) (8)

where yfusion stands for the fused feature and the g(•) is regularization (batch normalization
here [22]). Intuitively, as shown in the upper right part of Figure 3c, only segmented
linear functions are obtained when no second-order terms are added, which means that
the nonlinearity appears only in a few 1D subspaces of the 2D plane R2. However, if the
second-order terms are added, nonlinearity exists R2 .

= [0, ∞)2. The multiorder features
allow the efficiency of feature utilization to be enhanced while keeping the network depth
constant, facilitating the nonlinear fitting of the network.

4. Results
4.1. Experiment Setup

As shown in the upper part of Figure 1, a data-acquisition system containing three-
scale pressure arrays, a force gauge, a motor driver, and a microcontroller is set up. To
demonstrate the effectiveness of the proposed method, we choose letter shapes with
complex contours as task targets. The stamp (0.8 cm × 1.0 cm, 1.0 cm × 1.5 cm) with
raised letter shape is fixed on the force gauge to press the sensor array. The output matrix
is normalized to the range 0–255 to form haptic grayscale images. The reliability of our
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prototype allowed us to collect 500 samples for each letter-shape category using three scales
of 16 × 16; 20 × 20; and 32 × 32 arrays, in a random pressure range of 0–5 kPa, angle and
position. The data samples of each letter shape are shown in Figure 6. To avoid overfitting,
data augmentation is applied to expand the sample quantity to 1500 per letter category. All
the CNNs are constructed with MatConvNet framework of Matlab 2017 on an Intel Core
i5-6500@3.2GHz CPU. The specific parameters of the network are set as shown in Table 1.
The weights are initialized by the Xaiver initialization scheme and optimized by Adam
algorithm with hyperparameters ε = 10−8, 0.9, 0.999 [23,24]. The three-scale datasets are
put into the MoAS-CNN with fivefold crossover to verify the performance of MoAS-CNN.
The learning rate is 0.001, batch size 50, and training epoch 120.
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Figure 6. The dataset of 26 letter-shape samples (A–Z).

Table 1. Detailed parameters of CNNs.

Method MoAS-CNN Bilinear CNN Traditional
CNNLayer Stream1 Stream2 Stream1 Stream2

Input 32 × 32 × 1 32 × 32 × 1 32 × 32 × 1

Conv1
3 × 3 × 8

5 × 5 × 16
3 × 3 × 8

5 × 5 × 16
3 × 3 × 8

3 × 3 × 16 3 × 3 × 16 3 × 3 × 16

CA module
Global Pooling Global Pooling

/FC: 1 × 1 × 16
FC: 1 × 1 × 16

FC: 1 × 1 × 16
FC: 1 × 1 × 16

Conv2
3 × 3 × 32

5 × 5 × 32
3 × 3 × 32

5 × 5 × 32
3 × 3 × 32

3 × 3 × 32 3 × 3 × 32 3 × 3 × 32

Conv3
3 × 3 × 64

5 × 5 × 64
3 × 3 × 64

5 × 5 × 64 5 × 5 × 643 × 3 × 64 3 × 3 × 64
second-

order(output) 14 × 14 × 1 64 × 64 × 1 /

FC1 1 × 1 × 120 1 × 1 × 120 1 × 1 × 120
FC2 1 × 1 × 26 1 × 1 × 26 1 × 1 × 26

4.2. Performance of MoAS-CNN

The training and test process in each epoch are recorded. The training losses and test
losses are shown in Figure 7a. It can be seen that the losses of all datasets decrease signifi-
cantly and stabilize after 80 epochs. Accordingly, as shown in Figure 7b, the recognition
accuracies achieved are 95.73% for 16 × 16, 98.37% for 20 × 20 and 98.65% for 32 × 32. This
can be attributed to the fact that more information is captured through higher density and
larger area, and thus the extracted features are more separable.
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Figure 7. The performance of MoAS-CNN on three-scale datasets. (a)The losses in training and
testing process, (b) the recognition accuracies in training and testing process.

