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Abstract: Elevating the accuracy of streamflow forecasting has always been a challenge. This
paper proposes a three-step artificial intelligence model improvement for streamflow forecasting.
Step 1 uses long short-term memory (LSTM), an improvement on the conventional artificial neural
network (ANN). Step 2 performs multi-step ahead forecasting while establishing the rates of
change as a new approach. Step 3 further improves the accuracy through three different kinds
of optimization algorithms. The Stormwater and Road Tunnel project in Kuala Lumpur is the
study area. Historical rainfall data of 14 years at 11 telemetry stations are obtained to forecast
the flow at the confluence located next to the control center. Step 1 reveals that LSTM is a better
model than ANN with R 0.9055, MSE 17,8532, MAE 1.4365, NSE 0.8190 and RMSE 5.3695. Step
2 unveils the rates of change model that outperforms the rest with R = 0.9545, MSE = 8.9746,
MAE = 0.5434, NSE = 0.9090 and RMSE = 2.9958. Finally, Stage 3 is a further improvement with
R = 0.9757, MSE = 4.7187, MAE = 0.4672, NSE = 0.9514 and RMSE = 2.1723 for the bat-LSTM hybrid
algorithm. This study shows that the δQ model has consistently yielded promising results while
the metaheuristic algorithms are able to yield additional improvement to the model’s results.

Keywords: optimization; metaheuristic algorithms; streamflow forecasting

1. Introduction

The natural water movement on our planet is known as the hydrological cycle. Stream-
flow is one of the main components of this cycle. The streamflow characteristic is often
associated with climate and land use conditions [1]. Under-capacity rivers can trigger
frequent flooding in the surrounding catchment due to excess runoff. On the other hand,
water scarcity can also happen during dry weather. Therefore, the state of streamflow
can transpire in future events. Streamflow forecasting can optimize water resource alloca-
tion [2].

For this reason, researchers have been developing various methods to forecast stream-
flow [3]. The conventional approach relies on preserving mass, momentum and energy [4] to
retrieve broad basin information. However, data collection is time-consuming and costly as
the conventional method requires a wide range of parameters. As more and more flooding
occurs due to climate change, a more accurate forecasting model is required to pursue better
flood management and disaster preparedness [5]. Artificial intelligence is seen as a better
alternative to the conventional method. A study has shown that the adaptation of artificial
intelligence allows better river and drought management [1]. It can establish the association
of predictors and predictand variables without considering hydrological complexity.
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Although many studies have shown promising results, standalone models (e.g., arti-
ficial neural network) display specific drawbacks of overfitting due to large datasets. In
addition, past states of network retrieved from time-series data are not kept for the benefit
of information related to data sequence [6]. These drawbacks can be tackled through
the implementation of deep learning that can generate higher accuracy through better
extraction of obscure data with higher computing power and complex mapping ability.
This ability has contributed to significant developments in many fields, such as speech
recognition, language processing and hydrological studies, such as river flood forecasting,
runoff forecasting, streamflow forecasting and groundwater level forecasting [7].

Xiang and Demir (2020) proposed a study applying a deep recurrent neural network,
specifically the neural runoff model, to predict streamflow in the state of Iowa. The model
successfully incorporated multiple measurements and model results to produce long-
term rainfall–runoff modeling [7]. Ahmed et al. (2021) applied a deep-learning hybrid
model to forecast the monthly streamflow water level in the Murray Darling Basin that
yielded improved results when optimized with Boruta [1]. Lin et al. (2021) developed
three components of the hybrid DIFF-FFNN-LSTM model to forecast hourly streamflow,
which accomplished better results than statistical methods [6]. Granata et al. (2022)
performed a comparison study between the stacked model of random forest and the
multilayer perceptron algorithm with bidirectional LSTM. The bidirectional LSTM model
significantly outperformed the stacked model for low-flow prediction [8]. Elbeltagi et al.
(2022) developed a study comparing four machine learning algorithms, namely random
subspace, M5P, random forest and bagging, to predict streamflow in the Des Moines
watershed. The M5P algorithm yielded the best prediction [9].

Increasing accessibility to the latest research has triggered tremendous advancement in
science and technology. A modern measuring device can quickly secure physical hydrologi-
cal data with standard intervals. As more significant obscured knowledge is extracted, more
demands for complex engineering optimization start to the surface [10]. This requirement
comes with multiple purposes, multi-level conditions and numerous restrictions.

