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Abstract: High-quality ontologies are critical to ontology-based applications, such as natural language
understanding and information extraction, but logical conflicts naturally occur in the lifecycle of
ontology development. To deal with such conflicts, conflict detection and ontology repair become
two critical tasks, and we focus on repairing ontologies. Most existing approaches for ontology repair
rely on the syntax of axioms or logical consequences but ignore the semantics of axioms. In this
paper, we propose an embedding-based approach by considering sentence embeddings of axioms,
which translates axioms into semantic vectors and provides facilities to compute semantic similarities
among axioms. A threshold-based algorithm and a signature-based algorithm are designed to
repair ontologies with the help of detected conflicts and axiom embeddings. In the experiments,
our proposed algorithms are compared with existing ones over 20 real-life incoherent ontologies.
The threshold-based algorithm with different distance metrics is further evaluated with 10 distinct
thresholds and 3 pre-trained models. The experimental results show that the embedding-based
algorithms could achieve promising performances.

Keywords: ontology repair; inconsistency handling; word embedding; knowledge graph

1. Introduction

Ontologies play a fundamental role in many fields such as natural language un-
derstanding, semantic information extraction, and intelligent information integration
to provide a formal representation of interested knowledge [1–6]. In particular, with
the rapid development of knowledge graphs [7], ontologies became more essential for
integrating, querying, and maintaining knowledge graphs [8–10]. High-quality ontolo-
gies are particularly critical. An ontology consists of a set of entities such as classes
and properties. It is also composed of a set of axioms that describe the characteristics
of some properties or the relationships among the entities. To represent an ontology,
several ontology languages have been proposed, and OWL (Web Ontology Language)
(https://www.w3.org/TR/owl-overview/, accessed on 15 November 2022) is a standard
language recommended by W3C. Description logics [11], as the logic foundation of OWL,
provide reasoning support for OWL ontologies. So far, ontologies have been widely applied
in many fields such as intelligent city and life science [12,13]. Furthermore, ontologies
provide schema restrictions for knowledge graphs [7] to facilitate their integration, query-
ing, and maintenance. In particular, high-quality ontologies are critical to ontology-based
applications, such as natural language understanding and information extraction. How-
ever, in practice, logical conflicts inevitably occur in the lifecycle of ontology development,
such as ontology evolution [14] and ontology matching [15]. In general, logical conflicts
can be classified into logical inconsistency and incoherence. An inconsistent ontology
indicates that no model can explain it. Reasoning an inconsistent ontology with standard
reasoners cannot obtain meaningful entailments. An incoherent ontology contains at least
one concept interpreted as an empty set (called an unsatisfiable concept). Adding instances
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to an unsatisfiable concept will produce inconsistency, which has negative impacts on
Semantic Web applications including terminological reasoning, data transformation, and
query answering [16,17]. Therefore, it is paramount to handle such logical conflicts.

To deal with incoherence or inconsistency, conflict detection and ontology repair
become two critical tasks [18]. The former demonstrates why an ontology is incoherent
or inconsistent, and the latter is to compute a diagnosis for regaining logical coherence or
consistency. We mainly focus on repairing ontologies in this paper and refer the readers to
the references [19–21] to obtain more details about detecting conflicts. To repair an ontology
automatically, it is often required to locate the logical conflicts in the ontology first and
then choose at least one axiom from each conflict as a diagnosis [22–24]. That is, removing
all axioms in the diagnosis will regain logical coherence or consistency. When choosing
axioms for deleting, various ranking strategies have been proposed to assign a degree to
each axiom in conflict. Most of the existing strategies to rank axioms for ontology repair
rely on the syntax of axioms while ignoring the semantics of axioms. For example, the
works in [22,25,26] use a scoring function by computing the frequency of occurrence of
each axiom in all conflicts. The work in [27] proposes to rank the axioms by considering
the usages of each signature in an axiom. Relatively, the authors in [23] rank different
diagnoses by aggregating the truth values of the axioms in a diagnosis, where a truth value
is calculated by an embedding model. Their experimental results have shown that the
proposed approach is significantly more effective than classical random methods in ranking
the best diagnoses. Although this work employs an embedding model to encode axioms
as vectors for preserving their semantics, it only pays more attention to simple axioms as
triples while ignoring complex axioms expressed in different ontology languages.

In this paper, we focus on dealing with incoherence in ontologies whose axioms can
be much more complex than triples. Precisely, we propose an embedding-based approach
that translates OWL axioms into natural language sentences, and then ranks the axioms in
conflicts by employing the embeddings of such translated sentences. We further provide
facilities to compute the semantic similarities among axioms. In this way, an axiom in
a conflict could be associated with a degree by considering the semantic relationships
between the axiom and others. Two algorithms, namely the threshold-based algorithm and
the signature-based one, are designed to repair ontologies according to detected conflicts
and axiom embeddings. To verify our proposed approach, we compared existing repair
methods over 20 real-life incoherent ontologies. The experimental results indicate that
the embedding-based algorithms could achieve promising performances. In addition, we
discuss the advantages of each algorithm and provide recommendations for users to choose
a suitable repair algorithm or ranking strategy.

The main contributions of this paper are summarized as follows:

• An embedding-based approach to repairing ontologies is proposed by considering
both the syntax and the semantics of axioms in an ontology, and three metrics are
defined to rank axioms based on the embeddings of axioms.

• A threshold-based algorithm and a signature-based algorithm are proposed to instan-
tiate our embedding-based approach. Both of them can be configured with different
pre-trained models and various thresholds.

• Abundant experiments have been conducted over 20 real-life incoherent ontologies.
We implement our algorithms and existing repair algorithms using four ranking
strategies. The experimental results show that two embedding-based algorithms
could enhance the effectiveness of the traditional signature-based ranking strategy,
and the threshold-based algorithm ThrCosAlg with model m4 is able to remove fewer
axioms and differentiate various axioms.

The rest of the paper is organized as follows. Section 2 introduces the background
knowledge about description logics and word embedding. Section 3 presents our gen-
eral approach. Specific algorithms to instantiate the approach are proposed in Section 4.
Section 5 shows various experimental results. Related works are introduced in Section 6,
followed by conclusions and future works in Section 7.
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2. Background Knowledge

This section introduces Description Logics (DLs) and the basic notations of logical
conflicts. It also explains word embedding together with sentence embedding.

2.1. Description Logics

A DL-based ontology could describe three kinds of entities: concepts, roles and
individuals in a domain. An individual describes an instance in a specific domain, and an
individual name means a single individual. For example, Tim-Bernerds Lee is an individual
name describing a person, and Nanjing is an individual name describing a place. A concept
indicates a set of individuals, and a role represents a binary relation between the individuals
and individual names. The roles can be further divided into abstract roles and datatype
roles. The domain and range of an abstract role are concepts. If the range of a role is a
datatype literal such as string or integer, this role is called a datatype role [28]. The concepts
and roles can be atomic or complex. A complex one is constructed based on the atomic
ones by using various kinds of constructors such as existential restriction (∃) and universal
restriction (∀). With different constructors, many DL languages can be formed, such as
ALC allowing transitive roles, role hierarchy and inverse operation, and SHI further
allowing role hierarchy and inverse operation.

A DL-based ontology could also describe the characteristics of some properties and
the relationships among the entities by various axioms. Such axioms can be divided into
TBox (terminology axioms) and ABox (assertion axioms). A TBox mainly describes those
relationships among concepts and properties such as concept inclusion axioms in the form
of C v D and disjoint role axioms in the form of C v ¬D, where C and D are concepts.
An ABox describes those relationships that are relevant to individuals, such as concept
assertions in the form of C(a) and equality assertions in the form of a = b, where a and
b are individuals. It is noted that the concepts, abstract roles and datatype roles in DL-
based ontologies correspond to the classes, object properties and data properties in OWL,
respectively.

In an ontology, if there exist unsatisfiable concepts, minimal unsatisfiability-preserving
sub-TBoxes (abbreviated as MUPS) are often computed to explain the unsatisfiability of
such a concept.

Definition 1 ((MUPS) [16]). For an unsatisfiable concept name C in a TBox T , a sub-TBox
T ′ ⊆ T is a MUPS of T with respect to C if C is unsatisfiable in T ′ and there is no sub-TBox
T ′′ ⊂ T ′ such that C is unsatisfiable in T ′′.

To explain the incoherence of an ontology, a set of minimal incoherence-preserving
sub-TBoxes (abbreviated as MIPS) can be calculated.

Definition 2 ((MIPS) [16]). For an incoherent TBox T , its sub-TBox T ′⊆T is a MIPS of T if
T ′ is incoherent and every sub-TBox T ′′⊂T ′ is coherent.

From Definitions 1 and 2 we can observe that a MIPS is a MUPS, but not vice versa.
When repairing an incoherent ontology, a diagnosis is often computed. That is,

removing or modifying the axioms in the diagnosis could regain coherence. The formal
definition of a diagnosis is described below.

Definition 3 (Diagnosis). For an incoherent ontology, O and a sub-ontology O′ ⊆ O, O′ is a
diagnosis of O if O \O′ is coherent. O \O′ indicates removing all axioms in O′ from O.

To repair an ontology automatically, it is often desired to achieve some kind of minimal
change [22] and compute a minimal diagnosis by keeping information as much as possible.
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Definition 4 ((Minimal Diagnosis) [29]). For an incoherent ontology O and a sub-ontology
O′ ⊆ O, O′ is a minimal diagnosis of O if it is a diagnosis of O and there is no O′′ ⊂ O′ such that
O \O′′ is coherent.

2.2. Word Embedding

In the field of natural language processing, vectorizing a text is a key step to convert
the text into numbers such that the text can be processed by machine learning models [30].
The smallest semantic unit in a text is a word, so the vectorization task of a text can be
changed into the vectorization of words. When representing the semantics of phrases,
sentences or paragraphs, sentence embedding is used to compute embeddings of their
word sequences [31]. Word embedding is to represent words with a continuous vector
space, which is a low-dimensional dense vector and can represent the semantics of words.
Such a representation method becomes unprecedentedly popular since the work in [32]
was published in 2013. This work extends the original Skip-gram model to improve the
quality of vectors and the efficiency of the model. It also provides a tool called Word2Vec to
facilitate the usage of the extended model.

To represent words or sentences with vectors, a pre-trained model is welcomed due to
its high-dimensional space and semantic representation. Such models have been widely
accepted by both academic and industrial researchers in the past ten years [30,33,34].
They are pre-trained on an original task with a large corpus and used on a target task by
tuning the corresponding parameters according to the characteristics of the target task.
Namely, people can directly use a pre-trained model to compute vectors on their tasks
without performing a training process by themselves. The popular models Word2Vec [32],
BERT [35], Sentence-BERT [36] and CoSENT (https://kexue.fm/archives/8847, accessed
on 15 November 2022) belong to pre-trained language models.

To represent the semantics of classes or individuals in an ontology, the work in [37]
provides a tool called NaturalOWL (http://www.aueb.gr/users/ion/publications.html,
accessed on 15 November 2022). This tool translates those OWL statements that are relevant
to a class or individual into natural language sentences. Example 1 shows an example to
generate sentences for a given class. From the description of the class IceCream we can
see that the relationship of DisjointClasses and SubClassOf are translated to “isn’t a kind of”
and “is a kind of” separately. The existential restriction (i.e., ObjectSomeValuesFrom) is
converted to “at least one”.

Example 1. Take the class IceCream in the widely used ontology pizza (https://protege.stanford.
edu/ontologies/pizza/pizza.owl accessed on 15 November 2022) as an example. There are three
axioms (We use the syntax adopted by OWL API to represent the axioms in an ontology, and ignore
all namespaces for clarity) that are relevant to the class IceCream (see below):

SubClassOf(IceCream Food)
DisjointClasses(IceCream Pizza PizzaBase PizzaTopping)
SubClassOf(IceCream ObjectSomeValuesFrom(hasTopping FruitTopping))
By using NaturalOWL API, the description of IceCream is obtained:
IceCream isn’t a kind of PizzaBase, Pizza and PizzaTopping, and IceCream is a kind of Food.

IceCream has topping at least one FruitTopping.

3. Approach

To rank axioms in conflicts based on embeddings, we propose a general approach to
computing a diagnosis (see Figure 1). The proposed approach comprises six parts, the
first three parts (labeled 1, 2 and 3) can be regarded as offline information preparation, and
the other parts (labeled 4, 5 and 6) compute similarities between the axioms to generate a
diagnosis automatically.

https://kexue.fm/archives/8847
http://www.aueb.gr/users/ion/publications.html
https://protege.stanford.edu/ontologies/pizza/pizza.owl
https://protege.stanford.edu/ontologies/pizza/pizza.owl
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Figure 1. The embedding-based approach to repairing an ontology.

3.1. Information Preparing

When translating an axiom into one or multiple natural language sentences, we borrow
the idea given in NaturalOWL [37]. Nonetheless, NaturalOWL does not translate all kinds
of axioms or entities. It does not consider those axioms about properties such as property
inclusion axioms and transitive properties. Furthermore, nested ObjectIntersectionOf and
ObjectUnionOf operators are not allowed. Table 1 presents most of the rules implemented
in NaturalOWL to transfer concepts or axioms to phrases or sentences separately. These
rules are summarized manually by taking a toy example as this tool’s input and then
observing its outputs. This example is an OWL ontology constructed by using a widely
used ontology editor Protege (https://protege.stanford.edu/, accessed on 15 November
2022), and contains various kinds of axioms, complex concepts and properties. In case
some axioms cannot be translated by NaturalOWL, we do transformation by keeping their
main characteristic. For instance, the axiom “SymmetricObjectProperty(op)” is translated
to “op is symmetric”, and the axiom “SubClassOf(A DataMaxCardinality(3 dp owl:real))” is
transformed to “A dp at most 3 owl:real”.

Table 1. Rules to translate OWL concepts or axioms into phrases or sentences, respectively, where a
and b are individual names, A and B are concepts, n indicates an integer, op and dp indicate an object
property and a data property separately, and v is a value.

Ontology Elements OWL Representation Phrases or Sentences

Concepts

ObjectSomeValuesFrom(op A) op at least one A
ObjectAllValuesFrom(op A) op only A
ObjectHasValue(op a) op a
ObjectIntersectionOf(A B) A and B
ObjectUnionOf(A B) A or B
ObjectExactCardinality(n op A) op exactly n A
ObjectMinCardinality(n op A) op at least n A
ObjectMaxCardinality(n op A) op at most n A

Axioms

SubClassOf(A B) A is a kind of B
DisjointClasses(A B) A isn’t a kind of B
EquivalentClasses(A B) A is a kind of B
ClassAssertion(A a) a is a A
ObjectPropertyAssertion(op a b) a op b
DataPropertyAssertion(dp a v) a dp v

After obtaining the sentences for all axioms in an ontology, a pre-trained model could
be adopted to represent the sentences with vectors, such as the models Word2Vec [32],
BERT [35], Sentence-BERT [36] and CoSENT (Cosine Sentence) (https://kexue.fm/archives/
8847, accessed on 15 November 2022). In this paper, we use the models Sentence-BERT
and CoSENT to compute embeddings due to their excellent performances in computing
similarities for sentences in the English language. Sentence-BERT makes balances between
performance and efficiency and trains the upper classification function by supervised
learning. CoSENT uses a ranking loss function, which makes the training process closer

https://protege.stanford.edu/
https://kexue.fm/archives/8847
https://kexue.fm/archives/8847
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to prediction. More details about the experimental results to evaluate various pre-trained
models can be found on the official website of PyPi (https://pypi.org/project/text2vec/, ac-
cessed on 15 November 2022), which indicates the Python Package Index and is a repository
of software for the Python programming language. For instance, the following vector with
large dimensions is obtained by applying the model Sentence-BERT (i.e., m1 introduced in
Section 5.2) to represent the sentence “Parent is a kind of Animal”:

(0.08, 0.25, 0.15, 0.39,−0.43,−0.20, 0.14, 0.03, 0.38, 0.09, ...,−0.01, 0.67, 0.07).

With the obtained vectors, the semantic similarity between two axioms/sentences
is calculated. Suppose we have two vectors v1 and v2, both of which have d dimensions.
Two similarity metrics can be defined based on the widely used distance measures Cosine
Distance and Euclidean Distance.

Definition 5. The similarity metric based on Cosine Distance (marked as simcos) is formally
defined as below:

simcos(v1, v2) =
1
2
(1 +

v1 · v2

||v1|| × ||v2||
) =

1
2
(1 +

∑d
i=1 v1i × v2i√

∑d
i=1(v1i)2 ×

√
∑d

i=1(v2i)2
)

Here, v1i and v2i indicate the ith element in the vectors v1 and v2, respectively. d is the
dimension of v1 or v2, both of them have the same dimension.

Definition 6. The similarity metric based on Euclidean Distance (marked as simeuc) is defined as
below:

simeuc(v1, v2) =
k

k +
√

∑d
i=1(v1i − v2i)2

Here, k indicates a positive integer. d is the dimension of v1 or v2, both of which have the same
dimension.

The similarities computed by Definitions 5 and 6 range from 0 to 1 because the two
original distance metrics have been normalized. Especially in Definition 6, a positive integer
k is used for normalization. The greater the integer k, the larger the similarity simeuc. Thus,
k is set to be 4 in our evaluation because the similarities could be evenly distributed within
(0, 1) according to our observations. In addition, the two metrics are reflexive because
sim(v, v) = 1 for any vector v. They are also symmetric since sim(v1, v2) = sim(v2, v1) for
any vectors v1 and v2. Here, sim can be simcos or simeuc.

Example 2. Take the following axioms in the ontology km1500 as examples.
a1 : SubClassOf(information_kernel_technology_c technology_c)
a2 : ObjectPropertyDomain(boost_r technology_c)
a3 : SubClassOf(technology_c information_resource_c)
By applying the cosine similarity metric, we obtain
simcos(a1, a2) = 0.36 and simcos(a1, a3) = 0.9.
The similarity between axioms a1 and a2 is 0.36, which is quite different from that between

axioms a1 and a3 (i.e., 0.9), although both pairs have shared entities. It is because a1 and a2 have
different axiom types while both a1 and a3 belong to subsumption.

It is noted that, wekeep the similarities between axioms and the ranks of axioms to two decimal
places by rounding. The main reason is that we ignore the slight difference between two values such
as 0.563 and 0.564. In this way, multiple axioms can have more chance to share the same rank in a
MUPS or MIPS, and it becomes possible to find multiple diagnoses and choose one of them as a final
repair solution.

In our approach, another preparation task is to compute all MIPS for each ontology.
The computation of MIPS could rely on all MUPS of all unsatisfiable concepts in an
ontology [22], or be computed directly [20]. A single MUPS can be computed by applying

https://pypi.org/project/text2vec/
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a black-box approach or a glass-box approach, and all MUPS of an unsatisfiable concept
are often computed based on the hitting set tree algorithm [19,38]. Of course, it may not be
always desired to compute MIPS when resolving incoherence due to the efficiency problem,
but we focus on computing diagnoses based on all MIPS of an ontology.

3.2. Diagnosis Generating

With the information obtained during the preparation step, each axiom in a MIPS needs
to be associated with a degree. According to these degrees, a subset is then extracted from
each MIPS. Those axioms in such subsets are regarded as candidates to form a diagnosis.
Namely, selecting at least one axiom from each subset will resolve the incoherence of the
considered ontology.

To compute a degree for an axiom in an ontology, we consider the semantic relation-
ships between this axiom and others in the ontology. Based on a similarity metric sim, a
degree of an axiom α in an ontology O can be defined by assuming that emb(α) indicates
the embedding of the axiom α (See Definition 7). This definition computes the average
semantic similarity between the axiom α and each axiom in O as the degree of α.

Definition 7. Given an axiom α in an ontology O, its degree with respect to the entire ontology O
is defined as below:

dglobal(α, O) =
1
|O| ∑β∈O sim(emb(α), emb(β)).

This degree is called a global degree and is denoted as dglobal .

It is noted that two axioms with low similarity often indicate that their semantic
relations are weak, or even both axioms have no semantic relations. Thus, a threshold
can be used to filter those axioms that have low similarity with α. The degree of α (see
Definition 8) is then computed based on the selected axioms. In Definition 8, the similarity
between any axiom in S and α is higher than the threshold, and only those axioms in S
will contribute to the degree of α. Namely, this definition computes the average semantic
similarity between the axiom α and each axiom in S as the degree of α.

Definition 8. Given an axiom α in an ontology O, its degree with respect to a pre-defined threshold
t, denoted as dthr, is defined as below:

dthr(α, O, t) =
1
|S| ∑β∈S sim(emb(α), emb(β)),

where S = {β|sim(emb(α), emb(β)) > t, β ∈ O}.

To ensure two axioms have semantic relations, we provide another definition to
compute a degree for an axiom by considering those axioms that contain at least one entity
appearing in the axiom (see Definition 9). A signature of an axiom can be a concept name,
a property name or an individual name appearing in the axiom. Definition 9 computes the
average semantic similarity between the axiom α and each axiom in T as the degree of α.

Definition 9. The signature-based degree of an axiom α in an ontology O, denoted as dsig, is
formally defined as below:

dsig(α, O) =
1
|T| ∑β∈T sim(emb(α), emb(β)),

where T = {β|sig(α) ∩ sig(β) 6= ∅, β ∈ O}, and sig(α) returns all signatures in α.

4. Algorithm

In this section, we design two concrete algorithms (i.e., a threshold-based algorithm
and a signature-based algorithm) to repair an incoherent ontology based on the definitions
of similarity degrees.

Algorithm 1 provides the details about the threshold-based repair algorithm. It takes
an incoherent ontology O, all of its MIPS MIPS(O), axiom embeddings (emb(α) indicates
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the embedding of the axiom α), and a threshold t ranging from 0 to 1 as inputs, and outputs
a diagnosis. This algorithm assumes all MIPS of O have been computed and are denoted as
MIPS(O). In this algorithm, the degree of each axiom in a MIPS needs to be computed first
(see lines 4–13), which is the average similarity over those axiom pairs whose similarity
values are greater than the threshold. According to these degrees, a subset M′ is extracted
from each MIPS M such that only the axioms with the lowest degree are contained in M′

(see lines 15–18). Afterwards, a diagnosis can be generated over these subsets by applying
the linear integer programming (abbreviated as ILP)-based approach [26] (see lines 20–30).
We choose this approach to computing a minimal diagnosis instead of the traditional one
(i.e., hitting set tree-based approach [22]) due to its high efficiency.

Algorithm 1: A threshold-based algorithm to repair an incoherent ontology.
Data: An incoherent ontology O, all MIPS in O (i.e., MIPS(O)), embeddings of

axioms, and a threshold t (t ∈ (0, 1))
Result: A diagnosis D

1 begin
2 M, C = ∅
3 // Compute a degree for each axiom in the union of all MIPS in O
4 for ax ∈ ⋃

M∈MIPS(O) M do
5 s, c = 0
6 for ax′ ∈ O do
7 if sim(emb(ax), emb(ax′)) > t then
8 s = s + sim(emb(ax), emb(ax′))
9 c = c + 1

10 end
11 end
12 dthr(ax, O, t) = s/c
13 end
14 // Choose a subset from each MIPS such that the axioms in the subset have the

lowest degree
15 for M ∈ MIPS(O) do
16 M′ = {a ∈ M : 6 ∃a′ ∈ M, dthr(a, O, t) > dthr(a′, O, t)}
17 M =M∪{M′}}
18 end
19 // Apply an ILP solver to compute a diagnosis for the extracted subsets
20 Sunion =

⋃
M′∈M M′

21 X = {xj|axj ∈ Sunion, j = 1, ..., |Sunion|}
22 z = ∑xj∈X xj

23 for M′∈M do
24 XM′ = {xj|axj ∈ M′, xj ∈ X}
25 ci = (∑xj∈XM′

xj) ≥ 1
26 C = C ∪ {ci}
27 end
28 Sassi = ILP_Solver(z, C, min)
29 // Translate the solution given by the ILP solver into a set of axioms
30 D = {axj|(xj = 1) ∈ Sassi}
31 return D
32 end

The ILP-based approach first associates a binary variable to each axiom in the union of
all MIPS (see lines 20–21). An objective function is then constructed over all binary variables
by regarding them as the same important (see Line 22). For each set inM, a constraint ci
is constructed (see lines 23–27). Finally, the function ILP_Solver is invoked to generate an
optimal assignment (see Line 28), and this can be achieved through invoking a traditional
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ILP solver such as the commercial linear programming tool Cplex. It is an optimization
software developed by IBM ILOG (https://www.ibm.com/analytics/cplex-optimizer,
accessed on 15 November 2022). For this function, one of its parameters min indicates
minimizing the objective function. The returned assignment Sassi is the first one found by
the ILP solver. Based on this assignment, we can find those axioms whose corresponding
variables have the value 1 to form a final solution D (see Line 30).

The signature-based repair algorithm can be obtained easily by modifying Algorithm 1
slightly. Namely, the condition of sim(emb(ax), emb(ax′)) > t in Line 7 is changed to
sig(ax) ∩ sig(ax′) 6= ∅. That is, for an axiom ax, if another axiom ax′ contains at least one
signature from ax, it will contribute to the degree of ax, where a signature can be a class, a
property or an individual.

5. Experiments

In this section, we first introduce the data set used in our experiments and experimen-
tal settings. We then provide experimental results of the preparation step. The subsequent
three subsections introduce the experimental results of comparing repair algorithms, differ-
ent thresholds and models. Finally, a detailed discussion of the results is provided.

5.1. Data Set

The data set comes from our previous work about benchmarking incoherent ontologies
presented in [39]. Since the approach proposed in this paper considers the semantics of
axioms, those ontologies with meaningless entity names are excluded from our experiments.
For example, in ontology DICE-A, “C521744” is a class name and “R19763” is a property
name. They are meaningless, and we do not consider such an ontology. Since the proposed
algorithms compute all MIPS in an ontology, we do not consider those ontologies all of
whose MIPS cannot be found within a limited time or memory. For instance, we choose
the sub-ontology km1500–3500 instead of its complete version km1500. In this way, most of
the existing incoherent ontologies (i.e., 13 incoherent ontologies) and 7 merged incoherent
ontologies provided by [39] are chosen.

Table 2 presents the details about the chosen incoherent ontologies. The ontology
names that consist of three parts and are connected with two symbols of “-” indicate
those ontologies constructed by merging two source ontologies and an alignment between
them. Here, an alignment consists of a set of correspondences, and correspondence can
be translated into an OWL axiom (see [39] for more details). Take ontology ALOD2Vec-
confof-edas as an example. Its name consists of ALOD2Vec, confof and edas. ALOD2Vec [40]
is an ontology matching system, confof and edas indicate two source ontologies. This
merged ontology is obtained by merging confof, edas, and the alignment generated by the
system ALOD2Vec. Similarly, the other 6 merged ontologies use the ontology matching
systems ATBox [41], Lily [42], VeeAlign [43] and Wiktionary [44]. Those source ontologies
come from the conference track provided by Ontology Alignment Evaluation Initiative
(http://oaei.ontologymatching.org/2020/ accessed on 15 November 2022), which is a very
popular platform to evaluate various ontology matching systems.

From Table 2, we observe that dbpedia_2014 has a large TBox (i.e., 5763 axioms) and
contains many SubObjectPropertyOf or SubDataPropertyOf axioms (i.e., 964 axioms). In its
TBox, most axioms are used to describe the domains or ranges of the properties (nearly
5000 such axioms). As for ontologies MGED and Geograph, most of their axioms describe
disjointness relations among the classes. For ontology km1500–3500, most of its axioms are
subsumption, and there are also many disjointness axioms.

Furthermore, the information about MIPS in a selected ontology can be seen in
Table 3, where all MIPS are obtained from the work presented in [39]. It can be observed that
ontology km1500–3500 has quite a lot of unsatisfiable concepts (i.e., 734), and most of the
others have no more than 30 unsatisfiable concepts. For those ontologies containing more
than 30 unsatisfiable concepts, they also contain many MIPS. For instance, km1500–3500
and Economy have 146 and 47 MIPS, respectively. For the found MIPS, the maximal size is

https://www.ibm.com/analytics/cplex-optimizer
http://oaei.ontologymatching.org/2020/
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no more than 16, and a MIPS often contains no more than 10 axioms on average. Overall,
these ontologies have various numbers of MIPS, and the size of a MIPS varies differently
(i.e., from 2 to 16).

Table 2. Ontology information, where “SubPr” indicates the number of SubObjectPropertyOf axioms,
“Cl”, “OP” and “DP” mean classes, object properties and data properties, respectively.

Ontology TBox ABox SubCl DisjCl SubPr Domain Range CL OP DP

ALOD2Vec-confof-edas 826 115 156 450 0 86 86 142 43 43
ATBox-cmt-confof 427 0 97 70 0 95 95 68 62 33
CHEM-A 110 0 46 6 4 18 18 48 9 11
dbpedia_2014 5763 1 745 20 964 2375 2527 814 1310 1725
Economy 577 1045 409 71 3 47 50 339 46 8
Geography 1621 0 682 939 0 0 0 400 0 0
km1500–3500 3500 0 2584 608 0 169 139 3671 261 0
koala 36 8 17 1 0 5 5 21 4 1
Lily-cmt-conference 511 0 91 41 13 123 123 88 95 28
Lily-edas-ekaw 869 115 177 481 8 74 74 177 63 20
MGED 1654 0 567 1087 0 0 0 225 68 0
miniTambis 173 0 125 3 0 0 0 183 44 0
pizza 697 11 259 398 4 6 7 100 8 0
proton 1777 0 278 1346 49 82 60 266 78 34
Terrorism 448 422 94 1 51 215 134 100 132 91
Transportation 926 226 452 317 5 81 76 445 89 4
University 46 4 32 5 0 1 1 30 11 1
VeeAlign-edas-iasted 990 119 339 408 0 91 91 243 68 23
Wiktionary-cmt-confof 431 0 97 70 0 95 95 68 62 33
Wiktionary-confof-edas 826 115 156 450 0 86 86 142 43 43

Table 3. Information about MIPS in all selected ontologies.

Ontology Unsatisfiable Concepts Number of MIPS Size of MIPS
Minimal Maximal Average

ALOD2Vec-confof-edas 7 18 6 11 8.1
ATBox-cmt-confof 5 2 7 7 7
CHEM-A 37 6 5 6 5.5
dbpedia_2014 2 1 7 7 7
Economy 51 47 3 5 3.5
Geography 11 31 3 5 4
km1500–3500 734 146 2 16 6.7
koala 3 3 4 4 4
Lily-cmt-conference 6 24 9 11 9.8
Lily-edas-ekaw 13 13 4 7 5.6
MGED 72 70 3 8 5.9
miniTambis 30 3 2 6 4
pizza 2 3 3 4 3.3
proton 24 17 2 8 5
Terrorism 14 5 3 3 3
Transportation 62 36 2 8 4.6
University 8 4 3 5 4
VeeAlign-edas-iasted 16 17 4 6 5.2
Wiktionary-cmt-confof 25 13 6 9 7.1
Wiktionary-confof-edas 7 82 5 13 10.5

5.2. Experimental Settings

All experiments were performed on a laptop with 1.99 GHz Intel CoreTM CPU and
16 GB RAM, using a 64-bit Windows 11 operating system. A time limit of 1000 s is set to
compute a diagnosis for an incoherent ontology based on the pre-computed MIPS and
similarities between axioms. Each algorithm is evaluated with respect to its effectiveness
and efficiency. When repairing an ontology by using a repair algorithm, the effectiveness of
this algorithm indicates the number of removed axioms to resolve the incoherence in the
ontology. The efficiency of the algorithm is the time to compute a diagnosis by taking an
ontology and the information obtained by the preparation phase as inputs.

In our experiments, two pre-trained models Sentence-BERT and CoSENT are used
with different configurations, and we call them four models (see below) for simplicity. The
configurations are obtained according to the experimental results provided in PyPi.

• m1: The implementation of Sentence-BERT with model name “paraphrase-multilingual-
MiniLM-L12-v2” and encoder type of averaging.
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• m2: The implementation of CoSENT with model name “bert-base-nli-mean-tokens”
and encoder type of “first-last-avg”.

• m3: The implementation of CoSENT with model name “bert-base-uncased” and
encoder type of “first-last-avg”.

• m4: The implementation of Sentence-BERT with model name “bert-base-nli-mean-
tokens” and encoder type of “cls”.

Here, “cls” is a special word and has no meaning. Its embedding should only contain
semantic information of its context, which is regarded as sentence embedding. “first-last-
avg” means averaging the word embeddings in the first and last layer of the model.

We evaluate the threshold-based repair algorithm and the signature-based one with
two similarity metrics, and thus obtain the following four algorithms:

• ThrCosAlg: Repair an ontology by using the threshold-based algorithm (i.e., Algorithm 1)
with Cosine Distance (i.e., Definition 5).

• ThrEucAlg: Repair an ontology by using the threshold-based algorithm with Euclidean
Distance (i.e., Definition 6).

• SigCosAlg: Repair an ontology by using the signature-based algorithm with Cosine
Distance.

• SigEucAlg: Repair an ontology by using the signature-based algorithm with Euclidean
Distance.

Furthermore, four traditional ranking strategies are chosen to compare with ours
because they have been frequently used in the existing works. Four repair algorithms (see
below) are then designed by integrating each ranking strategy within the same framework.
That is, such a repair algorithm is obtained by replacing the strategy of computing a degree
for an axiom in Algorithm 1 while keeping the rest of Algorithm 1 nearly unchanged.

• BaseAlg: This is a baseline algorithm to compute a minimal diagnosis based on all
MIPS directly without ranking the axioms. Namely, it applies the ILP-based approach
to all MIPS directly without computing degrees for axioms.

• ScoreAlg: This is a score-based algorithm, and associates a score to an axiom in MIPS,
where the score correspondences to the number of MIPS containing this axiom [22].
Different with Algorithm 1, ScoreAlg chooses those axioms with the highest score from
each MIPS.

• SigAlg: This is a signature-based algorithm, and ranks an axiom by summing the
reference counts in other axioms for all entities appearing in the axiom [27]. An entity
here can be a class name, a property name or an individual name. The rest of this
algorithm is the same as Algorithm 1.

• LogicAlg: It is a logic-based algorithm, and ranks an axiom by considering the impact
on an ontology when the axiom is removed from the ontology [27]. The impact of an
axiom is actually measured by how many entailments are lost when removing the
axiom. The rest of this algorithm is the same as Algorithm 1.

• ShapAlg: This algorithm ranks axioms by Shapley Minimum Inconsistency Value
defined in [45]. This ranking strategy assigns a penalty to an axiom α in a MIPS, where
the penalty is inversely proportional to the size of a MIPS where α is contained. The
rest of this algorithm is the same as Algorithm 1.

All of these repair algorithms mentioned above (all implementations together with
our data set and experimental results can be downloaded from https://github.com/QiuJi3
45/embRepair, accessed on 15 November 2022). They are implemented with OWL API
(http://owlcs.github.io/owlapi/ accessed on 15 November 2022) in Java. In addition,
computing similarities between axioms based on a pre-trained model is implemented in
Python. It is noted that we implement the algorithms SigAlg and LogicAlg based on the
corresponding implementation in SWOOP [46]. Furthermore, the widely used DL reasoner
Pellet [47] is selected to perform reasoning tasks.

https://github.com/QiuJi345/embRepair
https://github.com/QiuJi345/embRepair
http://owlcs.github.io/owlapi/
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5.3. Results of Preparation

For the preparation phase, the consumption time of each task is discussed below. These
tasks can be seen as offline ones. Because translating axioms in an ontology to sentences is
very efficient, we will not provide the details about the time of this task. Usually, it took no
more than 2 s to finish this task. For ontologies km1500–3500 and dbpedia_2014 with many
axioms, it spent about 4 s and 7 s, respectively.

During the preparation process, computing embeddings for the obtained sentences
is the most time-consuming task. Figure 2 presents the time to compute the embeddings
of the sentences transformed from an ontology by applying the four pre-trained models
mentioned in Section 5.2. Obviously, m1 is the most efficient model, and others perform
similarly. Take the ontology dbpedia_2014 as an example. m1 spent 128 s while around
340 s for the other three models. The amount of time spent is determined by the size of an
ontology. The ontology dbpedia_2014 has the most axioms (i.e., 5764 axioms) among all
selected ontologies, and thus each model spent the most time computing embeddings for
this ontology. The ontology koala contains no more than 50 axioms, and thus, less than 4 s
were spent for each model.

Figure 2. Time in milliseconds (y-axis) for each ontology to compute similarities for all axiom pairs
in each ontology by using Cosine Distance.

When computing similarities for sentence pairs, it is much more efficient than com-
puting embeddings. Figure 3 shows the time to compute similarities for each ontology
by using Cosine Distance or Euclidean Distance. From this figure and Figure 2 we can
see that computing similarities for an ontology often took no more than 10 s while more
than 10 s (even more than 100 s) for computing embeddings. In addition, it is obvious that
no big difference can be observed between the two distance metrics. The amount of time
consumed here is also determined by the size of an ontology.

5.4. Results of Comparing Repair Algorithms

In this section, our algorithms are compared with the existing ones with respect to
effectiveness and efficiency. The four embedding-based algorithms use the model m1 and
set the threshold to be 0.5.

5.4.1. Results about Effectiveness

Table 4 presents the number of the axioms removed by each repair algorithm to restore
the coherence of an incoherent ontology.

Obviously, LogicAlg cannot deal with ontology km1500–3500 because the reasoning
process of computing entailments for each axiom MIPS cannot be finished within the
limited time (i.e., 1000 milliseconds). Similar to the work in LogicAlg [27], we mainly
consider those entailments that are subsumption. In ontology km1500–3500, too many such
entailments can be inferred for some axioms, and thus, the process is quite time-consuming.
Take the following axiom in a MIPS in km1500–3500 as an example:

SubClassOf(information_c service_c)
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Figure 3. Time in milliseconds (y-axis) for each ontology to compute similarities for axiom pairs in
each ontology by using two distance metrics.

LogicAlg needs to compute all descendants (denoted as Sdes) of the concept information_c
and all ancestors (denoted as Sanc) of the concept service_c by invoking the reasoner
first, then create axioms in the form of SubClassOf(C1, C2) (C1 ∈ Sdes and C2 ∈ Sanc)
as this axiom’s entailments. Since service_c is an unsatisfiable concept and all concept
names except unsatisfiable concepts are regarded as this concept’s ancestors, we obtain
2937 ancestors in total (i.e., 3671 concept names minus 734 unsatisfiable concepts) for
service_c. Moreover, the concept information_c has 18 descendants obtained by reasoning.
Therefore, more than 50 thousand entailments (i.e., 18 × 2937 = 52,866) were obtained for
the axiom. This is the main reason why LogicAlg failed to compute a diagnosis within
limited resources.

Comparing various repair algorithms, the following observations can be obtained:

(1) The baseline algorithm BaseAlg is able to find a minimal diagnosis as expected. This
can be explained by the fact that it applies the ILP-based approach to all MIPS directly,
and the ILP-based approach has been proven to find minimal diagnoses [26].

(2) The score-based algorithm ScoreAlg has similar performances as BaseAlg since it
selects the axioms with the highest score from each MIPS. Thus, it can find a minimal
diagnosis in most cases. In addition, the ranking strategy in ShapAlg is similar to
that in ScoreAlg. The more times an axiom appears in MIPS, the higher the rank of
the axiom is. One main difference between them is that the former is also dependent
on the size of a MIPS. Thus, both algorithms perform similarly.

(3) For those ontologies that BaseAlg removed more than five axioms, the original
signature-based algorithm SigAlg often removed much more axioms than others, and
it removed 193 axioms in total for all selected ontologies. For example, SigAlg re-
moved 47 axioms for the ontology Economy while no more than 36 axioms
for others.

(4) For each ontology that BaseAlg removed less than five axioms, LogicAlg can always
find a minimal diagnosis as BaseAlg. It is because most of the axioms in MIPS do not
have any entailments such that nearly all axioms in a MIPS have the same rank. For
instance, although the ontology Wiktionary-confof-edas has 82 MIPS and 24 distinct
axioms in these MIPS, only 3 axioms have entailments.

(5) Two embedding-based algorithms by considering the signature of axioms performed
similarly. Namely, two distance measures do not make any big difference. Further-
more, both of them outperformed the original signature-based algorithm SigAlg. It
shows that SigCosAlg and SigEucAlg can reduce the number of removed axioms.



Appl. Sci. 2022, 12, 12655 14 of 22

(6) As a whole, two threshold-based algorithms performed better than the three signature-
based ones, especially ThrEucAlg. Each of them removed less than 170 axioms
in total (143 axioms for ThrEucAlg)while more than 175 axioms for a signature-
based algorithm.

Table 4. Repair results about the number of the axioms removed by each repair algorithm (using the
model m1 and the threshold 0.5), where “n.a.” indicates “not available”.

Ontology BaseAlg LogicAlg ScoreAlg ShapAlg SigAlg SigCosAlg SigEucAlg ThrCosAlg ThrEucAlg

ALOD2Vec-confof-edas 1 1 1 1 2 4 4 5 1
ATBox-cmt-confof 1 1 1 1 1 2 2 2 1
CHEM-A 1 1 1 1 1 1 1 3 1
dbpedia_2014 1 1 1 1 1 1 1 1 1
Economy 8 34 8 8 47 22 23 36 20
Geography 9 11 9 10 11 12 13 11 13
km1500–3500 19 n.a. 26 26 39 38 38 38 30
koala 1 2 1 1 2 3 3 3 3
Lily-cmt-conference 1 1 1 1 2 1 1 2 2
Lily-edas-ekaw 4 4 5 5 6 5 5 8 7
MGED 3 7 3 4 9 21 20 7 7
miniTambis 3 3 3 3 3 3 3 3 3
pizza 2 2 2 2 2 3 3 3 3
proton 8 12 8 9 15 12 12 12 11
Terrorism 1 5 1 1 5 5 5 1 4
Transportation 13 15 13 14 24 23 23 19 20
University 3 3 3 3 3 3 3 3 4
VeeAlign-edas-iasted 2 2 2 2 12 5 5 2 3
Wiktionary-cmt-confof 3 3 3 3 5 6 6 4 8
Wiktionary-confof-edas 1 1 1 1 3 5 5 5 1

Total 85 109 93 97 193 175 176 168 143

5.4.2. Results about Efficiency

Figure 4 presents the time to compute a diagnosis for each selected ontology. For the
ontology km1500–3500, LogicAlg cannot finish the repair process within the limited time
(i.e., 1000 s).

Figure 4. Time in milliseconds (y-axis) for each incoherent ontology to compute diagnoses using the
model m1 and the threshold 0.5.
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From the figure, we observe that ScoreAlg performs best and is able to finish most of
the processes within 10 milliseconds. BaseAlg performed slightly worse than ScoreAlg, and
it spent less than 100 milliseconds for most of the ontologies. This can be explained by the
fact that BaseAlg applies the ILP-based approach to all MIPS directly while ScoreAlg is based
on those subsets extracted from all MIPS. As the similarities of ScoreAlg and ShapAlg are
similar , their performances are also close. LogicAlg is more time-consuming than all other
algorithms except the two threshold-based ones in most cases. It is mainly due to the usage
of logical reasoning. Take the ontology VeeAlign-edas-iasted as an example. LogicAlg took
about 6 s while others took no more than 4 s. Three signature-based algorithms performed
similarly, and the original one performed slightly better. Two threshold-based algorithms
spent much more time than others since they need to spend time computing a degree for an
axiom over all axioms in the corresponding ontology. The degree is summing the similarity
values between the axiom and others if the values are larger than the given threshold
(i.e., 0.5).

5.5. Results of Comparing Different Thresholds

To better analyze the performances of two threshold-based algorithms, more experi-
ments have been conducted with 10 thresholds: 0.4, 0.45, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85
and 0.9. Since the consumption time for each algorithm with different thresholds has no
big difference, we only present the number of removed axioms (see Table 5). These results
were obtained using the same pre-trained model (i.e., m1).

From the table, it can be seen that ThrEucAlg could achieve better results with higher
thresholds. For instance, when a threshold is greater than 0.75, no more than 90 axioms
need to be removed to restore the coherence of all ontologies, while more than 100 axioms
for the algorithm with the other thresholds. Surprisingly, when the threshold is no less
than 0.85, ThrEucAlg removed the same number of axioms as BaseAlg. It means that all
diagnoses found by ThrEucAlg are minimal in such cases. When checking the experimental
results, we found that the degrees computed by ThrEucAlg are all equal to 1, and thus the
ILP-based approach actually was executed over all MIPS directly. As for ThrCosAlg, when
the threshold is set to be 0.6 and 0.85, better results could be reached. There is no obvious
border to divide the results into good ones and bad ones for this algorithm. Compared to
the two threshold-based algorithms, ThrEucAlg removed fewer axioms than ThrCosAlg in
most cases. However, when the threshold is more than 0.65, ThrEucAlg failed to differentiate
the axioms and associated the same degree to them.

5.6. Results of Comparing Different Models

To observe the influence of different pre-trained models on the results of repairing
ontologies, the algorithms ThrCosAlg and ThrEucAlg were evaluated with the four models
(i.e., m1, m2, m3 and m4). The threshold was set to 0.5.

Figure 5 illustrates the time to compute a diagnosis for each ontology by applying the
threshold-based algorithm with a specific model and a given distance metric. In this figure,
cos-m1 indicates the threshold-based algorithm with Cosine Distance and model m1, and
euc-m1 indicates the threshold-based algorithm with Euclidean Distance and model m1. It
is similar to other algorithms.

In Figure 5, we observe that the algorithm with cos-m4 is slightly more efficient than
the algorithm with other configurations. The algorithms with cos-m1, euc-m1, euc-m3 or
euc-m4 spent relatively more time. Generally speaking, the time difference between these
algorithms is not significant.

Table 6 presents the number of axioms removed by each algorithm with a specific
model. The results reveal that both threshold-based algorithms with m4 remove fewer
axioms than the two algorithms with the other models according to the total number
of removed axioms. In particular, ThrCosAlg with m4 provides more promising results,
and a total of 118 axioms were deleted. Compared with the baseline algorithm BaseAlg,
this algorithm could find minimal diagnoses for 9 out of 20 ontologies. Although both
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algorithms remove the same number of axioms for these ontologies, the axioms removed
may be different. Take the ontology Economy as an example. BaseAlg removed the following
8 axioms:

a1: SubClassOf(HandwovenCarpet TextileProduct)
a2: SubClassOf(Lumber ForestProduct)
a3: SubClassOf(Ginger Vegetable)
a4: DisjointClasses(CapitalGood ManufacturedProduct)
a5: DisjointClasses(Fruit GroceryProduce)
a6: DisjointClasses(GroceryProduce RootVegetable)
a7: DisjointClasses(GroceryProduce Vegetable)
a8: DisjointClasses(AgriculturalProduct Fodder)
ThrCosAlg with the model m4 removed the axioms from a4 to a8 together with the

following three axioms:
a9: DisjointClasses(ForestProduct ManufacturedProduct)
a10: DisjointClasses(HandicraftProduct ManufacturedProduct)
a11: DisjointClasses(Spice Vegetable)

Table 5. Number of axioms removed by two threshold-based algorithms using different thresholds.

Ontology ThrCosAlg with Different Thresholds
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

ALOD2Vec-confof-edas 5 5 5 4 1 1 1 2 1 5 2
ATBox-cmt-confof 2 2 2 1 1 2 1 1 1 1 2
CHEM-A 3 3 3 3 2 4 3 2 1 1 2
dbpedia_2014 1 1 1 1 1 1 1 1 1 1 1
Economy 37 37 36 28 39 39 31 42 28 19 21
Geography 11 11 11 11 11 12 12 14 14 12 14
km1500–3500 38 38 38 38 34 38 36 41 29 31 25
koala 2 2 3 3 3 2 2 2 1 2 2
Lily-cmt-conference 2 2 2 1 1 3 2 2 2 1 1
Lily-edas-ekaw 8 8 8 8 8 8 7 6 6 6 5
MGED 7 7 7 6 6 6 16 21 20 9 16
miniTambis 3 3 3 3 3 3 3 3 3 3 3
pizza 3 3 3 3 3 2 2 2 3 3 3
proton 14 14 12 13 9 10 9 10 9 9 11
Terrorism 1 1 1 3 2 1 1 4 3 4 4
Transportation 20 20 19 19 19 22 23 20 21 23 21
University 3 3 3 3 3 3 3 3 4 4 4
VeeAlign-edas-iasted 3 3 2 3 3 3 4 3 4 3 11
Wiktionary-cmt-confof 6 5 4 3 4 4 3 4 5 8 6
Wiktionary-confof-edas 5 5 5 4 1 1 2 3 4 4 4

Total 174 173 168 158 154 165 162 186 160 149 158

Ontology ThrEucAlg with Different Thresholds
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

ALOD2Vec-confof-edas 2 1 1 3 2 3 3 2 1 1 1
ATBox-cmt-confof 2 1 1 1 2 1 1 1 1 1 1
CHEM-A 2 3 1 1 1 2 2 1 1 1 1
dbpedia_2014 1 1 1 1 1 1 2 1 1 1 1
Economy 31 37 20 15 23 13 8 8 8 8 8
Geography 11 12 13 14 16 13 11 12 9 9 9
km1500–3500 34 37 30 30 31 32 24 21 20 19 19
koala 3 3 3 2 2 1 1 1 1 1 1
Lily-cmt-conference 1 1 2 1 2 3 3 1 1 1 1
Lily-edas-ekaw 6 8 7 5 5 5 4 4 4 4 4
MGED 9 7 7 17 17 10 10 11 5 3 3
miniTambis 3 3 3 3 3 3 3 3 3 3 3
pizza 3 3 3 3 3 2 2 2 2 2 2
proton 9 11 11 11 11 9 8 8 8 8 8
Terrorism 1 4 4 5 5 2 1 1 1 1 1
Transportation 21 22 20 23 16 22 19 16 13 13 13
University 3 3 4 4 4 4 3 3 3 3 3
VeeAlign-edas-iasted 3 8 3 11 8 6 6 2 2 2 2
Wiktionary-cmt-confof 3 5 8 7 6 5 3 3 3 3 3
Wiktionary-confof-edas 6 1 1 6 4 7 2 2 1 1 1

Total 154 171 143 163 162 144 116 103 88 85 85
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Figure 5. Time in milliseconds (y-axis) for each incoherent ontology to compute a diagnosis by
the threshold-based algorithm with different models and distance metrics while keeping the same
threshold of 0.5.

ThrCosAlg with the model m2 removed the same set of axioms as ThrCosAlg with the
model m4. As we can see, axioms from ax1 to a3 represent knowledge in a correct way,
while axioms from a9 to a11 are not very correct. For instance, axiom ax11 means that
Spice is disjoint with Vegetable. However, in fact, those natural spices such as Chinese
prickly ash and coriander belong to vegetables. Therefore, ThrCosAlg with the models
m2 and m4 could differentiate axioms with various degrees, and assign lower degrees to
those problematic axioms. ThrCosAlg with the model m4 performed even better. Take the
ontology Wiktionary-confof-edas as another example. ThrCosAlg with the model m4 only
removed 1 axiom, which is the same as the baseline algorithm, but ThrCosAlg with other
models removed more than 3 axioms.

Table 6. Number of axioms removed by two threshold-based algorithms using different models.

Ontology ThrCosAlg ThrEucAlg
m1 m2 m3 m4 m1 m2 m3 m4

ALOD2Vec-confof-edas 5 3 3 1 1 2 3 3
ATBox-cmt-confof 2 2 1 2 1 2 2 2
CHEM-A 3 3 4 3 1 3 2 1
dbpedia_2014 1 1 1 1 1 1 1 1
Economy 36 8 43 8 20 22 11 14
Geography 11 11 15 11 13 14 15 15
km1500–3500 38 23 29 23 30 32 33 27
koala 3 1 3 1 3 2 2 1
Lily-cmt-conference 2 1 2 1 2 1 4 1
Lily-edas-ekaw 8 9 8 9 7 5 5 5
MGED 7 5 8 5 7 20 6 10
miniTambis 3 3 3 3 3 3 3 3
pizza 3 3 3 3 3 3 2 2
proton 12 12 13 13 11 9 9 9
Terrorism 1 1 1 1 4 5 5 4
Transportation 19 26 21 19 20 17 14 16
University 3 3 4 3 4 4 4 4
VeeAlign-edas-iasted 2 3 9 4 3 2 2 3
Wiktionary-cmt-confof 4 5 5 6 8 7 8 7
Wiktionary-confof-edas 5 6 4 1 1 4 4 4

Total 168 129 180 118 143 158 135 132
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5.7. Discussion and Limitations

In this section, we discuss the main conclusions of our experiments. In particular, we
analyze the main advantages and limitations of our proposed algorithms.

According to our results, the following main conclusions can be derived:

• Compared with other algorithms, BaseAlg can always find a minimal diagnosis, but
it spent slightly more time than ScoreAlg and ShapAlg in most cases. Although no
big difference in these algorithms’ efficiency has been reflected by our experiments,
computing diagnoses based on subsets of all MIPS should be more efficient than that
based on all MIPS directly. Thus, when time is a problem for BaseAlg, ScoreAlg and
ShapAlg would be preferred as they compute a diagnosis based on subsets of all MIPS.

• When logical consequences are considered important, LogicAlg can be used to com-
pute a diagnosis such that removing all axioms in the diagnosis will lose the least
entailments. One main disadvantage of this algorithm is that computing entailments,
even given types of entailments, may be very time-consuming.

• In the case that the usage of entities is considered important, SigCosAlg and SigEucAlg
are good choices, because they consider both syntax and semantics, and remove fewer
axioms than the original signature-based algorithm SigAlg. These algorithms assign
higher degrees to those axioms that have more syntactical overlapping with other
axioms. The embedding-based algorithms further consider semantic relevance.

• For the threshold-based algorithm, the threshold plays an important role. According
to our observations, a value of around 0.5 is a good choice. Furthermore, the threshold-
based algorithm with Euclidean Distance (i.e., ThrEucAlg) often removes fewer axioms
than that with Cosine Distance (i.e., ThrCosAlg), but it cannot distinguish the difference
of axioms when the threshold is more than 0.65.

• Among the four pre-trained models, m1 is the most efficient one. This reflects that its
embedding model “paraphrase-multilingual-343 MiniLM-L12-v2” outperforms other
BERT models used in m2, m3, and m4, according to their efficiency. In addition, m4
provides more promising results with respect to the number of removed axioms. It is
able to not only differentiate the axioms but also remove fewer axioms.

Based on the discussion of the main results, we can summarize the following advan-
tages of our proposed approach: (1) Our embedding-based approach provides a novel
approach to considering semantic relationships among axioms. The source code of our
implementations, together with the data set and experimental results, can be freely down-
loaded for reusing or retesting purposes. This approach is also a flexible framework to
integrate different distance metrics and embedding models. (2) Integrating the embedding-
based ranking strategy with existing ones may be a promising combination to enhance
existing strategies’ effectiveness. SigCosAlg and SigEucAlg are good examples. They com-
bine the traditional signature-based ranking strategy with the embedding-based one and
really reduce the number of axioms to be removed. (3) Through our experiments, we show
that our embedding-based algorithm with the model m4 is a promising choice to remove
relatively fewer axioms and differentiate the axioms with different degrees.

Nevertheless, there exist several limitations to our study. (1) Computing similarities
between axioms will be extremely time-consuming if too many axiom pairs are consid-
ered. Although this process can be performed offline, various strategies to choose axiom
pairs should be considered. (2) It is not easy to select a suitable threshold for given inco-
herent ontologies. According to our experimental results, a suitable threshold has been
recommended. However, it would be dynamically changed when the evaluated ontolo-
gies are updated. (3) It is not sufficient to evaluate the repair algorithms with the time
and number of axioms to be removed. It would be better to compute precision and re-
call for each algorithm based on golden standards, but such golden standards are not
available currently.



Appl. Sci. 2022, 12, 12655 19 of 22

6. Related Work

Various algorithms to repair ontologies have been proposed. Existing algorithms
generally consist of automatic repair algorithms and semi-automatic repair ones, or fine-
grained ones and algorithms to delete whole axioms. Semi-automatic repair (e.g., [48–52])
requires an expert’s participation to decide which recommended axioms should be removed.
Most of these works focus on repairing ontology mappings interactively. When repairing
ontology mappings, those confidence values associated with the correspondences could
help an expert to make a decision. Fine-grained repair algorithms (e.g., [53–58]) only remove
or rewrite parts of an axiom instead of removing the entire axiom. When weakening axioms,
various strategies such as using refinement operators, splitting axioms or applying the
tableaux algorithm. In addition, a few works such as [55] consider weakening axioms with
an expert’s help. In this work, we focus on deleting complete axioms without interaction
of experts.

Many existing repair algorithms rely on ranking axioms by considering their syntax
or logical influence. The authors in [22,26,59] ranked axioms by computing scores. A score
of an axiom corresponds to the number of MIPS or conflicts which contain this axiom. This
ranking strategy was implemented in ScoreAlg. The work in [27] proposed a signature-
based ranking strategy and a logic-based one, which were used in SigAlg and LogicAlg,
respectively. Furthermore, the latter can be extended to allow a user to specify a set of test
cases that describe those desired entailments. The work in [25] introduced a graph-based
method to debug and repair a DL-Lite ontology. The authors ranked an axiom with two
strategies: one computed a score like ScoreAlg, and the other computed logic impact when
removing an axiom, which is similar to the ranking strategy implemented in LogicAlg. The
work presented in [45] proposed a novel ranking strategy and computed the penalty of
an axiom in a conflict set as the sum of inverse proportions to the size of such sets. That
is, if an axiom appears in one conflict set M, the penalty of this axiom is 1

|M| . If it appears
in n conflict sets, its total penalty should be the sum of n penalties. This ranking strategy
has been implemented in ShapAlg. It indicated that different ranking strategies could be
combined in some way to form a hybrid one, such as the strategy used in SWOOP [46].

Another type of ranking strategy makes use of external knowledge. The work in [27]
also proposed another strategy by making use of provenance information like the authors
or reasons for adding an axiom. For instance, an axiom created by a supervisor should be
more important or reliable than that created by a subordinate. The authors in [45] designed
two novel ranking strategies by using background context ontologies. Each axiom can be
assigned a support to represent how much support for an axiom exists in the background
knowledge. Although these strategies are very useful, background knowledge may not be
always available. In this work, we do not consider using external information.

Recently, several works ranked axioms in a special way. The work in [23] ranked
axioms by providing their truth values based on an embedding model. The work in [60]
dealt with the problem of resolving conflicts with a partial order of axioms. The authors
considered that not all axioms were ranked in the same way, and thus the axioms cannot
be compared directly. To deal with this problem, a general notion of logical inconsistency
was defined, and a conflict was stratified into two parts. Finally, a prioritized hitting set
was computed as a diagnosis.

To conclude, most of the existing ranking strategies for ontology repair mainly rely on
the syntax of axioms or logic entailments, while ignoring the semantics of axioms. Although
there exist few works that consider the semantics of axioms, they may not be suitable to
deal with complex types of axioms. Therefore, we propose a novel approach to ranking
various expressions of axioms by using pre-trained embedding models.

7. Conclusions and Future Works

In this paper, we presented an embedding-based approach to repairing ontologies
by translating OWL axioms into natural language sentences. Specifically, the translation
was inspired by the ideas from NaturalOWL, and then various pre-trained models such
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as Sentence-BERT and CoSENT were employed to the obtained sentences for computing
embeddings. After that, the similarities between sentences could be calculated by encoded
vectors. Benefiting from these similarities, three definitions were provided to compute
a degree for an axiom based on the embeddings of axioms in the same semantic space.
Afterwards, a threshold-based repair algorithm and a signature-based one were proposed
to instantiate our embedding-based approach. Finally, we conducted abundant experiments
over 20 real-life incoherent ontologies varying in size of axioms and number of unsatisfiable
concepts. Experimental results indicated that our embedding approach could provide
promising results, especially the threshold-based algorithm with the fourth model is able
to differentiate axioms according to their semantics and remove fewer axioms.

As for future works, we plan to explore how to choose a threshold dynamically
according to similarity distributions and characteristics of various distance metrics. In
addition, the combination of different single-ranking strategies and employing external
knowledge will be considered in order to improve the effectiveness and efficiency of our
approach. We also will consider the parallel diagnosing process to deal with the cases
where an ontology contains too many diagnoses by borrowing the idea from the work [61].
Last but not least, we will study how to provide a friendly user interface to facilitate users
to repair an ontology like the work given in [62].
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