We also record the gradients for all three datasets simultaneously, as shown in
Figure 8a–c. The gradient values become larger in the backpropagation, and there is no
gradient disappearance. Among them, the gradient value of Conv1 is the largest in the
32 × 32 dataset, making the loss converge quickly. There is no overfitting or underfitting,
which indicates that our model and datasets are reasonable.
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Figure 8. Gradient distribution on 16 × 16, 20 × 20, 32 × 32 datasets during training.

Figure 9 shows the test confusion matrix of the 32× 32. Obviously, shapes with simple
contours are more distinguishable, e.g., I. Conversely, complex contours are more prone to
confusion, especially with similar categories, e.g., Q and G (mean Bhattacharyya correlation
coefficient of 0.89).

4.3. Contribution of Spatial Interactive Second-Order Feature and Multiorder Hybrid

To further explore the contribution of the proposed spatial interactive second-order
feature and hybrid order strategy, individual streams of MoAS-CNN as well as different
structures are compared, and the results are shown in Figure 10. To validate the spatial
interactive second-order features, we compared the recognition accuracies for f stream1 and
f stream1 + f stream1⊗f stream1 with f stream2 and f stream2 + f stream2⊗f stream2, respectively. Due to
the introduction of the spatial interactive features, the accuracy of stream1 increased by3.36%,
4.11%, and 1.96% on the three scales, and stream2 was 1.98%, 2.54%, and 1.75%. This fully
demonstrates the effectiveness of the spatial interactive-based second-order feature.
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To verify the effectiveness of the multiorder fusion features, the multistream first-order
model f stream1 + f stream2 and the multiorder hybrid f stream1+ f stream2+ f stream1⊗f stream2 are
compared. The results showed that the recognition accuracies were promoted by 2.26%,
2.54%, and 1.69%, respectively. Furthermore, it can be seen from the results of stream1
and stream2 that the accuracy is improved by replacing the large convolutional kernels
with multiple layers of small convolutional kernels. This can be attributed to the increased
depth of the network, where high-level features are more fully exploited.
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4.4. Performance Comparison

For a more comprehensive and fair comparison, a traditional first-order CNN, a
bilinear based second-CNN, and a local feature SIFT method are chosen [16,25]. The bilinear
CNN based on the traditional bilinear method with same parameters as the proposed
method is constructed and the same for the first-order CNN (detailed in Table 1). The
results are shown in Figure 11. It can be seen that the accuracies of MoAS-CNN are
significantly higher than those of other methods on all sensor scales, especially for smaller-
scale pressure arrays. This result illustrates the effectiveness of the proposed MoAS-CNN
for low-resolution haptic image. For 16 × 16, the MoAS-CNN obtained 95.73%, while the
traditional bilinear CNN was 92.46%, traditional CNN 89.79%, and local feature method
67.24%. Since the inputs of both 16 × 16 and 20 × 20 scales are too small to be applied in
SIFT, which can only extract 3–5 key points, the recognition effect is very limited.
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For the samples that the model failed to identify, the true labels and predicted prob-
abilities are shown in Figure 12, marked in orange. These haptic images are collected in
a random pressure range of 0.5–3 kPa, angle and position. The inference value of some
letter categories with similar shapes are very close, indicating that the differences between
features are not obvious. As a comparison, 10 volunteers (7 males and 3 females, age [20,30]
are invited to identify the misclassified samples and the results are marked in green. It can
be observed that some samples were not recognized by the neural network or humans, as
shown in Figure 12a–f, and others were recognized by humans, but not by neural networks,
as in Figure 12g–i. No volunteer can completely reclassify all failed samples. The misclassi-
fication can be mainly attributed to the following: firstly, the restricted sensor density leads
to fine edges not being captured; secondly, the elastic coupling of the flexible sensors causes
the unpressed pixels around the pressed pixels to be deformed, producing pseudo-outputs.
Thirdly, features are not sufficiently mined through the MoAS-CNN and the features of
similarly shape categories are not learned separately.
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Figure 12. Comparison of recognition results between MoAS-CNN and human for some difficult
samples. (a) Inference results of sample with label “C”, (b) inference results of sample with label “G”,
(c) inference results of sample with label “E”, (d) inference results of sample with label “M”, (e) in-
ference results of sample with label “K”, (f) inference results of sample with label “K”, (g) inference
results of sample with label “V”, (h) inference results of sample with label “N”, (i) inference results of
sample with label “H”.