In response, more recent research has been integrating machine learning methods with
a metaheuristic algorithm to solve the optimization complexity [11]. This integration leads
to a more efficient, effective and robust search, resulting in faster convergence.

Khosravi et al. (2022) introduced an optimized deep learning model integrating a
convolutional neural network (CNN) with the BAT metaheuristic algorithm to predict daily
streamflow in the Korkorsar catchment in northern Iran. This model outperformed the
other algorithms [12].

Machine learning is a subset of artificial intelligence that exploits algorithms and
statistical methods to provide computers with learning ability [13]. It aims to optimize ex-
perimental arrangements for a data structure [14]. A continuous source of data from actual
observation is fed into the system, improving the learning over time. Artificial intelligence
closely resembles how human brains capture internal data relationship patterns [15]. The
acquired knowledge enriches the machine’s ability to generalize a real-world position [16].

Metaheuristics denote high-level computational intelligence algorithm frameworks that
are problem-independent and are employed to solve complex optimization demands [17].
A robust, iterative search process is involved in the metaheuristics algorithm to generate an
approximation that does not guarantee an optimum solution [18] but instead an adequately
good global solution within a reasonable computational time. The algorithm can self-tune the
global exploration and local exploitation to reach greater search abilities [19].

Metaheuristics can be categorized into nature-inspired and non-nature-inspired. The
nature-inspired category can be further classified into evolutionary algorithms [20] and
swarm intelligence. Evolutionary algorithms include genetic algorithms, genetic program-
ming, evolution strategy and differential evolution based on biological transformation.
Swarm intelligence includes artificial bee colony algorithm, ant colony optimization, crow
search algorithm, jellyfish search optimizer, firefly optimization and bat algorithm. The non-
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nature-inspired category consists of the Jaya algorithm, imperialist competitive algorithm,
simulated annealing, harmony search and forensic-based investigation algorithm.

All evolutionary and swarm intelligence algorithms involve proper tuning of standard
controlling parameters such as population size and generation boundary. In addition,
each algorithm has its algorithm-specific control parameters such as mutation probability,
crossover probability and selection operator for the genetic algorithm. Failure to properly
tune can decrease computational speed and entrap in local optimal. Swarm intelligence
algorithms are also subjected to slow convergence and are challenging to integrate with
a particular artificial intelligence model [21]. In order to avoid algorithm-specific non-
performance, the teaching learning-based optimization algorithm and the Jaya algorithm
can be implemented [22].

The bat algorithm is used in tuning residential HVAC controller parameters to op-
timize energy consumption and obtain thermal comfort. It is also used for controlling
illumination and air quality [23]. Other applications are wind power forecasting [24] and
transportation [25].

The firefly algorithm has been used in numerous fields to solve complex applications
such as breast cancer recognition, vehicle communication problem, path planning, privacy
protection and forecast power consumption. It can also be used in structural optimization
and image processing [26].

The Jaya algorithm has been developed for many engineering works such as structural
damage identification [27], welding optimization, heat exchangers optimization, path
selection for a wireless network, waterjet machines, dam monitoring [28], wind power
systems and cart position control [29].

From the authors’ observation, there is a lack of research in the area of optimization
for deep learning using hybrid models.

In order to fill this gap, this study aims to improve the deep learning model for better
streamflow simulation and forecasting using optimization algorithm hybrid models, which
will lead to a better early warning system.

The contributions of this paper can be simplified as follows:

1. Application of the LSTM model as a deep learning model for simulation and multi-
step ahead streamflow forecasting;

2. A new approach to using rates of change in the artificial learning model to minimize
input errors;

3. To improve the performance of LSTM models by introducing a novel method in deep
learning through metaheuristic algorithms to form hybrid models.

2. Methodology

This study involves numerous deep learning models and metaheuristic algorithms
such as the bat, firefly and Jaya algorithms. The study area and model development are
also discussed.

