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Abstract: Generalized zero-shot learning (GZSL) aims to classify classes that do not appear during
training. Recent state-of-the-art approaches rely on generative models, which use correlating seman-
tic embeddings to synthesize unseen classes visual features; however, these approaches ignore the
semantic and visual relevance, and visual features synthesized by generative models do not represent
their semantics well. Although existing GZSL methods based on generative model disentanglement
consider consistency between visual and semantic models, these methods consider semantic con-
sistency only in the training phase and ignore semantic consistency in the feature synthesis and
classification phases. The absence of such constraints may lead to an unrepresentative synthesized
visual model with respect to semantics, and the visual and semantic features are not modally well
aligned, thus causing the bias between visual and semantic features. Therefore, an approach for
GZSL is proposed to enhance semantic-consistent features and discriminative features transformation
(ESTD-GZSL). The proposed method can enhance semantic-consistent features at all stages of GZSL.
A semantic decoder module is first added to the VAE to map synthetic and real features to the
corresponding semantic embeddings. This regularization method allows synthesizing unseen classes
for a more representative visual representation, and synthetic features can better represent their
semantics. Then, the semantic-consistent features decomposed by the disentanglement module and
the features output by the semantic decoder are transformed into enhanced semantic-consistent
discriminative features and used in classification to reduce the ambiguity between categories. The
experimental results show that our proposed method achieves more competitive results on four
benchmark datasets (AWA2, CUB, FLO, and APY) of GZSL.

Keywords: generalized zero-shot learning; disentangled representation; semantic consistency;
enhanced features

1. Introduction

The high-speed development of deep learning is dependent on a large amount of
labeled data. However, in the real world, the collection of large-scale labeled samples is a
very difficult problem, and some specific categories do not have a large number of labeled
samples, such as species with endangered statuses, and sample information with respect to
these species is extremely difficult to obtain. In addition, canonical deep learning models
can only recognize categories that have already been observed during the training phase
(seen classes) and cannot recognize classes that have not been seen by the model (unseen
classes). It is a challenge to train the model by using only samples from the seen classes to
recognize samples from the unseen classes.

Humans can use previous experiences to quickly learn new concepts. For example,
suppose a child has never seen a zebra (zebra is an unseen class to child), but he knows
that a zebra is a horse-like animal with black and white stripes (horse is a seen class to
child); then, when he sees a zebra for the first time, he usually recognizes it as a zebra [1].
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This is the core idea of the zero-shot learning approach, which is to use common sense
or prior knowledge for deductive reasoning. The zero-shot learning (ZSL) [2] method
provides a good solution to the above challenges. The traditional ZSL approach is based
on the assumption that the test set contains only unseen classes, which is very easy to
violate in reality. Therefore, a generalized zero-shot learning (GZSL) [3] approach emerged
that is broader and more challenging than ZSL; that is, the test set contains seen and
unseen classes.

There is a challenge in combining the knowledge learned by humans with the model’s
rules. Ranaldi et al. [4] proposed a new vision of knowledge in AI models based on a
combination of rules, learning, and human knowledge. This study attempts to provide
"form" to the origins and development of artificial intelligence and thoroughly considers the
ability of neural networks to learn from so-called hooks. GZSL is a method that combines
human knowledge with model inference. Recent GZSL classification methods [5–10] are
usually based on generative models, such as generative adversarial networks (GAN) [11]
and variational autoencoder (VAE) [12], etc. The goal of the generative model approach is to
optimize the difference between real and generated data. Based on the sliding mode control,
Gohari et al. [13] proposed a new strategy for a self-adjusting boundary layer using a robust
controller to prevent the chattering phenomenon; this method can effectively suppress the
transmitted noise and maintain the consistency of the system. Some other works [14,15]
use GAN to generate unseen features and also design auxiliary modules, such as decoders,
classifier, etc. The reconstruction of semantic embeddings is performed during training to
establish cycle-consistent constraints, and this auxiliary module allows the a generative
model to synthesize semantic-consistent features. However, these constraints are only used
in the training phase and are discarded in the classification phase; they are rarely used in
VAE-based methods. These modules can synthesize discriminative features in the feature
synthesis phase and can reduce ambiguities between categories in the classification phase.
SDGZSL [10] learns a VAE by instances of the seen classes and the corresponding semantic
embedding and then synthesizes the corresponding instances for the unseen classes by the
trained VAE and trains a disentanglement module together with the seen classes instances
to separate semantic-unrelated and semantic-consistent features. However, the focus on
semantic-consistent in this study is only in the training phase, and semantic consistency
is neglected in the feature generation and classification phases, resulting in synthesized
unseen classes instances that do not represent their semantics well and visual features and
corresponding semantic embeddings that are not well aligned in the modalities. Using only
one module to extract semantic-consistent features is often not enough; the supervision
of the corresponding semantic information is also missing in the disentangling module.
Therefore, it will lead to the problematic domain shifts.

To solve the above problems, we improve the SDGZSL method and propose an
disentanglement generalized zero-shot classification method involving enhanced semantic-
consistent and discriminative feature transformation (ESTD-GZSL). A semantic decoder
is first added to decode the seen class instances and the synthesized instances of unseen
classes back into the semantic space, by which we can make the synthesized instances
better represent their semantics, enhance the alignment of the two modalities, and reduce
the offset between visual and semantic features. Then, we feed the output of this decoder
as a supervised signal into the disentanglement auto-encoder to reconstruct visual features.
Finally, since the semantic decoder is trained with cycle-consistent loss, we consider that the
output obtained by the visual features via the semantic decoder is also semantic-consistent.
Therefore, we further improved the classification module of the method. That is, general-
ized zero-shot classification is performed by enhanced semantic-consistent discriminant
features. Our source code is available at https://github.com/HanAccount/ESTD-GZSL
(accessed on 6 December 2022). The proposed approach is based on SDGZSL [10] with the
following contributions:

• In order to alleviate the domain shift problem. An additional semantic decoder
structure is added to enable the generator synthesized instances to better represent

https://github.com/HanAccount/ESTD-GZSL
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their semantics, strengthen the semantic and visual alignment, and reduce the bais
between visual and semantic.

• To enhance the ability of the disentanglement module to break down semantic consis-
tency, we input the semantic decoder output as a supervised signal into the feature
reconstruction of the disentanglement auto-encoder.

• We improve the generalized zero-shot classifier by introducing transformation discrim-
inative features in the classification stage and splicing semantic consistency features
output from the semantic decoder and semantic consistency features from the disen-
tanglement module decomposition to enhance semantic consistency and reduce the
ambiguity between different categories.

• The proposed method achieves more competitive results on four datasets in GZSL
than baseline.

2. Related Work
2.1. Generalized Zero-Shot Learning

The recently advanced GZSL approach is implemented by generative models, which
can synthesize their visual features by semantically embedding unseen classes. With these
synthetic visual features of unseen classes, the ZSL problem becomes a relatively simple
supervised classification problem. The classifier of seen classes in [14] is replaced by the
integration of decoder and cycle-consistent loss [16], and CADA-VAE [17] introduces cross-
reconstruction and distribution alignment loss to align the potential representations of the
two modes using two VAEs. f-VAEGAN-D2 [18] combines the advantages of VAE and
GAN by sharing the encoder of VAE and the generator of GAN to synthesize features.
FREE [7] proposes a feature reinforcement approach that uses self-adaptive margin center
loss to reduce the bias between the dataset used for training backbone and the GZSL
task dataset. OT-GZSL [19] establishes optimal transmissions between synthetic and real
feature distributions, while CE-GZSL [20] proposes a hybrid GZSL framework that mixes
generative and embedding-based approaches using contrast learning, and TF-VAEGAN [6]
proposes a feedback module that feeds the decoder output back to the generator. RPGN [21]
proposes a residual-prototype-generating network to extract the residual visual features
from the original visual features and to synthesize the prototype’s visual features associated
with semantic attributes by a disentangle regressor.

2.2. Disentangled Representation Learning

Traditional disentangled representation learning is performed by decomposing the
original features into multiple mutually independent factors via an encoder–decoder
structure [22]; generally speaking, the better the feature representation ability of the disen-
tanglement, the better the learning ability of the model. β-VAE [23] leverages to balance
the independence and reconstruction performance of the decoupling factor by adjusting
the weights of the KL term. FactorVAE [24] suggests that the distribution of represen-
tation be factorial to decompose features. To achieve cross-dimensional independence,
DLFZRL [25] proposes a hierarchical decomposition method to learn distinguished latent
features. InfoGAN [26] achieves disentangling by maximizing the mutual information
between latent and original feature variables. Li et al. [27] proposes a new classification
method, disentangled-VAE, which aims to decompose classification extraction factors and
classification dispersion factors from visual and semantic features. SDGZSL [10] leverages
a total correlation penalty-based disentangled auto-encoder module to decompose semanti-
cally consistent and semantically irrelevant latent representations in visual features. This
paper is a research improvement on the model based on SDGZSL.

3. Method
3.1. Problem Definition

For zero-shot learning (ZSL), the dataset is divided into seen dataset Ds and unseen class
dataset Du. The categories are Ys and Yu, Ys ∩ Yu = �. We have a training set, which consists
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only of samples marked in the seen classes: Dtr
s = {xs, as, ys|xs ∈ Xs, as ∈ As, ys ∈ Ys}, where

xs ∈ Xs denotes the visual features of seen classes, as ∈ As is semantic descriptor of category
(e.g., semantic attribute), and ys ∈ Ys is class labels of seen classes. There is also an unseen
class test set Dte

u = {xu, au, yu|xu ∈ Xu, au ∈ Au, yu ∈ Yu}, where the visual features of
the unseen classes are not available during training. Traditional zero-shot learning aims
to learn test set Dte =

{
Dte

u
}

on the evaluated classifier f ZSL : Xu → Yu. However, in
generalized zero-shot learning, test set Xte consists of both seen and unseen classes, it is the
classifier that learns the evaluation on all features f GZSL : X → Ys ∪ Yu. In this paper, we
focus on the classification of GZSL tasks.

3.2. Model Overview

The model architecture of the proposed method is shown in Figure 1. The proposed ap-
proach is divided into two phases. The first phase is introduced in Figure 1 and corresponds
to Sections 3.2.1–3.2.5, and the second phase is for the final classification, corresponding to
Figure 2 and Section 3.2.6.

In Figure 1, the structure of the proposed method consists of three modules: (i) the
visual feature generation module, consisting of a variational encoder Q and a variational
decoder P; (ii) a disentanglement module, consisting of encoder E, decoder D, relation mod-
ule R, and discriminator Dis (where R and Dis are the structures proposed by SDGZSL [10],
which are not modified in this paper and therefore are not drawn in Figure 1); and (iii) a
semantic decoder module, consisting of a semantic decoder Dec. First, the feature genera-
tion module synthesizes the corresponding visual features using a conditional variational
autoencoder (CVAE) [28] from the unseen classes semantic embeddings; this module uses
visual features from seen classes for training. Then, a semantic decoder is used to decode
the synthesized visual features from unseen classes and real features from seen classes
and reconstructs them relative to the corresponding semantic space in order to ensure a
better alignment between the synthesized visual features and corresponding semantics.
Finally, the synthesized unseen classes’ visual features and seen classes’ real features are
disentangled into semantic-consistent and semantic-unrelated visual features using dis-
entanglement module encoder E; here, the output of the semantic decoder Dec is fed into
disentanglement decoder D to reconstruct the original visual features.

3.2.1. Visual Feature Generation Module

Since the visual features of the unseen classes cannot be used in training, the condi-
tional variational autoencoder (CVAE) [28] is used here to synthesize the corresponding
visual features for the unseen classes. CVAE is trained by visual features of seen classes xs
and semantic embeddings as. The objective function of CAVE can be written as follows:

LCVAE = −DKL
[
qφ(z | xs, as)‖pθ(z | as)

]
+Eqφ(z|xs ,as)[log pθ(xs | z, as)]

(1)

where the first term is the Kullback–Keibler (KL) divergence between qφ(z | xs, as) and
pθ(z | as), and the second term is the reconstruction loss. xs and as are the seen classes’
visual features and the seen classes’ semantic embeddings.The encoder Q of the CVAE
module uses the visual features of the seen classes xs and semantic embeddings as to
generate latent variables z. CVAE decoder P uses latent variables z and seen class semantic
embeddings as to synthesize visual features.
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Figure 1. The proposed architecture for ESTD-GZSL.

3.2.2. Semantic Decoder Module

To create visual features (synthesized by CVAE) that better express their semantics, a
semantic decoder Dec module, X −→ A, is introduced here to reconstruct the synthesized
visual features relative to their corresponding semantic embeddings, and a cycle-consistent
loss is used for the reconstructed semantic embeddings to ensure that the synthesized
visual features can be reconstructed relative to their corresponding semantic embeddings.
This module can ensure that the visual features and their semantics can be modally aligned,
reducing semantic bias and enhancing semantic-consistent features. The cycle-consistent
loss of the semantic embedding is achieved via the L1 reconstruction loss as follows.

LR = E[‖Dec(x)− a‖1] +E[‖Dec(x̂)− a‖1] (2)

3.2.3. Disentanglement Module

In order to enhance the ability of the disentanglement module to decompose the
semantic consistency features, the proposed approach improves the visual reconstruction
function of this module in SDGZSL. First, the visual features are encoded as potential
features h by disentanglement encoder E. Then, h is decomposed into semantic-consistent
features, hs, and semantic-unrelated features, hn, as follows.

E(x) = h = [hs, hn] (3)

In the disentanglement decoder D, we use the output of semantic decoder Dec as
a supervisory signal to reconstruct visual features jointly with the latent features h of
the output of disentanglement encoder D. The ability of the disentanglement module
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to decompose the semantic-consistent features can be enhanced by this approach. The
reconstruction loss is as follows:

Lrec = ∑
x∈Xs
‖x− D[h, Dec(x)]‖2

(4)

3.2.4. Enhance and Transformation Semantic-Consistent Discriminative Features

In SDGZSL’s work, only a single disentanglement module is used to extract semantic-
consistent features; we believe that the semantic-consistent features extracted using only
one module are not sufficient. Since our proposed semantic decoder Dec is trained with the
semantic embedding via cycle-consistent loss, therefore, the output of Dec is also highly
consistent with the semantics, and the output of Dec can also be considered as a semantic-
consistent feature. Thus, we propose enhancing and transforming semantic-consistent
features by transforming the semantic-consistent features decomposed by the disentan-
glement module and the semantic-consistent features output by Dec into an enhanced
semantic-consistent discriminative feature for the final classification.

CVAE is a mapping that learns “single semantic embedding to multiple instances”,
and the semantic decoder is an inverse mapping that learns “multiple instances to one
semantic embedding”. We believe that Dec and CVAE can encode the complementary
information of categories, so using the output information of Dec in the classification stage
can reduce the ambiguity between feature instances of different categories.

3.2.5. Total Loss

In order to learn the enhanced semantic-consistent features, the proposed overall loss
of the method is as follows:

Ltotal = LSDGZSL + β ∗ LR (5)

where LSDGZSL is the training loss proposed by baseline, but the reconstruction loss of the
disentanglement module in this loss is replaced by Equation (4) proposed in this paper. β
is a hyperparameter that measures the loss of weight relative to semantic decoder Dec.

3.2.6. Generalized Zero-Shot Classification

The classification process of the proposed method in this paper is shown in Figure 2.
First, the decoder of CVAE generates unseen visual features with unseen classes of semantic
embeddings, au, and Gaussian noise, z. Then, the generated visual features of the unseen
classes and the real features of the seen classes are further fed into semantic decoder Dec
and the disentanglement module to extract the corresponding semantic-consistent features.
Finally, the semantic-consistent features output by Dec are concatenated with the semantic-
consistent features decomposed by the disentanglement module to obtain the transformed
and enhanced semantic-consistent discriminative features hs

s ⊕ hs
r and hu

s ⊕ hu
r ; they are

then used to train the generalized zero-shot classifier, f GZSL.

Semantic Decoder  

x



sh

sh

GZSLf

0.1
0.1
0.6
...

0.1 

Chimpanzee
Leopard

Zebra

…
Raccoon

rh rh

Figure 2. Classification architecture. A feature transformation is performed by concatenating (⊕)
the semantic-consistent features, hs, of the output of the disentanglement module with the semantic-
consistent features, hr, of the output of semantic decoder module, Dec. The transformed discrimina-
tive features are then used for GZSL classification.
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3.3. Training and Inference

Algorithm 1 shows the pseudocode of the model’s training. We iteratively train
the model with the overall framework for Niter steps. In Algorithm 1, the weight for LR
is denoted as β. When the training of the model converges, the generative network P,
the disentangling encoder E, and the semantic decoder Dec can generate two semantic-
consistent unseen classes features from Gaussian noise z and the unseen classes’ semantic
embeddings au. We can extract semantic-consistent features hs

s and hs
r from training seen

features using modules E and Dec, together with the generated unseen semantic-consistent
features hu

s and hu
r . We can concatenate two semantic-consistent features (hs and hr) to train

a supervised classifier. In this paper, a softmax classifier is adopted for evaluation.

Algorithm 1 ESTD-GZSL training

Input: training data {Xs, Ys}, semantic embeddings As, learning rate λ
1: while model not converged do
2: Randomly select a batch data {xs

(t), ys
(t)}

B
t=1, {as

(c)}
N
c=1

3: for step = 0,...,Niter do
4: Compute CVAE loss LCVAE by Equation (1)
5: Computer visual reconstruction loss Lrec by Equation (4)
6: Computer semantic cycle-consistent loss LR by Equation (2)
7: Computer Lall1 = LSDGZSL + Lrec + β ∗ LR by Equations (1)–(5)
8: Update ∇Lall1
9: end for

10: Randomly select a batch data {xs
(t), ys

(t)}
B
t=1,{as

(c)}
N
c=1

11: Computer Lall2 = LSDGZSL + Lrec + β ∗ LR by Equations (1), (2), (4) and (5)
12: Update ∇Lall2
13: end while
Output: trained generative network P, disentangling encoder E and semantic decoder Dec

4. Experimental Results
4.1. Datasets

In our experiments, we use four popular benchmark datasets to evaluate the perfor-
mance of our models: Animals with Attributes 2 (AwA2) [29], Caltech-UCSD Birds-200-2011
(CUB) [30], Oxford Flowers (FLO) [2], and Attribute Pascal and Yahoo (APY) [31]. The APY
dataset is a coarse-grained dataset consisting of 20 seen classes and 12 unseen classes, each
with 64 annotated attributes. The AwA2 dataset is commonly used for animal classification
and consists of 40 seen classes and 10 unseen classes, each annotated with 85 attributes.
The FLO dataset contains 102 flower classes, 82 seen classes, and 20 unseen classes. The CUB
dataset contains 200 species of birds, of which 150 species are seen classes and 50 species are un-
seen classes. The semantic embeddings of FLO and CUB are 1024-dimensional character-based
CNN-RNN features [32] extracted from the fine-grained visual descriptions (10 sentences per
image). The details of each dataset are shown in Table 1.

Table 1. Statistics of the datasets used in our experiments, including the dimensions of visual features
(visual dimension), the dimensions of semantic vectors per class (attribute), seen class size (seen),
and unseen class size (unseen).

Dataset Visual
Dimension Attribute Seen Unseen

CUB 2048 1024 150 50
FLO 2048 1024 82 20

AWA2 2048 85 40 10
APY 2048 64 20 12
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4.2. Evaluation Protocols

The metric evaluated on the GZSL task uses a harmonic mean, which calculates the
joint accuracy of the seen and unseen classes, and it can be written as H = (2 × U ×
S)/(U + S) , where U and S denote the average per-class top-1 accuracy of unseen and
seen classes, respectively. A high harmonic mean indicates the good performance of both
seen and unseen classes.

4.3. Implementation Details

Following the options of most methods, we first use the pre-trained ResNet101 [33]
to extract image features of dimension 2048. We use three fully connected layers with
2048 hidden units for the VAE encoder and decoder. LeakyReLU [34] is used as an activation
function. We use the same hyperparameters of the visual feature generation module and
disentanglement module as SDGZSL for fair comparisons. We use the 64 mini-batch sizes
in all datasets, and the learning rate is set to 0.0001. For semantic decoder Dec, we use
two fully connected layers with twice the semantic embedding dimension. Three fully
connected layers for the disentanglement module are used with 2048 hidden units. We
optimize all networks with the Adam [35] optimizer for each module. We use a single
fully connected layer for the classifier for GZSL. All models are implemented with PyTorch
1.10.0, CUDA 11.2.0, and cuDNN 8.2.0. We use a single RTX 3060 6 GB GPU for each
training operation.

4.4. Comparison with State-of-the-Art Methods

To compare ESTD-GZSL with the recent GZSL methods, we select the recent state-of-the-
art generative-based methods such as f-CLSWGAN [8], CANZSL [36], cycle-CLSWGAN [14],
FREE [7], LisGAN [37], CADA-VAE [17], f-VAEGAN-D2 [18], TF-VAEGAN [6], CE-GZSL [20],
RPGN [21], and SDGZSL [10]. Table 2 shows the GZSL performance of the compared
methods and ours with and without finetuning the backbone on the datasets.

Our method achieves better performances than the baseline on CUB, FLO, and APY,
and it obtains the second-best H results of AwA2, where SDGZSL decomposes visual
features into those that are semantic-consistent and semantic-unrelated. However, we
believe that using only a single encoder to extract semantic-consistent features is not
sufficient, and the visual features synthesized by VAE do not express their semantics well,
which can lead to semantic and visual biases. Therefore, to improve disentanglements, we
introduced a semantic decoder module that maps the visual space to the semantic space
by using cycle-consistent loss to reduce bias. We combine the semantic decoder’s output
with the disentanglement encoder output for the reconstruction of the original image
to improve generalization. In the classification phase, we transform semantic-consistent
features decomposed by the semantic decoder output and the disentanglement module into
enhanced semantic-consistent discriminative features for classification. Compared with
the performance of SDGZSL, as shown in Table 2, for all the datasets without finetuning,
our method outperforms SDGZSL in H results, which improved by 1.2% on the AwA2
dataset, improved by 1.9% on the CUB dataset, improved by 1.8% on the FLO dataset,
and improved by 0.5% on the APY dataset. For all the finetuned datasets, our method
outperforms SDGZSL in H results on CUB, FLO, and APY, and comparable H results were
also obtained on AwA2, which improved by 2.3% on the CUB, improved by 0.7% on the
FLO, and improved by 0.3% on the APY. The proposed method achieves better results
because it is able to generate semantically aligned visual features for unseen classes and
extract more sufficient semantic-consistent features. The experimental results show that the
proposed method can improve the effect of the baseline, which proves the effectiveness of
the method.
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Table 2. Performance comparison in accuracy(%) on four datasets. We show the accuracies of seen
and unseen classes and their harmonic mean for GZSL, which are denoted as U, S, and H. * means
a finetuned backbone is used. Red font and blue font denote the highest and the second highest
results, respectively.