5. Discussion

Haptic technology provides real-time feedback on external force changes through
flexible sensors mounted on or inside mechanical surfaces, providing an aid to scene under-
standing beyond vision. Therefore, recognition based on haptic information has become
important for smart devices and has wide application prospects in human–computer inter-
action, intelligent machinery, and biomedicine. The intelligence level of human–computer
interaction is improved by adding haptic perception. In addition, distribute pressure data
feedback and analysis is important in many industrial sensing fields. Generally, the haptic
information is converted into a grayscale image and then transferred to image-processing
methods for subsequent recognition. However, compared with visual images, haptic im-
ages are still challenging because of their small dimensions, low resolution, and blurred
edges. The experimental results show that MoAS-CNN can realize accurate haptic per-
ception, and the highest accuracy of haptic letters with complex shapes was 98.65%. The
cross-stream spatial interactive feature as a second-order response and multiorder feature
fusion can significantly improve the extraction of haptic shapes by the network.
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Although the proposed model has proven to be accurate and effective, it does have
limitations. Through the analysis of the misclassified samples, some different classes with
similar shapes cannot be clearly classified by the network. This may be attributed to
two factors. Firstly, the feature extraction of the proposed method for haptic images is in-
sufficient, and some information is lost in the extraction of high-level semantic information,
especially for images with lower resolution, such as 16 × 16. Secondly, the characteristics
of the haptic task itself, including the low resolution of the sensor array, the small number
of pixels, and the blurred edge, lead to inaccurate mapping of the original shape, and the
multiple meanings of individual images, resulting in lower-than-average recognition rates
for some categories.

More importantly, smallness and low-resolution inputs are also present for practical
vision tasks due to factors such as suboptimal raw data and environmental interference.
Therefore, we tried to validate our method on another small general-purpose dataset
CIFAR-10 [26], and the recognition accuracy was 98.81%. Compared with the current
state-of-the-art results, it is lower than the largest-scale visual transformer methods [27,28]
and essentially on par with the deeper CNN architecture [29]. This study is based on touch
recognition based on a single image after touch completion. In the future, we plan to
study recognition methods based on multiple dynamic touches and further improve the
recognition performance of touch perception through reasonable optimization algorithms.

6. Conclusions

A framework called MoAS-CNN is proposed to address the challenge of low-resolution
haptic recognition based on a pressure sensor array. The three contributions of our recogni-
tion model are to firstly apply a dual-stream CNN integrated with the channel attention
module to automatically extract first-order features and increase the response and number
of features. Secondly, a spatial interactive second-order feature is introduced to depict the
second-order information to improve the feature extraction capability without additional
feature downscaling. Thirdly, by exploring the complementarity of features of different
orders, a multiorder hybrid strategy is developed to enhance the efficiency of feature extrac-
tion. To validate the model, a self-built acquisition platform based on a three-scale pressure
array was built and haptic images of letter shapes (A–Z) with complex edges were collected.
The results showed that 95.73%, 98.37%, and 98.65% accuracy was achieved at the scales of
16 × 16, 20 × 20, and 32 × 32, respectively. The accuracy of the proposed method has a
significant advantage over traditional second- and first-order CNN-based methods, as well
as manual feature methods. Furthermore, in addition to haptics, low-resolution inputs are
common in practical applications because of the inherent limitations of various types of
sensing elements and nonideal factors. Our approach provides a new general framework
that can be easily extended to different systems.
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