2.1. Long Short-Term Memory (LSTM)

LSTM is an improved version of a recurrent neural network (RNN) [30]. It is a deep
learning algorithm that has been set up to perform forecasting in the field of hydrology and
water resources [31]. It eliminates the issue of overfitting and can yield better generalization
than standalone models. The network captures long-term dependencies and deals with
vanishing gradient limitations that exist in the original RNN [32]. The LSTM network (see
Figure 1) comprises blocks of memory cells, an input gate, an output gate and a forget gate.
The network operates like a chain [33] and can deal with delays such as seasonal and trend
patterns [34]. The input gate manages the extra information added to the cell state.
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The forget gate eliminates information from the cell state. The ability of LSTM to
store or remove information outperforms other neural networks [35]. Information can be
carried over multiple time steps and provide for learning of sequential dependency in the
input data, making it relevant even for long time series [36]. This gives an advantage to
the LSTM when it comes to modeling time series, particularly hydrologic variables, which
employ common hyperparameters, such as precipitation, flow or water level, for streamflow
prediction, water quality modeling and flood forecasting [37]. Although the training process
is longer than other data-driven models, LSTM can yield higher accuracy [38].

2.2. Bat Algorithm

The bat algorithm (see Figure 2) is a swarm intelligence algorithm inspired by the
echolocation produced by bats when interacting with their surroundings [23]. The echolo-
cation starts with the emission of short and loud sound waves released by bats to identify
their prey, obstacles or resting cracks in the dark. The time-lapse for the emitted sound
to bounce back reveals the prey’s distance, direction and speed. All bats use echolocation
to measure distance and distinguish between targets and obstacles [39]. The algorithm
keeps a record of the bat’s velocity, position, frequency, varying wavelength, loudness and
pulse emission. The loudness is measured in the range between Amin and A0, while the
pulse emission is logged between 0 and 1, where 0 represents no pulse, and 1 refers to the
highest rate of the bat’s emission. The bat algorithm is suitable to handle both continuous
and discrete optimization matters. One of the advantages of this algorithm is the ability to
reach quick convergence at the initial stage and shift from exploration to exploitation when
optimality is near [40].

The mathematical equations that relate to the velocity and location can be defined as:

fi = f min + ( f max− f min)β (1)

νt
i = νt−1

i +
(

xt−1
i − x∗

)
fi (2)

xt
i = xt−1

i + νt
i (3)

where:
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β ∈ [0, 1] is the random vector from a uniform distribution;
fi is the initial frequency;
νt

i is the velocity at t iteration;
xt

i is location at t iteration in a d-dimensional search or solution space.
The loudness and pulse emission rates are represented below:
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At+1
i = αAt

i (4)

rt+1
i = r0

i [1− exp(−γt)] (5)

where:
0 < α < 1 and γ > 0 are constants;
α is the constant reducing loudness, and γ is the constant increasing pulse rate.

2.3. Firefly Algorithm

Bioluminescence refers to the biochemical process that provides the insects’ ability to
flicker. The flashing light is visible, particularly at night, to court potential mates and gives
a warning signal for potential predators nearby. The emission of the rays can be controlled
towards brighter or dimmer light [41].

The firefly algorithm (see Figure 3) is considered a swarm intelligence algorithm
that originated from the flickering behaviors of insects. It is a popular algorithm in the
swarm intelligence domain [42]. Flashlight without gender distinction is simulated to
entice fireflies with less brightness to draw toward the individual. Under this algorithm
(see Figure 3), two significant features are considered, mainly brightness and attractiveness.
The brightness echoes the firefly’s position and establishes the path of movement. At the
same time, the attraction indicates the distance the firefly travels. The algorithm’s goal is to
continuously update the brightness and attractiveness status [15].
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The light brightness will decrease as distance increases. Since the brighter fireflies attract
the dimmer ones, the latter will move toward the former position. The brightness indicates
the fitness value of the algorithm. The greater the brightness, the better will be the fitness
value. If two adjacent fireflies transmit similar brightness, the fireflies will move randomly.

The algorithm is set to adhere to the three following rules [43]:

(a) All fireflies are considered unisex, and therefore, they are attracted to others regardless
of their sex;

(b) Attractiveness is based on the brightness of the light. The dimmer one will move
towards the brighter one. If brightness is equal, movement will be random;

(c) The brightness is associated with the objective of the function.

When firefly i is attracted to j, then the new position of the firefly i will be computed
as follows:

xt+1
i = xt

i + β0e−γr2ij
(

xt
j − xt

i

)
+ αtε

t
i (6)

where:
xt+1

i is the new position of the firefly i;
xt

i is the original position of the firefly i;
β0 is the attractiveness parameter;
γ is the absorption coefficient;
αt is randomization parameter (0 to 1);
r is the distance between two fireflies;
εt

i is random number.

2.4. Jaya Algorithm

Jaya algorithm (see Figure 4) is a population-based algorithm that constantly searches
for the best solutions and avoids bad ones [29,44]. Two main parameters, the population
size and the maximum number of iterations, are used to define the framework of the algo-
rithm [45]. The iteration process will continue to be executed to find a better solution [46]
than the current state with the following equation:

X′i,j,k = Xi,j,k + r1,j,k (Xi,best,k −
∣∣∣Xi,j,k

∣∣∣)− r2,j,k(
.

Xi,worst,k −
∣∣∣Xj,j,k

∣∣∣) (7)

where:
Xi,j,k is the current state;

r1,j,k (Xi,best,k −
∣∣∣ .
Xi,j,k

∣∣∣) is the best solution;

r2,j,k(
.

Xi,worst,k −
∣∣∣Xj,j,k

∣∣∣) is the worst solution.
The process will remain until the stopping criteria are met. Jaya algorithm is suitable

for controlled and unrestricted optimization [22].

2.5. Rates of Change

Rates of change (δQ) is introduced as a new model development method to replace
the conventional method of utilizing flow or water level as the prediction model output.
The current research on streamflow forecasting concentrates mainly on the prediction of the
flow or water level as the output variables of the forecasted value (Q f ). The mathematical
expression of a forecast flowrate is as follows:

Q f = Qi + δQ (8)

where:
Q f is the forecast flowrate;
Qi is the initial flowrate at the time, t;
δQ is the rate of change.
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A rate of change is proposed in this study based on the mathematical relationship
as follows:

δQ =
Qt −Qi

t− ti
(9)

where:
δQ is the rate of change;
Qt is the flowrate at current time, t;
Qi is the initial flowrate at a previous time interval;
t is the current time;
ti is the last time interval.
By applying the rates of change (δQ), the fluctuation can be controlled to improve the

model’s accuracy. For this research, the δQ will be based on 30 min.

2.6. Model Performance Evaluation

In this study, the performance of each model is evaluated based on four types of
performance indices. The evaluation includes both the absolute and relative aspects of the
errors, such as the root mean square error (RMSE), mean absolute error (MAE), correlation
coefficient (R), Nash–Sutcliffe efficiency (NSE) and mean absolute percentage error (MAPE).

2.6.1. Root Mean Square Error, RMSE

RMSE measures the deviations between predicted values and observed values. The
variations, also known as the prediction errors, are developed from computation performed
over out-of-sample data. RMSE is sensitive to maximum and minimum errors and can
better reflect the predicted results. However, it is not sensitive to linear offsets between the
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observed and simulated values resulting in a low RMSE value [47]. RMSE with a value
close to 0 indicates a higher level of prediction accuracy.

RMSE =

√
∑n

i=1(yi − xi)
2

n
, 0 ≤ RMSE < +∞ (10)

where:
xi are the observed values of the criterion;
yi are the simulated values of the criterion;
n = sample size.

2.6.2. Mean Absolute Error, MAE

MAE measures the significance of average error in a model with the same criteria [48].
The mathematical representation of MAE is as follows:

MAE =
∑n.

l=1
|yi − xi|
n

, 0 ≤ MAE < +∞ (11)

where:
xi are the observed values of the criterion;
yi are the simulated values of the criterion;
n = sample size.

2.6.3. Nash-Sutcliffe Efficiency (NSE)

NSE measures the relative differences between the observed and predicted values. A
higher value of NSE indicates the model’s superiority. When NSE is 1, it means a perfect
match of the observed and predicted. Otherwise, if NSE is 0, the predicted values are similar
to the average of the observed values [49]. The model accuracy can be categorized as very
good for 0.75 < NSE ≤ 1, good for 0.65 < NSE ≤ 0.75, satisfactory for 0.50 < NSE ≤ 0.65 or
unsatisfactory for NSE ≤ 0.50 [50].

The mathematical representation of NSE is as follows:

NSE = 1− ∑n
i=0(Yi −Yt)

2

∑n
i=0
(
Yi −Y

)2 ,−∞ < NSE ≤ 1 (12)

where:
Yi is the predicted values of the criterion;
Yt is the measured value of the criterion variable (dependent) variable Y;
Y is the mean of the measured values of Y;
n = sample size.

2.6.4. Mean Absolute Percentage Error (MAPE)

MAPE is an error metric used to measure the accuracy of forecasting values. It denotes
the average absolute percentage deviation of each dataset entry between actual and forecast
values [51]. As absolute values are applied, the possibility of negative and positive errors
canceling each other out can be avoided. The lower the value of MAPE, the better the
model will forecast.

MAPE =
100%

n ∑n
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (13)

where:
At is the actual value;
Ft is the forecast value;
n = sample size.
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2.7. Study Area and Data Description

Malaysia’s climate is hot and with high humidity all year round. The country is
exposed to two major monsoon seasons, mainly the north-east monsoon from November
to February and the south-west monsoon from May to August. During the north-east
monsoon, a significant increase in rainfall occurrence can be detected in the eastern and
southern regions of the country. Moreover, the south-west monsoon and inter-monsoon
seasons of March to April and September to October can cause intense convective rainfall
on the country’s west coast.

Kuala Lumpur is Malaysia’s capital city, as shown in Figure 5. The city is highly urban-
ized and covers an area of 243 km2 with an estimated population density of 6696 residents
per square kilometer [52]. Changes in land use and land cover have been intense since the
1980s due to the economic boom. The city receives an average annual rainfall of 2600 mm
and is subjected to flash floods. It is situated in the middle of the Klang River basin with a
watershed area of 1288 km2. The Klang River flows through a 120 km distance [53], with
11 major tributaries flowing across Selangor state and Kuala Lumpur [54]. Batu, Gombak,
Ampang and upper Klang River at the upper catchment of Kuala Lumpur are the main
tributaries of Klang River that contribute significantly to the flow at the downstream point
of Masjid Jamek, which is a famous historical site and a tourist attraction.
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The flash flood occurrence in 1971 that lasted for five days with massive damage of
RM36 million prompted the government to develop a comprehensive Kuala Lumpur Flood
Mitigation Plan (KLFM) [55]. The Stormwater Management and Road Tunnel (SMART)
project built in 2007 is part of the early plan to divert flow from the upper catchment of the
Klang River and Ampang River to the Kerayong River downstream [56].

SMART is a mega project to construct a 9.7 km tunnel that combines wet and dry
systems [52]. During a major storm, mode 2 is activated when the flow reaches more than
70 m3/s at the confluence of the Klang and Ampang rivers [57]. Moreover, Mode 3 is
activated when the flow at the confluence reaches 150 m3/s. Total storage of 3 million3

infrastructure is available to cater for the excess stormwater. During regular days, a total
length of 3 km is available for dual-deck motorway use [57].

Study Data

The SMART catchment has an area of 160 km2 equipped with a rain gauge and doppler
current meter at 28 hydrological stations. The sensors collect rainfall and flow data and
transmit the data to the control center using telemetry. Within the 28 hydrological stations,
data from 11 telemetry stations are used for modeling. The rest of the stations are meant
for observation only. This study collects historical data of 30 min interval rainfall at the
11 telemetry stations and the flow at the confluence of the Klang River and Ampang River
from January 2008 to August 2021. Seventy percent of the historical data from January 2008
to August 2019 are used for training, while the rest are used for testing. Normal flow at
the confluence of Ampang and Klang Rivers is generally within the range of 5 to 10 m3/s.
However, this flow can increase tremendously above 150 m3/s depending on the intensity
of the precipitation.

2.8. Model Development

As shown in Figure 6, the proposed artificial intelligence model is intended to
seek the best fit that yields the best results for deployment purposes. Input data for
the model consist of historical rainfall data from 11 telemetry stations at the upper
catchment of the Klang River basin taken from 1 January 2008 to August 2021 with
an interval of 30 min. Moreover, the target data consist of flow data at the confluence
between the Ampang–Klang rivers with equal intervals and similar time ranges. The
confluence is considered the point of interest in this study as the current flow will deter-
mine the mode of operation, as mentioned earlier. Three steps of model development
are introduced to pursue the best relationship between historical data and predictors.

Step 1 employs the LSTM model as the deep learning framework for streamflow
prediction, and ANN is the benchmark model. Several performance indices are performed
to compare the models.

Step 2 introduces the novel rates of change method and implements multi-step
ahead forecasting to analyze the results better. The models’ performance on fitness and
errors are checked.

Step 3 develops the novel optimization method for deep learning using meta-
heuristics to find the near-optimum weights and biases. Three optimization algorithms
were picked for this study: bat algorithm, firefly algorithm and Jaya algorithm. Af-
ter going through the optimization algorithm, the data are fed into the LSTM model.
Performances on fitness and errors are checked. The best model is deployed after the
three steps.

3. