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Abstract: Intersections in the urban network are potential sources of traffic flow inefficiency. Existing
intersection control mostly adopts the “cross” flow pattern model, while the use of the roundabout
circular flow pattern is rather sparse. Connected and autonomous vehicle (CAV) technologies can
enable roundabouts to better compete with traditional intersection designs in terms of performance.
This study proposes a roundabout control strategy for CAVs to enhance intersection performance
while ensuring vehicle safety. A hierarchical framework is developed to decouple the flow-level
performance objective and vehicle-level safety constraints to achieve computational tractability for
real-time applications. It entails developing a roundabout flow control model to optimize merge-in
flows, a merge-in decision model to generate vehicle passing sequence from the optimal flows,
and a virtual platoon control model to achieve safe and stable vehicle operations in a circular
roundabout platoon. The performance of the proposed roundabout control strategy is illustrated
through numerical studies and compared to existing intersection control methods. Its stability and
safety characteristics are also demonstrated.

Keywords: roundabout; optimal control; connected and autonomous vehicle

1. Introduction

Traffic smoothness is a description of the consistency and invariance of traffic flow.
A common symptom of unsmooth traffic is traffic oscillations, which is the “stop-and-go”
or “slow-and-fast” flow pattern [1]. Traffic oscillations can result in traffic congestion,
thus affecting traffic capacity, reducing traffic safety, and increasing energy consumption.
Compared to traffic flow on freeways, urban network traffic has lesser smoothness due
to the presence of intersections. The intersection is an essential component of urban road
networks. Compared to other road facilities, traffic flow conflicts are more complex at
intersections due to the number of different flow directions [2]. Therefore, the efficiency
and capacity of an intersection are critical factors for measuring urban transportation
system performance. In general, intersections are stop-controlled or signal-controlled. Stop-
controlled intersections do not allow multiple vehicles to use the intersection at the same
time to ensure safety, which can be inefficient in high-demand cases. Traffic signals separate
conflicting traffic flows into different signal phases to enhance the intersection safety.
However, the variance and uncertainty in demand decrease the efficiency of signalized
intersections. Intersection signal optimization methods, such as [3–5], focus on optimizing
the phase lengths to the incoming demands adaptively to reduce inefficient phase time and
enhance the overall throughput of the intersection. However, due to the existence of the
red phase, traffic has to stop at intersections, leading to limited smoothness.

Compared to signalized intersections, a roundabout has smoother traffic flow char-
acteristics. Roundabouts are circular intersections where road traffic only flows in one
direction around a central island. Vehicles only yield to the traffic rather than stop entirely
at entry points of the roundabout. Therefore, roundabouts can enhance the smoothness
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of the intersection. Ref. [6] showed that there is an 89 percent reduction in delays and a
56 percent reduction in vehicle stops after the conversion from signalized intersections
to roundabouts. Additionally, roundabouts can improve traffic safety. On the one hand,
vehicles will not speed up to try to beat a traffic light because there is no incentive that
vehicles can skip a long red phase if they do so. On the other hand, the one-way traffic in the
roundabout reduces the possibility of severe T-bone and head-on collisions. Ref. [6] found
a 72–80 percent reduction in injury crashes and a 35–47 percent reduction in all crashes
in studies of intersections converted from traffic signals to roundabouts. This is because
there are only eight conflicting points in a typical four-approach roundabout (without any
crossing conflicting points), while a four-approach signalized intersection has 32 conflicting
points (16 of them are crossing conflicting points). Compared to merging and diverging con-
flicting points, crossing conflicting points can entail a higher likelihood of severe accidents
because vehicles have higher relative speeds. However, since traffic flows from different
directions are not as clearly separated as in signalized intersections, there are more merging
and diverging behaviors in roundabouts, which can be challenging for human drivers.
To ensure safety, drivers are required to operate vehicles at low speeds when passing
through a roundabout. The major causes of collisions in roundabouts are speeding, failing
to yield, and improper stopping when proceeding in roundabouts [6]. Further, signalized
intersections can adjust the phase lengths of flows from different directions to achieve better
system performance, while roundabouts follow the first-come-first-serve rule more strictly
as they lack holistic control schemes. In summary, the lack of precision in human drivers’
driving behavior can weaken roundabouts’ safety advantage, while the oversimplified
cooperation rules compared to adaptive traffic signal control scheme can limit the system
performance and the application of roundabouts in high-demand situations.