Methods
AwA2 CUB FLO APY

U S H U S H U S H U S H

f-CLSWGAN [8] 56.1 65.5 60.4 43.7 57.7 49.7 59 73.8 65.6 32.9 61.7 42.9
CANZSL [36] 49.7 70.2 58.2 47.9 58.1 52.5 58.2 77.6 66.5 - - -
LisGAN [37] 52.6 76.3 62.3 46.5 57.9 51.6 57.7 83.8 68.3 34.3 68.2 45.7

CADA-VAE [17] 55.8 75.0 63.9 51.6 53.5 52.4 51.6 75.6 61.3 31.7 55.1 40.3
f-VAEGAN-D2 [18] 57.6 70.6 63.5 48.4 60.1 53.6 56.8 74.9 64.6 - - -

TF-VAEGAN [6] 59.8 75.1 66.6 52.8 64.7 58.1 62.5 84.1 71.7 - - -
TF-VAEGAN * [6] 55.5 83.6 66.7 63.8 79.3 70.7 69.5 92.5 79.4 - - -

FREE [7] 60.4 75.4 67.1 55.7 59.9 57.7 67.4 84.5 75.0 - - -
cycle-CLSWGAN [14] - - - 59.3 47.9 53.0 59.2 72.5 65.1 - - -

CE-GZSL [20] 63.1 78.6 70.0 63.9 66.8 65.3 69.0 78.7 73.5 - - -
RPGN [21] 68.3 78.8 73.2 61.0 62.2 61.6 68.2 88.9 77.0 - - -

SDGZSL [10] 64.6 73.6 68.8 59.9 66.4 63.0 83.3 90.2 86.6 38.0 57.4 45.7
SDGZSL * [10] 69.6 78.2 73.7 73.0 77.5 75.1 86.1 89.1 87.8 39.1 60.7 47.5

ESTD-GZSL(Ours) 65.1 73.4 70.0 65.3 64.5 64.9 85.2 91.9 88.4 36.5 63.2 46.2
ESTD-GZSL *(Ours) 66.6 81.2 73.2 74.5 80.2 77.4 83.8 93.6 88.5 35.2 74.8 47.8

4.5. Zero-Shot Retrieval Results

For the sake of fairness, we follow the zero-shot retrieval protocol proposed in
SDGZSL [10]. First, the backbone network (ResNet-101) extracts the visual features from all
unseen images. Then, the disentanglement encoder extracts semantic-consistent features
in the unseen visual features. Third, the semantic decoder further extracts the semantic-
consistent features in the unseen visual features. Finally, these two semantic-consistent
features are transformed into enhanced semantic-consistent features and the centroid point
is computed as a retrieval query, which is further used to retrieve the nearest samples. To
evaluate the performance on the retrieved samples, the mean average precision (mAP)
score is adopted. In Figure 3, we compare our propose ESTD method with CVAE and
SDGZSL when retrieving 100%, 50%, and 25% of the images from all unseen classes on
APY, AwA2, CUB, and FLO. It can be seen that the proposed method can significantly boost
the retrieval performance among all settings, which can also demonstrate the effectiveness
of the proposes method from the retrieval perspective.

4.6. Model Analysis

In this subsection, we perform an experimental analysis of the proposed method with
the CUB dataset.

4.6.1. Ablation Study

In this ablation study, we evaluated the usefulness of each of the proposed methods.
In Table 3, we show the results of the ablation experiments. Experiment (a) only adds a
semantic decoder to the baseline for training, and the GZSL’s performance, H, is enhanced
by 2.1%. Experiment (b) adds the semantic decoder’s output to the visual reconstruction
of the disentanglement module, and the GZSL’s performance, H, is enhanced by 2.1%.
Experiment (c) involves training a classifier by joining the semantic-consistent features
from the semantic decoder’s output and the disentanglement encoder output; the GZSL
performance, H, is enhanced by 2.3%.
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Figure 3. Zero-shot image retrieval result comparison between CVAE, SDGZSL, and ESTD-GZSL.

Table 3. Ablation study for different components of ESTD-GZSL on the CUB dataset. The best results
are marked in boldface.

Methods U S H

Baseline 73.0 77.5 75.1
(a) 75.0 79.6 77.2
(b) 74.6 80.0 77.2
(c) 73.8 81.4 77.4

In Figure 4, we show the performance comparison between SDGZSL and hs, hr,
and hs ⊕ hr. It can be seen that a classifier trained using only the feature’s output from
the semantic decoder can achieve comparable results to SDGZSL. This shows that using
semantic-consistent features of the semantic decoder (Dec)’s output hr can further improve
performance.

U S H7 0

7 5

8 0

8 5

To
p-1

 Ac
cur

acy
.(in

 %
)

E v a l u a t i o n  I n d i c a t o r s

 h s
 h r
 h s �  h r
 S D G Z S L

Figure 4. U, S, and H accuracy (%) comparison between SDGZSL, hs, hr, and hs ⊕ hr.
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4.6.2. Hyper-Parameter Study

In this experiment, we evaluate the impact of the number of synthesized unseen
visual features and the loss of weight, β, on the semantic decoder, Dec. Figure 5 shows
the harmonic mean (H) when changing the LR weight β from 0.01 to 100 and the number
of synthesized unseen visual features from 10 to 1600. For the loss weight β of semantic
decoder Dec, when β equals 1, our model achieves the best H result (77.4%), and when β
becomes larger, the H result becomes lower. For the number of synthesized unseen visual
features, it produces the best H result (77.4%) in both 800 and 1200.

7 7 . 2 7 7 . 2
7 7 . 4

7 7 . 1

7 6 . 7
6 2

7 1 . 9 7 4 . 6 7 7 . 2 7 7 . 4 7 7 . 4 7 7 . 3
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( b )  n u m b e r s  o f  s y n t h e s i z e d  u n s e e n  v i s u a l  f e a t u r e s
Figure 5. The effect of hyper-parameters LR weight β and the number of synthesized unseen visual
features.

4.6.3. T-SNE Visualization

To further validate the ability of the proposed method to synthesize unseen visual
features, we visualize the distribution of unseen visual features synthesized by SDGZSL
and ESTD-GZSL (ours) in Figure 6. We choose 20 unseen classes from the CUB dataset that
have enough classes to show the class-wise comparison. Clearly, our proposed method
generates more discriminative and robust visual representations. This will have a great
positive impact on the disentanglement module.

(a) SDGZSL (b) ESTD-GZSL

Figure 6. t-SNE visualization of the synthesized unseen visual representations of 20 unseen classes
on CUB: (a) baseline: SDGZSL; (b) ours: ESTD-GZSL .

5. Conclusions

In this paper, we propose a generalized zero-shot learning classification method with
enhanced semantic-consistent discriminative features, which can effectively alleviate the
domain shift problem in GZSL. The proposed method can enhance semantic-consistent
features at all stages of GZSL. It can use real seen classes’ features to assist in synthesizing
unseen classes features of semantic alignments to further extract semantic-consistent fea-
tures. Then, the two semantic-consistent features are transformed into enhanced semantic
consistency features for training the classifier. Experiments on multiple datasets, ablation
experiments, hyper-parameter analysis experiments, and t-SNE visualization experiments
show that our method is comparable or superior to the existing method. Furthermore, we
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further apply the proposed method to a zero-shot retrieval task for a comparison with the
baseline and achieved better results than the baseline.

Compared with the same type of methods, the proposed method achieves more
competitive results. However, its performance is limited by the quality of the visual
features extracted by the pre-trained neural network, which is because the ability and
quality of visual features extracted by different deep models are different. In addition, the
performance of existing methods is closely related to semantics, and this kind of strong
prior external knowledge is difficult to obtain in real scenarios. How to break through
the restriction of such external semantic knowledge is a research difficulty. The proposed
method focuses on image type data and may not work well for video type data.
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