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Abstract: With the rapid development of science and technology and the improvement of people’s
living standards, vehicles have gradually become the main means of travel. The increase in vehicles
has also brought about an increasing incidence of car accidents. In order to reduce traffic accidents,
many researchers have proposed the use of vehicular networks to quickly transmit information. As
long as these vehicles can receive information from other vehicles or buildings nearby in a timely
manner, they can avoid accidents. In vehicular networks, the traditional double connection technique,
through interference coordination scheduling strategy based on graph theory, can ensure the fairness
of vehicles and obtain suitable neighborhood interference resistance with limited computing resources.
However, when a base station transmits data to the vehicular user, the nearby base station and
the vehicular network user may be in a state of suspended communication. Thus, the resource
utilization of the above double connection vehicular network is not sufficient, resulting in a waste of
resources. To solve this issue, this paper presents a study based on earnings learning with a vehicular
network multi-point collaborative transmission mechanism, in which the vehicular network users
communicate with the surrounding collaborative transmission. We use the Q-learning algorithm in
the reinforcement learning process to enable vehicular network users to learn from each other and
make cooperative decisions in different environments. In reinforcement learning, the agent makes
a decision and changes the state of the environment. Then, the environment feeds back the benefit
to the agent through the related algorithm so that the agent gradually learns the optimal decision.
Simulation results demonstrate the superiority of our proposed approach with the revenue machine
learning model compared with the benchmark schemes.

Keywords: vehicular networks; cooperative transmission; reinforcement learning; interference
coordination; driverless technology

1. Introduction

In recent years, with the increasing improvement of living standards, people’s demand
for transportation tools has gradually increased, and the number of civil vehicles has also
been increasing. By the end of 2020, the number of civil cars in China reached 280 million,
and the mass popularization of cars has caused increasingly serious urban traffic jams. The
ensuing traffic safety issues have attracted people’s attention. Even though the government
has come up with new laws and regulations to regulate drivers’ driving behavior, there are
nearly 200,000 traffic accidents in China every year, resulting in a large number of casualties
and property losses. The development of national road traffic should not only pay attention
to the quantity and ignore the quality. While realizing the improvement of people’s living
standard, we should also deal with the social hidden dangers brought by it. Given driver
problems, manual driving can reduce some dangers for traffic safety. Therefore, in order to
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solve the traffic safety hazards caused by the increase in vehicles, people put their eyes on
more intelligent and standardized management of unmanned driving technology [1].

Driverless technology, which allows drivers to safely free their hands and reduce the
incidence of traffic accidents, has always been a key direction in the field of automotive
research. Domestic scholars’ research on unmanned driving technology started in 2014,
while foreign research on it started as early as 2004. Although domestic and foreign experts
and scholars have made many major breakthroughs in unmanned driving technology
and 5G communication technology has become a new driving force for its development,
the key to whether unmanned driving technology can be fully utilized lies in whether
the communication capacity of vehicle-mounted networks can be improved. Without a
high level of in-vehicle communication capability, the adoption of driverless technology
will also be difficult. The vehicular network is an important module for building intel-
ligent transportation, and the successful construction of a vehicular network is of great
significance in solving traffic congestion and reducing the incidence of traffic accidents.
Therefore, the improvement of the communication capability of vehicle networks is the
key field of vehicle network technology research. Cooperative transmission technology is
the breakthrough to improve the communication technology of vehicular networks. The
application of multi-point cooperative transmission technology to the communication of
vehicular networks can effectively save the transmission time of the vehicular network,
improve the transmission efficiency of data and signals as much as possible, and reduce
the probability of transmission errors in the vehicular network and the loss of the wrong
frequency and spectrum.