Advances in communication and automation technologies have led to the develop-
ment of connected and autonomous vehicles (CAVs), which can enable accurate vehicle
operations and comprehensive cooperation through vehicle-to-vehicle (V2V) communi-
cations. CAVs can address the aforementioned limitations of roundabouts in the context
of human-driven vehicles and thereby illustrate the advantages of roundabouts over sig-
nalized intersections. Existing studies have shown that CAVs are able to enhance system
performance with safety guarantees by incorporating additional real-time information
collected using V2V communications into comprehensive control schemes [1,7]. In this con-
text, cooperative adaptive cruise control (CACC) could be leveraged to ensure CAVs’ safety
while allowing them to pass through smaller-radius roundabouts at higher speeds. The
connectivity ability further enables holistic cooperative control strategies to enhance system
performance. Several studies have developed model-based [8,9] or machine learning-
based [10,11] control strategies for traditional intersection geometries without using traffic
signals, which are labeled as signal-free intersection control strategies, to reduce traffic
oscillations caused by signalized intersections and enhance smoothness. However, the
“cross” flow pattern within the intersection remains the same as in signalized intersections,
thereby retaining the safety issues caused by crossing conflicting points. For safety reasons,
more constraints are incorporated in signal-free intersection control models, which further
constrains the enhancement of system performance under CAV technologies.

While roundabouts can potentially enable better performance in a CAV environment
compared to signal-free intersections, few efforts have focused on developing roundabout
control strategies. Ref. [12] proposed a fuzzy logic steering control for autonomous ve-
hicles in roundabouts. Ref. [13] developed a parameter-based path generation method
for autonomous vehicles in roundabouts. However, these studies focus on the control
strategy for a single-vehicle scenario. Other studies [14,15] proposed game-theoretic-based
decision-making methods for a two-vehicle scenario in a roundabout. Hence, existing
studies address the control problem for specific scenarios and cannot be generalized to
high-demand intersections. Moreover, they mainly address safety considerations. However,
demand is typically higher at intersections in urban networks, which entails the need for
system performance (i.e., smoothness, total delays, and throughput) analysis for intersec-
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tion control strategies. This motivates the need for a systematic approach to leverage the
advantages of roundabouts in the CAV context.

This study seeks to explore the following two research questions. How can CAVs
leverage emerging technologies when traveling through intersections with the circular flow
pattern to enhance efficiency and safety? Does the circular flow pattern have advantages
over the “cross” flow pattern in future CAV environments? The answers to these questions
can shed light on future traffic operations and infrastructure design at intersections. There-
fore, this study proposes a cooperative roundabout control strategy for CAVs to exploit
the advantages of roundabout design to promote performance efficiency of roundabouts
while ensuring vehicle safety. As shown in Figure 1, the proposed model is a hierarchical
framework that consists of a roundabout flow control model, a merge-in decision model,
and a within-roundabout virtual platoon control model. The time horizon of interest is
divided into equal time intervals within which the incoming demands of the roundabout
are assumed constant. During each time interval τ, the proposed roundabout flow control
model solves for the optimal desired merge-in flows (which are the flows merging into
the circular flow within the roundabout) to reduce the total estimated waiting time in
queues in the current time interval to enhance system performance. Then, the vehicle
merge-in control model performs a probabilistic merge-in decision control to achieve the
optimal merge-in flows and generate the vehicle passing sequence (vehicles’ positions in
the virtual platoon) at the same time. Finally, a CACC-based in-roundabout virtual platoon
control model is proposed to keep the circular platoon cruising at the desired angular speed
in a stable manner while each vehicle maintains a safe distance with the preceding and
following vehicles.
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Figure 1. Conceptual structure of the roundabout control strategy.

The rest of the paper is organized as follows. Section 2 presents the three components
of the proposed roundabout control strategy. Numerical studies on the effectiveness
of the roundabout flow control and virtual platoon control are discussed in Section 3.
Section 4 concludes the paper by summarizing contributions and identifying potential
future directions.

2. Methodology
2.1. Roundabout Flow Control

Consider a typical roundabout shown in Figure 2, which has four approaches indexed
by i = 1, 2, 3, 4. The incoming flows on the four approaches are denoted by Qi, assumed
constant during each time period τ, and known at the beginning. In real world, Qi can be
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predicted using real-time loop detector data, while the length of τ can be adjusted according
to the changing rate of Qi. The queue length on approach i, li(t), is a state variable of t. In
each time period, t starts from 0 and ends at ∆τ (the time period length). Merge-in flows,
qi(t), are control inputs, which represent the flows merging into the circular flow within
the roundabout from approach i. The queue length dynamics can be described as

dli(t)
dt

= Qi − qi(t), ∀i = 1, 2, 3, 4. (1)
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Apart from the non-negative constraint, it is also reasonable to have an upper bound
Li,max for queue length li(t). In applications, Li,max can be decided by the critical queue
length that may cause spillback on approach i. Therefore, the state constraints are

0 ≤ li(t) ≤ Li,max, ∀i = 1, 2, 3, 4. (2)

To model the constraints of control inputs qi, the roundabout segments are introduced
and described. As seen in Figure 2, the circular roundabout is separated by four approaches
into four arc-shaped segments, S1, S2, S3, and S4. Since these segments are likely to
have similar road design as they belong to the same roundabout, it is assumed that all
segments have the same service capacity QS,max (i.e., the upper bound of segment flow
qSk , k = 1, 2, 3, 4). Note that qSk may consist of vehicles from every approach. For
example, vehicles entering from approach 1 heading to approach 3 will drive through
S1 and S2, and thereby contribute to both qS1 and qS2 . Similarly, vehicles entering from
approach 2 heading to approach 1 will also drive through S2, thereby contributing to qS2 .
Denote flows from approach i heading to approach j as qij (i, j = 1, 2, 3, 4), which can be
represented as qij = ηijqi, where ηij is the proportion of the flow heading to approach j in
the merge-in flow from approach i. To describe the relationships between Sk and qij, define
the service tables of four segments as follows (note that this study assumes that vehicles
will drive through each segment no more than once when passing through the roundabout).
The element in row i and column j of the service table for Sk, ak

ij, is an indicator variable

of whether qij will pass through Sk. For instance, a4
22 = 1, indicating the U-turn flow from

approach 2 will pass through S4 in the roundabout; while a2
32 = 0 means vehicles coming

from approach 3 heading to approach 2 will not drive through S2. Therefore, the flow on
Sk is

qSk (t) =
4

∑
i=1

4

∑
j=1

ak
ijηijqi(t), ∀k = 1, 2, 3, 4 (3)

Then, the control input constraints can be represented as

qSk (t) ≤ QS,max, ∀k = 1, 2, 3, 4 (4)
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qi(t) > 0, ∀i = 1, 2, 3, 4 (5)

The control objective is

min
q1,q2,q3,q4

∆τ∫
0

(
4

∑
i=1

Qili(t)
qi(t)

)
dt (6)

where li(t)/qi(t) is the estimated waiting time for vehicles at the end of the queue on
approach i, and Qidt is the number of incoming vehicles or vehicles joining the queue at
the end on approach i. Therefore, the integration can be interpreted as the total estimated
waiting time of vehicles arriving from t = 0 to t = ∆τ. Compared to the vehicle-level
delay representation, Equation (6) provides an informative and computationally tractable
estimation for the total system delay. The complexity of the problem does not increase
with the number of vehicles, enabling its use in real-time applications. The optimal control
problem defined by (1)~(6) falls in the domain of nonlinear optimal control, which generally
does not have analytical solutions. Therefore, a direct collection method [16] is applied
to solve it, which converts the optimal control problem into a nonlinear optimization
problem by discretizing state variables li(t) and control inputs qi(t) into vectors l̂i =
[li(0), . . . , li(∆τ)], q̂i = [qi(0), . . . , qi(∆τ)].

2.2. Vehicle Merge-in Decision Control

Given the optimal merge-in flows from the last subsection, the intersection controller
needs to coordinate vehicles coming from four approaches on when they should merge to
achieve the desired merge-in flows. Therefore, a probabilistic merge-in decision control
model is developed to determine when the vehicles at the head of queues can start to merge
in. In this way, the flow-level control inputs are converted into an optimal vehicle passing
sequence, which can be connected to vehicle-level operations.

Let the spare capacity sk of each segment k denote the difference between the capacity
QS,max and the flow on Sk, that is sk(t) = QS,max −qSk (t). Define S1, S2, S3, and S4 as the
upstream segment of approaches 2, 3, 4, and 1, respectively. Apart from the spare capacity
from approach i’s upstream segment, there is additional pi capacity available for vehicles
on approach i, which can be described as follows:

pi(t) =
4

∑
j=1

ηjiqj(t), ∀i = 1, 2, 3, 4, (7)

Note that pi can also be interpreted as the flow that diverges out at approach i (diverge-
out flow). Therefore, the total available capacity for the merge-in flow of approach i
(suppose its upstream segment is Sk) is sk + pi. Let Pi denote the probability of the leading
vehicle on approach i choosing to merge into the circular flow within the roundabout
whenever there is available capacity. Then, the probability Pi should satisfy the following
condition to achieve the desired merge-in flows:

Pi =
qi

QS,max −qSk + pi
(8)

where Sk is the upstream segment of approach i. With this condition met, the actual merge-
in flow from approach i would be Pi(sk + pi) = qi. Following (3) and (7), it is proved that
0 < Pi ≤ 1, which guarantees that our decision control is applicable at all times.

Since the merge-in decision control is probabilistic, the actual merge-in flows given by
this model are different from the desired merge-in flows. Therefore, the optimal system
performance given by the flow control model is an upper bound to the actual system
performance, which is illustrated in our numerical studies as well.
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2.3. Vehicle Platoon Control

Once vehicles choose to merge into the roundabout based on the probabilistic decision
control model, they will start the merge-in procedure and eventually cruise with the
circular platoon until they diverge to the approaches they are heading to. Note that this
subsection focuses on longitudinal control therefore does not consider non-holonomic
vehicle dynamics or low-level vehicle control such as throttle/steering control. The merge-
in procedure consists of a self-adjusting stage and a virtual platoon control stage. Figure 3
illustrates an example of the two stages using the merge-in procedure of vehicle B1. First,
B1 waits at position W2 (marked by a red line) when it is at the head of the queue on
approach 2. When the decision control model allows it to merge into a spare slot (labeled
the matching slot of B1) in the platoon, B1 enters the self-adjusting stage. The objective
of this stage is to have vehicle B1 drive through a critical position C2 (marked by a blue
line on approach 2) to enter the virtual platoon control stage at the desired speed vdes after
some desired time ∆tdes. The desired speed is also the desired cruising speed of the platoon.
The desired time ∆tdes is estimated as the time it takes for the matching slot to travel to a
virtual critical position V2 (marked by the yellow line on the right part of the roundabout
in Figure 3) from the beginning of the self-adjusting stage. The virtual critical position
V2 is a projection of C2 on the roundabout circle, that is |M2V2| = |M2C2|, where M2 is
a merging point of the roundabout and the on-ramp from approach 2. When vehicle B1
travels from C2 to M2, a virtual vehicle Y1, which is the projection of B1, also travels from
V2 to M2. At the same time, B1 communicates with vehicles G1 and G2, making Y1 behave
like a vehicle communicating with its surrounding vehicles in the circular platoon. This
stage is labeled as the virtual platoon control stage. Note that when determining the length
of |M2C2|, |M2D2| ≥ |M2C2| = |M2V2| should be ensured, where D2 is the diverging
point of the off-ramp to approach 2. It is assumed that once a diverging vehicle passes the
diverging point and drives to the off-ramp, it is no longer a part of the circular platoon (i.e.,
its movement will not affect surrounding vehicles in the platoon anymore). This guarantees
that during the virtual platoon control stage, there will be no real diverging vehicle at the
slot where the virtual vehicle projected from a real merge-in vehicle is located. Otherwise,
they may have a conflicting influence on the surrounding vehicles since they are at the
same slot in the platoon.
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The control of a vehicle from approach i in the self-adjusting stage can be formulated as

∆tdes∫
0

v(t)dt = |CiWi| (9a)

v(∆tdes) = vdes (9b)
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0 ≤ v(t) ≤ vmax, ∀t ∈ [0, ∆tdes] (9c)

amin ≤
dv(t)

dt
≤ amax, ∀t ∈ [0, ∆tdes] (9d)

where vmax, amin, amax are the maximum speed, maximum deceleration, and maximum
acceleration, respectively. As shown in Figure 4, in a speed-time graph, the formulation
seeks for trajectories starting from (0, 0) ending at (∆tdes, vdes), whose time integration
equals to |CiWi|. The formulation can have multiple feasible solutions if Sg ≤ |CiWi| ≤ Sb,
where Sg and Sb are the blue (right)-shaded and green (left)-shaded areas, respectively,
in Figure 4. The blue-shaded area stands for the maximum distance a vehicle can travel
within ∆tdes (the vehicle accelerates at amax, all the way to vmax, then maintains the speed
until an instant after which it can keep decelerating at amin to arrive at Ci with desired final
speed vdes). Similarly, the green-shaded area is the lower bound of the distance with the
given constraints (9b-d). One feasible strategy is to follow the speed trajectory indicated by
the yellow (dash-dot)/red (solid) lines when |CiWi| is greater than or equal to/less than

v2
des

2amax
+ vdes(∆tdes − vdes

amax
). Specifically, the yellow dash-dot speed profile indicates that the

vehicle accelerates at amax, all the way to a specific speed v′, then maintains the speed until
an instant after which it can keep decelerating at amin to arrive at Ci with the desired final
speed vdes. The red solid line shows that the vehicle stops at Wi until moment t′, then
accelerates at amax until the speed reaches vdes, and maintains this speed up to the end ∆tdes.
Both v′ and t′ can be derived from the constraint (9a).
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The merge-in procedure will be seamless if the transition of two stages is as precise
as described by (9a–d). However, it is possible that when the matching slot arrives at
the virtual critical position, the vehicle is not exactly at the critical position at the desired
speed because a critical parameter ∆tdes is estimated and possibly inaccurate when solving
(9a–d). For example, in Figure 3, the matching slot of vehicle B2 arrives at the diverging
point with the diverging vehicle G3 earlier than ∆tdes. Additionally, it is possible that, at
∆tdes, G3 still needs a little more time to get to the off-ramp. Then, B2 will have passed the
critical point when G3 leaves the platoon. Note that the start time of the virtual platoon
control stage is when the available slot arrives at the diverging point, not when the vehicle
arrives at the critical point or the blue lines in Figure 3. Therefore, the virtual platoon
control should ensure stability to mitigate the initial speed and position errors introduced
by virtual vehicles when they enter the virtual platoon control stage.

To ensure stability, the circular platoon in the roundabout is investigated, which
consists of real vehicles, virtual vehicles projected from the vehicles on on-ramps at the
second merge-in stage, and some spare vehicle slots. Note that here we assume a circular
roundabout for simplicity; however, the model is not restricted only to ideal circular
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roundabouts. The platoon control model can be extended to non-circular roundabouts by
mapping the roadways to circular roundabouts with the same road length. Suppose that
when the roundabout serves at its maximum capacity, there are N homogeneous vehicles
cruising in the roundabout with a desired angular speed ωdes = vdes/R (where R is the
radius of the roundabout). It implies that the roundabout has N vehicle slots labeled from
1 to N. When there are spare vehicle slots, the circular platoon can be converted into one (if
there is only one spare vehicle slot) or more linear vehicle platoons using the spare slots to
separate them. Then, existing linear CACC platoon control strategies [17] can be applied.

For a circular platoon with no spare vehicle slots, a symmetric bidirectional control
architecture is developed (where predecessor and follower position errors influence the
vehicle controller symmetrically). As shown in Figure 3, an angular coordinate θn, ωn is
used to describe the position and angular speed of vehicle n (i.e., vehicle matched with
vehicle slot n). Each vehicle is modeled as a double integrator. The control inputs for
vehicle n in the platoon are assumed to depend only on its speed errorωn −ωdes and the
relative headway errors between itself and its immediate neighbors (i.e., its predecessor
and follower). Denote the positions of the preceding and following vehicles of vehicle n as
θ

p
n and θ

f
n , respectively. The desired angular headway is ∆ = 2π/N. The vehicle dynamics

can be described as
dθn(t)

dt
= ωn (10a)

dωn(t)
dt

= −kv(ωn −ωdes) + kd

(
θ

p
n − θn − ∆

)
− kd

(
θn − θ

f
n − ∆

)
(10b)

where kv and kd are positive constants. To facilitate analysis, a coordinate change is
considered using the initial position of slot 1, θ1(0), as a reference point:

θ̃n(t) = θn(t)−ωdest− θ1(0)− (n− 1)∆ (11a)

ω̃n(t) = ωn(t)−ωdes (11b)

To describe the dynamics of the circular platoon, define θ̃
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Equation (12) indicates that the circular platoon to be controlled is a linear system. 
The following lemma [18] illustrates the non-negativity of 𝑻’s eigenvalues. 

[
θ̃1, θ̃2, . . . , θ̃N

]T
,

ω̃
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[ω̃1, ω̃2, . . . , ω̃N ]
T . Substituting (11a–b) into (10a–b), the following equation is obtained:[ .

θ̃
.

ω̃

]
=

[
0 I
−kdT −kvI

][
θ̃
ω̃

]
, (12)

T =



2 −1 0 . . . 0 −1
−1 2 −1 0 . . . 0
0 −1 2 −1 · · · 0
...

. . . . . . . . . . . .
...

0 . . . 0 −1 2 −1
−1 0 . . . 0 −1 2


. (13)

Equation (12) indicates that the circular platoon to be controlled is a linear system. The
following lemma [18] illustrates the non-negativity of T’s eigenvalues.

Lemma 1 [18]. Given an n× n circulant matrix C with the form

C =



c0 cn−1 . . . c2 c1
c1 c0 cn−1 . . . c2
... c1 c0

. . .
...

cn−2 . . .
. . . . . . cn−1

cn−1 cn−2 . . . c1 c0

, (14)
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the normalized eigenvectors are the Fourier modes, namely,

vj =
1√
n

(
1, κ j, κ2j, . . . , κ(n−1)j

)
, j = 0, 1, . . . , n− 1, (15)

where κ = exp
(

2πi
n

)
and i is the imaginary unit. The corresponding eigenvalues are then given by

λj = c0 + cn−1κ j + cn−2κ2j + . . . + c1κ(n−1)j, j = 0, 1, . . . , n− 1 (16)

Note that T is a N × N circulant matrix with c0 = 2, c1 = cN−1 = −1, ci =
0 (i = 2, 3, . . . , N − 2). According to Lemma 1, the jth eigenvalue of T is

λTj = 2− κ j − κ(N−1)j, j = 0, 1, . . . , N − 1, (17)

where κ = exp
(

2πi
N

)
. Note that κ(N−1)j = −κ j. Therefore,

λTj = 2− κ j − κ−j = 2− 2 cos
(

2π j
N

)
≥ 0, j = 0, 1, . . . , N − 1, (18)

Theorem 1 [19]. The equilibrium states for a general linear time-invariant system
.
x = Ax are

stable if and only if each eigenvalue λA of A satisfies <(λA) ≤ 0 and <(λA) < 0 if λA is defective,
where <(λA) is the real part of λA.

From Theorem 1 (Theorem 5.4 of [19]), the eigenvalues of the system can be described
by (12) as follows: [

0 I
−kdT −kvI

][
θ̃
ω̃

]
= λ

[
θ̃
ω̃

](
λ2 + kvλ

)
θ̃ = −kdTθ̃ (19)

With T’s eigenvalues λTj, j = 0, 1, . . . , N − 1, we have

λ2 + kvλ + kdλTj = 0λ =
−kv ±

√
k2

v − 4kdλTj

2
(20)

Recall that (18) has shown the non-negativity of λTj. Therefore, for kv, kd > 0,<(λ) ≤ 0
and when k2

v − 4kdλT = 0, <(λ) = −kv/2 < 0. According to Theorem 1, the equilibrium
states of (12) are stable.

3. Numerical Studies

To demonstrate the performance of the proposed CAV control strategy at roundabouts,
several numerical studies are conducted for a four-approach single-lane roundabout with
N = 12 vehicle slots. The desired speed vdes is set as 8 m/s (17.9 mph). The service capacity
of the roundabout QS,max is 60 vehicles/minute. The control time period ∆τ = 5 min.
Note that in real-world applications, the control time period is related to the variation of
incoming flows. The principle for the determination of ∆τ is that the incoming flows do
not change significantly within the control time period because the optimal merge-in flows
are solved based on the constant incoming flow assumption.

First, the effectiveness of the roundabout flow control is investigated. The parameters
and initial conditions for each approach are shown in Table 1.
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Table 1. Experiment settings.

Approach ID Qi (Vehicles/min) li(0)

1 30 2
2 25 1
3 35 3
4 20 4

For η =
[
ηij
]
, the experiment uses the following setting.

η =


0.0 0.7 0.2 0.1
0.2 0.0 0.6 0.2
0.8 0.1 0.0 0.1
0.1 0.5 0.4 0.0

. (21)

Figure 5 shows the optimal control trajectory of merge-in flows, queue lengths, and
segment flows of the system. Five phases (separated by dashed lines) are observed in the
5 min optimal control solution. Within each phase, the control inputs (merge-in flows)
remain constant, and the queue lengths change linearly. Figure 5c shows that the maximum
capacity constraints for the four segments are all active in the first phase, indicating that the
roundabout is operating at its maximum capacity. Each time a queue disappears, the system
adjusts the merge-in flows, which demonstrates the adaptiveness of the control strategy.
The number of active segment-maximum-capacity constraints decreases with the number
of non-zero queues. Because when there is no queue on approach i, the corresponding
merge-in flow qi = Qi. With fewer undetermined control inputs, fewer constraints are
active. In the last phase, when there is no queue on four approaches, the merge-in flow qi
on each approach is equal to the incoming flow Qi. Compared to conventional roundabouts’
first-come-first-serve principle, the cooperation among the four approaches is also reflected
in the results. For example, the queue on approach 2 grows in the first phase to prioritize
vehicles from other approaches with higher demand pressures (i.e., longer queues or higher
incoming flows). However, in real-world applications, some approaches may have an
upper bound on queue length to avoid spillbacks. Figure 6 illustrates how the queue
lengths evolve with/without an upper-bound value of three, on the length of queue on
approach 2, l2. Figure 6b illustrates that after l2 reaches 3, the system prioritizes vehicles
from the other approaches. However, it adjusts the merge-in flows to meet the queue length
constraint on approach 2.

Next, the stability performance of the circular platoon control is validated. Note
that the merge-in control and the self-adjusting stage are not simulated. It is assumed
that the occurrence of merging-in follows a Poisson distribution (λ = 1), because on
average there will be one vehicle merging in when the roundabout operates at its maximum
capacity QS,max = 60 vehicles/minute. The initial speed and position disturbances are
assumed to follow a uniform distribution [−1, 1] m/s and a uniform distribution [−1, 1]
m, respectively, which are reasonable ranges for speed and position errors in the real
world. Figure 7 shows the position errors, headways, and speed errors of 12 vehicles due to
disturbances introduced by newly merging vehicles. The equilibrium state of the circular
platoon changes each time a new vehicle merges in. For example, in Figure 7a, vehicles’
equilibrium states in the platoon move in the same circular direction (counterclockwise in
Figure 3) during t = 30 ∼ 46 s because of continuous positive position errors introduced
by new merge-in vehicles. However, it is related more to coordinate shifts and does not
influence vehicle safety. Figure 7b shows that vehicles’ headways remain in a safe range
(the desired time headway is set as 1 s) during the entire simulation. Figure 7c illustrates
that all newly introduced speed errors can be mitigated in a short time. The spikes in
Figure 7b,c mostly occur on on-ramps because position and speed errors are introduced by
virtual vehicles. It allows the system to converge closer to the equilibrium state before real
vehicles merge into the circular platoon, which enhances smoothness and safety.
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In summary, the performances of both upper-level flow control and lower-level vehicle
control are illustrated separately. Next, these two components are integrated with the pro-
posed vehicle merge-in control and a comprehensive simulation (microscopic simulation)
is performed. Figure 8 shows a screenshot of the simulation interface, which illustrates the
integration of the proposed control components. The blue dots denote incoming vehicles
and platooning vehicles, while the orange ones are vehicles that have passed through the
roundabout. In the top-right zoomed-in view, desired positions of platooning vehicles (slot
positions) are marked with the slot number labeled. The bottom-right of Figure 8 shows
that the speed errors and headway errors of the platooning vehicles in the last 250 steps
(the step size is 0.05 s) are updated dynamically. Damping patterns can be observed similar
to those in the validation of the platoon stability in Figure 7.
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To compare the overall performance of the proposed roundabout control strategy
with other intersection control strategies, the demand pattern associated with the high
demand case (case 6) in [9] is used. Table 2 shows that though the demands are different,
the proportions of corresponding demands in the two intersection designs are identical
(0.75). As the roundabout model uses only a two-lane roadway setting, it is not meaningful
to compare its performance using the demand on various approaches of typical four-lane
crossroads. To address this issue, and account for the effects of different time headway
settings and different numbers of lanes on incoming approaches, a new intersection design
efficiency measure labeled as 〉 is proposed, which is the throughput of the intersection
divided by the sum of the capacity of all input lanes. The intersection design efficiency
quantifies the capability of the intersection design (both flow pattern design and control
strategy design) to serve the capacity of all incoming approaches. The proposed unit-free
measure is justified as follows. The most efficient intersection design is to use separate
facilities (for example, grade-separated roads) to connect all approaches. Thereby, vehicles
traveling in different directions will not affect each other, which implies that the intersection
can serve the capacity of all incoming approaches (regardless of the number of lanes and
how large the capacities are); thus 〉 = 1. This “perfect” intersection design serves as an
idealized benchmark to evaluate the efficiency of various intersection designs using 〉.
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Table 2. Demand settings for performance comparison.

Intersection Design

East and West Bound North and South Bound

Through Demand
(veh/h/lane)

Left-Turn Demand
(veh/h/lane)

Through Demand
(veh/h/lane)

Left-Turn Demand
(veh/h/lane)

Two-lane roundabout 1125 450 1125 450

Four-lane crossroad 1500 600 1500 600

Note that in flow-level control, the vehicle-level randomness in the incoming flow
is neglected. Additionally, the vehicle merge-in control assumes instantaneous changes
of within-roundabout flow due to merge-in flows. Hence, the overall performance of the
proposed model can be less efficient than the performance determined from the roundabout
flow control component. In the following comparison, the idealized performance associated
with the roundabout flow control is used as a benchmark.

The proposed measure enables comparisons between intersection designs with dif-
ferent incoming approach capacities. The results for signal-free intersection control,
fully actuated signal control, and fixed-time signal control are from [9] (simulated on
intersections with four-lane roads). The proposed roundabout control strategy is sim-
ulated for an intersection with two-lane roads (one lane in each direction). The seven-
minute (including a two-minute warm-up) simulation recording can be accessed online
(https://youtu.be/XEZhPJnr4eg) on 12 September 2022. As shown by Table 3, while the
signal-free intersection control strategy from [9] has the highest throughput, its intersection
design efficiency is only 0.188. This is because the “cross” flow pattern in conventional in-
tersection design has significant conflicts associated with the flows from different directions,
which limits the spatiotemporal occupancy within the intersection. By leveraging CAVs,
the roundabouts’ circular flow pattern can fully exploit road capacity inside the intersection.
The overall performance of the proposed roundabout control yields a high intersection
design efficiency, 0.343, which is almost twice that of the signal-free intersection control
strategy. Additionally, note that the intersection design efficiency calculated from flow-level
control is higher than that of the overall control, indicating that the proposed model suffers
mild efficiency loss when converting optimal merge-in flows into vehicle-level controls.
This is because the upper-level flow control neglects the vehicle level randomness. As the
top-left part of Figure 8 shows, the queue length on approaches 1, 2, and 3 are 1, 2, 1, re-
spectively, while the roundabout flow control components indicates that there should be no
queues during the entire time period. Due to vehicle-level randomness, the queue lengths
in the comprehensive simulation have small positive values all the time. The solution
optimality is impaired as the flow control model addresses the problem in the continuous
domain and an additional discretization step is introduced in the vehicle merge-in control.
However, solving optimal control problems at the flow level mitigates the computational
burden compared to signal-free intersection control in [9] which directly solves the high-
dimensional vehicle-level optimal control problem. It is beneficial to sacrifice optimality
slightly for real-time computational tractability.

To summarize, the numerical results illustrate that: (i) the roundabout flow control can
coordinate the merging flows from different directions to enhance efficiency; (ii) the vehicle
platoon control can dampen the oscillations induced by the speed and position errors at the
self-adjusting stage to ensure vehicle safety; (iii) the merge-in control is able to integrate the
aforementioned two components with slight impairment to the solution optimality; and
(iv) the proposed roundabout control strategy shows the advantage of the circular flow
pattern over the “cross” flow pattern in terms of the intersection design efficiency.

https://youtu.be/XEZhPJnr4eg
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Table 3. Performance comparison.

Intersection
Control
Strategy

Proposed
Roundabout
Flow Control

Proposed
Roundabout

Control

Signal-Free
Intersection

Control

Fully Actuated
Signal Control

Throughput
(trips/min) 105 82.2 120.5 76.5

Lane capacity
(veh/lane/min) 60 60 80 80

Number of lanes 4 4 8 8

Intersection
design efficiency 0.438 0.343 0.188 0.119

4. Concluding Comments

This study aims to fill a gap in the current literature by illustrating the advantages of
roundabouts in a CAV environment. The main contributions of this study are to: (i) develop
a hierarchical roundabout control framework to decouple system performance measures
and vehicle safety constraints, to relieve the computational burden by significantly decreas-
ing the dimension of the optimal control problem; (ii) investigate the potential advantages
of roundabout designs compared to traditional intersection designs to provide insights
for future infrastructure design in urban networks in CAV environments; and (iii) extend
existing linear CACC models to a circular CACC virtual platoon control model to address
the safety and stability considerations for vehicles operating within a roundabout.

This study suggests another potential venue for intersection infrastructure design for
CAVs beyond signal-free intersections. This exploratory investigation has some limitations:
(i) the proposed model assumes constant incoming flows; therefore real-world dynamics
may not be fully captured; (ii) the roadways of the approaches and the roundabout are
both assumed to be one-lane roads; so, multi-lane problems such as lane change are not
addressed; and (iii) how to adapt human drivers in the proposed control strategy during the
transition period is another unexplored issue. Therefore, the insights from this study can
provide directions for further research, including: (i) leveraging closed-loop control strate-
gies such as model predictive control to enhance the roundabout flow control performance
(i.e., the flow control model in the proposed hierarchical framework can be replaced with
more advanced ones to deal with changing incoming flows and measurement delays); (ii)
extending the proposed control strategy to multilane roundabouts; and (iii) investigating
roundabout control problem in a mixed traffic environment (e.g., enabling larger opera-
tional uncertainty for human driven vehicles in models and employing augmented reality
or mixed reality technologies to project suggested vehicle movements in roundabouts to
assist human drivers).
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