In the traditional communication and transmission network, all users can only receive
the signal transmitted by a base station, which is a single point transmission. One of
the key technologies of LTE-A is the cooperative service of relay selection with the help
of neighboring vehicle network users. By coordinating the information of multiple base
stations and forming a cooperative overlapping area of base stations to transmit signals to
terminals, the communication efficiency can be improved. The application of multi-point
cooperative transmission technology [2] in vehicular networks can transmit signals to edge
terminals by using adjacent vehicles as relay nodes [3] and occupy communication resources
originally belonging to other vehicular network terminals. The connectivity of a vehicular
network can be greatly improved by adding adjacent vehicles to the communication of the
vehicular network in the form of relay nodes. The selection of relay nodes determines the
performance of the multi-point cooperative transmission system. Therefore, how to better
coordinate transmission relay node selection has become the focus of attention. Nowadays,
with the rapid development of science and technology, various kinds of algorithms emerge
in an endless stream. Machine learning is widely used in the field of artificial intelligence
due to its characteristics of constantly learning to acquire new knowledge or ability and
reconstructing the existing knowledge structure to continuously improve its performance.
Reinforcement learning, as one of the techniques of machine learning, was first proposed
by Minsky in 1954. It is a kind of continuous trial training between agents and the outside
world to learn the optimal strategy that can maximize the reward. “Trial and error” is the
core of reinforcement learning, and the purpose of reinforcement learning is to constantly
obtain benefits from “trial and error”. The reinforcement learning approach is applied to
vehicular network users, so that vehicular network users can learn to obtain communication
benefits in addition to communication. The users near the vehicular network collaborate
in communication, reduce the waste of system resources, and at the same time enhance
the communication rate of vehicles and the base station. In the multi-point cooperative
transmission of vehicular networks, if the method of reinforcement learning can be used
to make idle vehicles constantly learn to obtain benefits and improve the efficiency of
information transmission, it is bound to promote the improvement of the communication
ability of unmanned driving.

As pointed out above, vehicular networks can adopt multiple base stations for a user
with services, which can easily interfere with other cells, occupy large channel resources,
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and require high delay. So, the terminal vehicles begin to use continuous reinforcement
learning to obtain their own benefits. In this paper, our innovation is to utilize the idle
users of the surrounding vehicular networks to carry out self-learning through the Q-
learning algorithm with the help of reinforcement learning and assist the vehicle users of
the vehicular networks to carry out collaborative communication. This method not only
can reduce the interference with other surrounding areas and occupy channel resources,
but also can make full use of system resources and improve the overall performance of
the vehicular networks. To boost the development of self-driving technology, the first
thing to do is to improve the communication ability of the vehicular network coordination.
Therefore, this topic adopts a benefit learning method to discuss how to effectively choose
relay nodes, improve the performance of the coordination transmission system, and finally
realize the vehicular network traffic capacity ascension.

2. System Model and Tool Analysis
2.1. System Model

In this paper, the system model of a vehicular network is built on the basis of a double
link structure. As shown in Figure 1, there are macro base stations and micro base stations
that provide services for vehicle-mounted users and transmit information at the same time.
Macro base stations have wider communication coverage and can provide services for all
users in the cell. However, its communication efficiency is usually low due to the influence
of the system and communication frequency band. The problem of low communication
efficiency can be solved by adding multiple micro base stations in the cell area covered
by macro base stations. Therefore, the terminals have dual link capability, which can
communicate with the macro and micro base stations at the same time for better service.

F1

F2

F3

F4

F5

F6

F7

F8

Acer station M1 Acer station M2noazseaoneshsseesbhdttztotsotso tesotttttātthosessoossootgft

Figure 1. System model.

In order to ensure the quality of communication, more micro base stations are usually
deployed in the cell. However, the micro base stations will interfere with each other and
the communication quality of end users is reduced. In fact, the interference of micro base
stations, especially those at the edge of the cell, mostly comes from the base station of the
adjacent cell. The end users in the edge region are far away from the macro base station of
their own cell and receive a weaker signal, so they are more susceptible to the interference
of the z signal sent by the base station of the adjacent cell.

In order to solve the above problems and improve the communication service quality
of the end users in the edge area, we need to obtain the signal strength and communication
rate received by the end users. For end user i, the signal to interference plus noise ratio
(SINR) [4] received from macro base station g is expressed as follows:

SINRmacro
i =

Pg|h i
g

∣∣∣2
σ2 (1)
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For the terminal covered by the micro base station, the signal to noise plus interference
ratio of the micro base station received by the terminal is shown as follows:

SINRpico
i =

Pe|h i
e

∣∣∣2
∑j 6=e Pj

∣∣∣hj
e

∣∣∣2xj+σ2
(2)

where Pg represents the transmit power of macro base station G located in the center
of the cell, Pe represents the transmit power of micro base station E, and hg

i and he
i

represent the path loss from the macro base station and the micro base station to terminal
I, respectively. œ2 represents the additive white Gaussian noise widely existing in the
environment. For the dual-link network, due to the use of a large number of micro base
station networks of the same system for network coverage, there is serious interference

between the cells. ∑j 6=e Pj

∣∣∣hj
e

∣∣∣2xj is the interference of the neighboring cells to the local
cell, which is also the main objective of our optimization. After the signal to noise plus
interference ratio is obtained, Shannon’s theorem is used to estimate the communication
rate of the communication system in engineering. Shannon’s theorem [5] is as follows:

R = Wlog2(1+
S
N
) (3)

where R is the communication rate, W is the channel bandwidth, and S/N is the noise ratio.
In the approximate estimation, we often use SINR instead of S/N to estimate the

channel performance. Therefore, the limit communication rate of terminal I is estimated
as follows.

Ri= Rmacro+Rpico

= Wmacrolog2(1 + SINRmacro
i )+Wpicolog2

(
1 + SINRpico

i

) (4)

The communication rate of terminal I consists of two parts. One part is the communi-
cation rate provided by the macro base station, and the other part is the communication
rate provided by the micro base station. Based on the dual-connection technology, users
can obtain services from different standard base stations at the same time, which greatly
improves the quality of service of users and improves the utilization rate of base stations.

2.2. Multi-Point Cooperative Transmission Mechanism for Vehicular Users

In the vehicular network, the core idea of multi-point cooperative transmission is
that the vehicular network users make use of other vehicular network users to cooperate
when communicating with the base station. The multi-point cooperative transmission can
transmit signals to the target which is unable to communicate normally due to serious
interference or high path loss. It also can establish communication links in special occasions
and improve communication efficiency by coordinating the information of multiple neigh-
boring vehicular network users and carrying out multi-point cooperative transmission
services through other neighboring vehicular network users. In the vehicular coopera-
tive network, as shown in Figure 2, when some vehicular network users are in a state of
suspended communication—that is, when they do not effectively communicate with the
base station—other vehicular network users in the surrounding can use it to carry out
cooperative communication services when communicating with the base station [6]. This
technology not only occupies the original channel resources of other cells, but also has high
technical requirements for capacity, delay, and signaling overhead. This paper studies the
collaborative multi-point transmission for the vehicle network users by using surrounding
suspended communication in particular, which can make full use of channel resources,
improve the transmission rate of the normal communication vehicle network users, and
minimize the interference to vehicular networks users in other areas. Therefore, the appli-
cation of multi-point cooperative transmission technology in the communication between
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users and base stations in such vehicular networks can improve the signal transmission
efficiency and the overall performance of the system.
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Figure 2. Vehicular network collaboration model.

2.3. Reinforcement Learning of Q-Learning

In reinforcement learning, the agent makes a decision and changes the state of the
environment. The environment feeds the benefit back to the agent through the related
algorithm so that the agent gradually learns the optimal decision. Among them, in Q-
learning [7], the agent makes decisions through the Q matrix, which is a value matrix with
the matrix table header of state and action. The agent checks its own state, selects actions
according to the matrix values corresponding to all actions in the corresponding state
column, and reacts to the environment. The environment feeds back the reward matrix
and modifies the probability map of the corresponding action by changing the Q matrix in
different states. The corresponding Q matrix update expression is as follows:

Q(st, at) = (1− a)Q(st, at)+a(r t+1+γmaxaQ(st+1, a)
)

(5)

where a is the learning rate and rt+1 is the reward matrix of the feedback from the environ-
ment. Noticing that Q-learning algorithm can apply for coordinated scheduling strategies
in different scenarios and obtain the best balanced operation strategy [8], we utilize it here
to achieve greater advantages in solving complex learning models.

3. Joint Cell Anti-Jamming Map Based on Dual Connection
3.1. Interference Graph Model Based on Graph Theory

As the network environment becomes more and more complex, it is difficult to com-
plete the anti-interference task by simply using the traditional dual-link network technology.
Therefore, it is necessary to use new anti-jamming mechanisms and related algorithms. In
the traditional dual-link vehicular network technology model, the interference between
cells is mainly from the signal transmitted by the base station of the adjacent cell. We
can show the interference relationship of the cell cluster of the anti-interference algorithm
implemented in the system model, as shown in Figure 3. In the joint interference graph
based on graph theory, we first take the cell as the node of the graph and use edges to
connect the nodes of neighboring cells with interference relations to form an undirected
graph. Since the graph is planar, according to the four-color theorem [9], the maximum
clique size of the graph is 4. In addition, in the conventional cellular network layout, if the
base station can meet the maximum coverage area, the number of neighboring cells of each
cell is 6; that is, in the conventional cellular network inter-cell interference diagram, the
maximum cell size is 3.

In order to preferably solve the complex problem of the inter-cell interference algo-
rithm, first, the graph is clustered [10]. As shown in Figure 3, pairwise adjacent base station
nodes constitute the base station clique, and we need to conduct maximum clique searches
on the cell interference diagram in Figure 3. For example, in Figure 3, nodes 4, 5, and
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7 form a cluster of users and the cluster can independently execute the proportional fair
scheduling algorithm, which schedules interval interference coordination [11] based on
time domain segmentation. However, cluster {1, 4, 5} and cluster {4, 5, 7} will not be able
to perform this anti-jamming algorithm at the same time. This is because the same two
clusters of the launch base station {4, 5} cannot run two different scheduling policies at the
same time.
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In order to solve the conflict problem of the cluster, which is the scheduling strategy,
we designed a conflict graph. In Figure 4, {A, B..., H} represents the cluster in Figure 3.
For example, point A represents the {1, 4, 5} cluster in Figure 3, point B represents {1, 2, 5},
and so on. Moreover, points A and B are connected by an edge because they share nodes
{1, 5}. If the nodes in Figure 3 are not connected, then the clusters in Figure 3 represented
by these nodes can run their respective scheduling algorithms simultaneously. Figure 4
shows that the solution problem of this cell is a maximum clique problem. Through the
maximum clique search problem, the maximum clique approximate search algorithm for
the inter-cell interference graph of the cellular network and the heuristic search algorithm
for the non-planar graph are given as follows.
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3.2. Maximum Clique Search Algorithm for Inter-Cell Interference Graph

In Figure 3, the inter-cell interference graph constructed by the honeycomb structure
is represented by a planar graph. We define the maximal clique here as the corresponding
correlation graph if it is not contained by any other clique, i.e., it is not a proper subset
of any other clique [12]. Because of its honeycomb structure, the size of the node groups
connected pairwise in this kind of graph is at most 3. That is, the size of the maximal clique
is at most 3 and each mesh represents a maximum clique. In other words, the corresponding
maximal clique can be obtained by searching all the mesh in the graph.

When searching the maximum clique of the graph, which means searching the mesh,
we first need to obtain the position coordinates of all the base stations and construct the
interference graph G(V,E). In graphG, node set V is composed of each base station, while
edge set E is composed by connecting adjacent nodes with interference relations. Then,
the above nodes are selected one by one as the origin of the plane rectangular coordinate
system to form the plane rectangular coordinate system, and all nodes connected with the
origin are added to node set Cvi. By calculating the anti-clockwise angle between the nodes
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in Cvi and the horizontal coordinate axis, the corresponding included angle set Avn can be
obtained. In this way, we can derive Con(Cv1, Cv2... The Cvn) and Ang(Av1, Av2,...,Avn).
By sorting Conbased on Ang, we can obtain all maximal cliques of the interference graph.
The process of the algorithm is detailed by Algorithm 1.

Algorithm 1 Cluster Searching Algorithm for Interference Graph

1: Input: G(Vn, Em), Con(CV1, CV2,...,CVn), Ang(AV1, AV2, ...,AVn)
2: for i = 1 to n do
3: K = length(CVi)
4: while K ≥ 1 do
5: for j = 1 to K do
6: if AVi (j) >AVi (j + 1) then
7: temp = AVi (j + 1)
8: AVi (j + 1) = AVi (j)
9: AVi (j) = temp
10: temp = CVi (j + 1)
11: CVi (j + 1) = CVi (j)
12: CVi (j) = temp
13: end if
14: end for
15: K = K − 1
16: end while
17: end for
18: for i = 1 to n do
19: for j = 1 to length(CVi) do
20: Put {Vi,Vj,Vj+1} into Cli
21: end for
22: end for
23: Delete the repeating items of the Cli
24: Output: Cli

3.3. Maximal Clique Approximate Search Algorithm

In order to resolve the problem that clusters with the same nodes can be simultaneously
scheduled, we propose the heuristic search algorithm for the maximum clique approximate
search, and the algorithm failure caused by the vehicular network not arranged according
to the cellular network structure can be avoided when the complement graph of the conflict
graph composed of the cluster set is searched for the maximal clique. Therefore, firstly, all
nodes in the graph are traversed and all nodes connected to the visited nodes are put into
the alternative point set Cd. The visited nodes are put into the point set Cm. After selecting
the largest node in Cdand checking whether it is connected to all Cmnodes, we add it to
Cm if so. If not, the node is not added and then deleted. We iterate over and over again
until Cdis an empty set. The maximum cliques in the graph can be searched out as much
as possible by first checking the node with the largest degree, and all nodes are traversed
once to ensure the inter-cluster fairness of all cell clusters. The process of the algorithm is
detailed by Algorithm 2.

By Algorithm 1, the cell cluster aggregation Cliunder the interference graph is obtained
in a finite time complexity. By Algorithm 2, we can obtain the maximum clique Cmof the
scheduling conflict graph complement graph. Through Cliand Cmgiven in Algorithms
1 and 2, we can further explore how to schedule the base station to maximize the user’s
performance and maintain the scheduling fairness among users.
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Algorithm 2 Cluster Searching Algorithm for Conflict Graph

1:Input: Gcol (V,E)
2:n = length(V)
3:Cm = Ø
4:for i = 1 to n do
5: Cd = Vi
6: Nv = search_adjacent_node(Vi)
7: K = length(Nv)
8: while Nv != Ø do
9: Node = Search_max_degree(Nv)
10: if cluster_judgement(Node, Cd) = =1 then
11: Cd = Cd∪ Node
12: end if
13: Delete Node from NV
14: end while
15: Cm = Cm ∪ Cd
16:Delete the repeat item in Cm
17:Output:Cm

3.4. Interference Coordination Algorithm Based on Interference Graph

In the interference coordination algorithm based on the interference graph, we use X
to represent the sequence number of the conflicting clique, and then the effective communi-
cation rate of user I in clique X is as follows.

Rx
i =

t

∑
l=1

px
i (l)r

x
i (l) (6)

where t is the feasible scheduling permutation and combination in clique xand repre-
sents the communication rate that user i can achieve when scheduling in clique x with
combination l.

In the interference coordination algorithm, for any user, the actual communication
rate is composed of three parts. The first part is the rate achieved by the scheduling conflict
clique when it uses the anti-jamming mechanism to schedule users. The second part
is the rate achieved when the conflict clique does not use the interference coordination
mechanism. The third part is the communication rate provided by macro base station.
Therefore, for user i, the actual statistical rate is as follows.

Ri =
o

∑
x=1

pxRx
i +

X−o

∑
x=1

pxppico
i rpico

i +pmacro
i rmacro

i (7)

where X represents the set of all maximal cliques in the complement graph of scheduling
conflict graph and o represents the set of maximal cliques containing user x in X, which
is a subset of X. Representing the scheduling ratio corresponding as cliqueX and the
statistical communication rate of user i can be obtained when all maximal cliques in o are
not scheduled.
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Based on (7), we can express the statistical communication rate of all users as our
optimization model as follows.

maximize
n
∑

i=1
log

1 
 

 f0  

 

 
f0 

 

(
o
∑

x=1
pxRx

i +
X−o
∑

x=1
pxppico

i rpico
i +pmacro

i rmacro
i )

s.t.
X
∑

x=1
px= 1

n
∑

i=1
ppico

i = 1
n
∑

i=1
pmacro

i = 1

px> 0, ∀x
pmacro

i > 0, ∀i
ppico

i > 0, ∀i

(8)

The system function in Equation (8) is a composite function, which includes both
the scheduling ratio of the maximal clique in the complement graph of the conflict graph
and the scheduling ratio of the permutation and combination of each scheduling in the
corresponding maximal clique. Therefore, as long as (8) can be solved, the problem of
obtaining the optimal network performance in a limited time and the problem of maximiz-
ing the performance of which cliques and which users can be served can be solved. The
joint interference coordination mechanism can be obtained. In fact, (8) is an optimization
problem under the constraints of equality. Its variable is the scheduling ratio of each conflict
clique, and the scheduling ratio of different clique scheduling combinations is implied
in Rx

i , which allows us to give the scheduling ratio of the conflict clique. Regarding the
operation of priority scheduling mode pairs, we first give the priority iteration formula of
the conflict clique:

px =
n

∑
i=1

Rx
i

Ri
(9)

where Ri
x is the cumulative average rate of user iandRi is the cumulative average rate of

user i when scheduling conflict clique x. In order to enhance the comprehensive perfor-
mance of communication system users, we select the highest priority conflict to implement
group scheduling between fairness and overall performance through continuous iteration
of (9). It can be solved when there is a group interference coordination-related operation
scheduling conflict in the limited time complexity to achieve optimal network performance.

In order to solve the problem that users in a scheduling conflict clique should be
served to maximize the system performance, we need to further expand (8) as follows to
solve the scheduling combination:

maximize
n
∑

i=1
log

1 
 

 f0  

 

 
f0 

 

(
o
∑

x=1
px

t
∑

l=1
px

i (l)r
x
i (l) +

X−o
∑

x=1
pxppico

i rpico
i + pmacro

i rmacro
i )

s.t.
X
∑

x=1
px= 1

t
∑

l=1
px

i (l) = 1,∀x, i
n
∑

i=1
ppico

i = 1
n
∑

i=1
pmacro

i = 1

px> 0,∀x
px

i (l)> 0,∀x, i, l
pmacro

i > 0,∀i
ppico

i > 0,∀i

(10)
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In (10), Equation (6) is used to expand in (8) to solve the scheduling combination in
each maximal clique.

For scheduling combinations in any maximal clique, we use the same method to solve
the priority iteration formula as the following section, and the corresponding priority
scheduling mechanism can be obtained as

ρx
i = ∑

t∈x

Rx
i (k)

Ri(k− 1)
(11)

ρmacro
i =

rmacro
i (k)

Ri(k− 1)
(12)

4. Collaborative Transmission Mechanism Based on Q-Learning for
Vehicular Networks
4.1. Selection of Reinforcement Learning Algorithm

In reinforcement learning, there is always a quandary of exploitation dilemma [13].
Only by forming a compromise among explorations can we achieve a positive learning
effect in practical applications. Among them, there are two commonly used algorithms
for exploration. One of them is the greedy algorithm [14], in which the agent directly
selects the action with the highest value in the corresponding state as the decision and the
environment uses the reward matrix to feedback the Q matrix. This algorithm needs to set
a certain exploration probability and the agent randomly selects the action to avoid falling
into the local extreme value in the exploration state. The details can be found in Algorithm
3 as follows.

Algorithm 3 Q-learning algorithm 1 (ε-greedy)

1: Initialize Q(s,a) arbitrary
2: Repeat (for all episode):
3: if random < Pinvestgate
4: Random take action a
5: else:
6: Take action a which is the greatest in Q(s’,a)
7: Q(st, at) = (1− a)Q(st, at)+a(r t+1+γmaxaQ(st+1, a)

)
8: Update s’

The other is the softmax exploration algorithm [15], in which the agent must normalize
the probability of each action according to the softmax function. The details can be found
in Algorithm 4 as follows.

Algorithm 4 Q-learning algorithm 2 (softmax)

1: Initialize Q(s,a) arbitrary
2: Repeat (for all episode):

3 : A = maxai
eQ(s

′
,ai)

∑n
j=1 eQ(s

′
,aj)

4: Take action a correspond with A
5: Q(st, at) = (1− a)Q(st, at)+a(r t+1+γmaxaQ(st+1, a)

)
6: Update s’

From the above, the greedy method is adopted to realize the collaboration between
collaborative multi-point transmission and joint interference coordination mechanism in
vehicular networks, and so we select it in this paper.

4.2. Multi-Point Collaborative Transmission with Revenue Learning

Multi-point cooperative transmission is a communication operation mechanism that
uses other neighboring terminals to send signals to another terminal to improve the signal
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to noise ratio of the target terminal. It was introduced earlier and will not be repeated
here. Under the joint anti-interference modulation, some vehicular network users will be
idle at some moments. Obviously, if these idle vehicular network users can be used to
cooperate with the surrounding vehicular network users for communication, the overall
performance of the vehicular network system will be further improved. However, since
the vehicular network of the multi-point collaborative transmission mechanism needs
to cooperate with the joint interference coordination mechanism, we use idle vehicular
network users in the process of scheduling with the traditional arithmetic based on the
utility function optimization, resulting in too many variables and a cumbersome process of
calculation. Moreover, in the large-scale network, this will lead to computational resources
and cost too much. Therefore, the method of revenue self-learning [16] is adopted in
this paper to conduct scheduling among vehicular network users; that is, the vehicular
network users can choose the optimal relay point for cooperation service through the
revenue learning mechanism. This paper proposes a reinforcement learning algorithm of
Q-learning, which is combined with the vehicular network of the joint anti-interference
coordination algorithm. The vehicular network can continuously carry out self-learning
and obtain profits to schedule cooperative multi-point transmission services and make full
use of idle base stations to improve the overall performance of the system.

When using the reinforcement learning algorithm of Q-learning, we should fully
understand what the states, actions, and rewards are, and fully understand the Q matrix
and payoff matrix of the learning scheduling strategy. Among them, the state represents
the current connection status between each vehicular network user. The action represents
the vehicular network user who will be taken to the next step to connect the user which
has temporarily stopped communication by the vehicular network. That is, they cooperate
to serve a vehicular network user. The reward is about the communication rate of the
system communication. The Q matrix is constructed by learning the scheduling strategy.
The vehicular network user at a certain time slot may be communicating with the base
station or not communicating temporarily. They can take actions such as connecting with
the cell base station, stopping the communication and not cooperating to serve other users,
cooperating to serve other users 1, cooperating to serve other users 2, etc. The state is the
permutation and combination of the connection running in the current cell cluster. For
each base station, its Q matrix is a matrix of size ((number of users in the cell cluster +1)
* Number of users in the cell cluster). For a cell cluster, the Q matrix of a base station is
shown in Table 1:

Table 1. Q matrix example of a base station in a cell cluster.

Actions
Combination

User 1 User 2 User 3 . . . User n

Leave unused
User 1 -
User 2 -
User 3 -

... -
User n -

In the joint interference coordination mechanism, the optimization objective is the
logarithm sum of the effective rates of each user. So, we use the logarithm sum of the
effective rates of all users in the cell cluster as the value of the payoff matrix to keep
consistent with the algorithm in the joint interference coordination mechanism. Considering
the practical problems in statistical calculation, we use the logarithm sum of the cumulative
average rate of each user in the cell cluster to construct the payoff matrix and Q matrix;
that is, we use ∑m

i=1 ln

1 
 

 f0  

 

 
f0 

 

(Ri) as the feedback value of the payoff matrix, where Ri is the
communication rate of user i in the cell cluster. The specific algorithm calculation process is
shown in Algorithm 5.
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Algorithm 5 Collaborative multipoint transmission collaborative algorithm flow

1: Initialize Q(action, combination) for all the cluster arbitrary
2: Repeat (for all time_slots):
3: Initiate process below for the cluster scheduled in this time slot:
4: if random < Pinvestgate
5: Random take action for all the unused base station in the cluster
6: else:
7: Take action with the greatest value in Q for all the stations
8: Update Q as below:
9: Q(actiont, combinationi) = (1− a)Q(actiont, combinationt)

When scheduling the joint interference coordination mechanism, the idle base station
updates the Q matrix in each time slot. The specific Algorithm 5 is as follows.

1. Determine the coordinates of the small cell network and draw the interval interfer-
ence diagram.

2. According to the obtained interval interference graph, conduct a maximum clique
search of the interval interference graph to obtain a scheduling conflict graph. The corre-
sponding learning matrix (Q matrix) is initialized for all cell clusters.

3. The anti-joint interference algorithm is used to conduct the maximum clique
approximate search on the complement graph of the scheduling conflict graph, and all
combinations of maximum cliques are solved with priority, and the maximum clique with
the highest priority is scheduled to execute the anti-interference scheduling algorithm

4. Calculate the priority of different scheduling combinations of the maximum clique
executing the anti-jamming scheduling algorithm through (11) in the second largest point,
and the combination with the highest scheduling priority. Use (12) of the second largest
points to calculate the priority of each user to connect to the macro station, and schedule
the link with the highest priority.

5. According to the Q matrix of the scheduled cell cluster and the cooperative multi-
point transmission cooperation algorithm, the cooperation decisions to be executed by all
idle vehicular network users are determined.

6. Record the actual communication rate of each user in the time slot and update the
revenue matrix.

7. Repeat 1–6.
The implementation of the above algorithm is based on the joint multi-point coop-

erative transmission and joint interference coordination mechanism under reinforcement
learning. Algorithm 5 can effectively improve the call rate of vehicular network users and
then the global communication performance.

5. Simulation Results and Comparative Analysis

In the simulation parameter setting, a square area with 200 m side length is assumed
as the space of the communication simulation [17] and a square space with 50 m side length
is assumed as the hotspot area which is covered by a high-density small cellular network.
The user positions are randomly distributed in this space to simulate the real situation.
Meanwhile, we use the cost-231 Walfisch–Ikegami model [18] as the channel attenuation
model. The channel attenuation model is Llos(dB)= 194.64 + 26log

1 
 

 f0  

 

 
f0 

 

(d) for the macro base
station and L0(dB)= 189.65 + 20log(d) for the micro base station and vehicular network
users. Other parameters are shown in Table 2.
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Table 2. Parameter settings.

Parameter The Values

Acer station transmit power 46 dbm
Transmit power for micro base station and

vehicular network users 20 dbm

Number of Acer stations 1
Number of micro base stations 4 ≤ U ≤ 8

Number of users Twice the number of micro base stations
Small scale fading A lognormal distribution with a mean of 3 dB

Acer station bandwidth 20 Mhz
Bandwidth for micro base stations and

vehicular network users 100 Mhz

The communication rate of the vehicular network system is the sum of the rate of
the macro base station and the rate of the micro base station, represented by ∑m

i=1 Ri =

Wmacrolog2
(
1 + SINRmacro

i
)
+ Wpicolog2

(
1 + SINRpico

i

)
, where m represents the number

of cell users. In the multi-point cooperative transmission mechanism, the communication
rate of the system is the sum of the rate of the macro base station, the rate of the micro base
station, and the cooperation rate of the vehicular network users, which is represented
by ∑m

i=1 Ri = Wmacrolog2
(
1 + SINRmacro

i
)
+ Wpicolog2

(
1 + SINRpico

i

)
+ Wuserslog2(1 +

SINRusers
i ). In Figure 5, the throughput of different network sizes is compared with

different algorithm strategies. It can be seen from the figure that the space complexity
increases with the increase in network scale. With the increase in the complexity of the
network scale, the throughput of the joint anti-interference mechanism system gradually
widens the gap with the throughput of the traditional dual-link mechanism, and the joint
anti-jamming algorithm we adopted makes the total rate of the system rise faster. However,
under the mechanism of the joint anti-jamming algorithm, there will always be vehicular
network users temporarily stopping communicating with the base station. In order to
make full use of these idle vehicular network users, we propose a multi-point cooperative
transmission mechanism algorithm based on revenue learning. According to Figure 5, on
the basis of the joint anti-interference algorithm, the multi-point cooperative transmission
mechanism based on reinforcement learning algorithm is added. According to the overall
throughput of the system, the system throughput of the multi-point cooperative transmis-
sion mechanism based on reinforcement learning algorithm is greater than that based on
the joint anti-interference algorithm.
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In the vehicular network system, the average throughput of a cell is represented
by

(
∑m

i=1 Ri = Wmacrolog2
(
1 + SINRmacro

i
)
+ Wpicolog2

(
1 + SINRpico

i

))
/N, where N rep-

resents the total number of cell base stations. In the multi-point cooperative transmission
mechanism, the average throughput of a cell is represented by (∑m

i=1 Ri = Wmacrolog2(1 +

SINRmacro
i ) + Wpicolog2(1 + SINRpico

i ) + Wuserslog2(1 + SINRusers
i )))/N. In Figure 6, with

the increase in the number of cell users, the average throughput rate of the cell gradually
decreases, which is caused by the increasing interference of the interval. Our proposed joint
anti-jamming algorithm mechanism can effectively suppress the interference between cells,
and the throughput decreases more slowly than the traditional double-link technology. In
addition, the average throughput of the cells decreases more slowly than before under the
multi-point cooperative transmission mechanism with reinforcement learning.
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Figure 7 shows the overall system throughput improvement rate of vehicular network
cooperative transmission mechanisms based on revenue learning and traditional vehicle
network double connectivity, respectively. The throughput increasing rate of our vehicular
network cooperative transmission mechanism is based on revenue learning and joint
anti-interference mechanisms. We can clearly see that the system throughput growth
rate of our collaborative transmission mechanism based on revenue learning is basically
positive in terms of the number of base stations compared with the other two mechanisms.
Therefore, from Figures 5–7, it is observed that the double link technique with a multi-
point cooperative transmission mechanism based on reinforcement learning has obvious
advantages compared with traditional joint and anti-jamming technology.

However, if only the throughput of the system is considered, it is easy to ignore the
fairness of scheduling among users. In order to characterize the fairness of networks based
on random topology [19], ∑m

i=1 ln

1 
 

 f0  

 

 
f0 

 

(Ri) is used as a fairness index [20] to test the fairness
differences of networks based on random topology when different scheduling policies are
used, where Ri is the average rate of users. Figure 8 shows the comparison of fairness
coefficients under no policy. It can be seen from the display analysis of the data that the
fairness of both the joint anti-interference coordination mechanism algorithm and the multi-
point cooperative transmission mechanism under revenue learning is much better than that
of the traditional double-link technology. Among them, although the use of multi-point
cooperative transmission algorithm in scheduling the idle base station to send signals to
other cells, the users will cause a certain degree of interference with the network. However,
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after several rounds of learning, the Q matrix can gradually converge to a better value so as
to make a reasonable decision in multiple scheduling. It can be seen from Figure 8 that the
multi-point cooperative transmission mechanism of a vehicular network based on revenue
learning is better.
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In brief, the simulation results show that the overall throughput of our proposed
collaborative multi-point transmission mechanism has an average growth rate of 7.00% in
different base stations compared with the traditional dual-link vehicular networks. Against
the joint anti-jamming mechanism, the overall throughput of our proposed collaborative
multi-point transmission mechanism has an average growth rate of 3.17% with different
base stations.
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6. Conclusions

In this paper, we have presented a cooperative transmission mechanism based on
revenue learning with a kind of traditional double link technology for vehicular networks.
Under the premise of combining algorithms for a joint interference mechanism and the
income from the learning mechanism of multi-point cooperation transport, the proposed
strategy improved the average throughput and fairness for the scheduling vehicular users.
Simulation results show that our operative transmission mechanism based on revenue
learning significantly obtains better performance compared to the conventional existing
schemes, and the low-complexity suboptimal approaches can adequately balance the
performance and complexity. Our study still has some limitations, e.g., the static models
were randomly generated by the on-board network users. The dynamic revenue learning
model of in-vehicular networks will be investigated in the future.
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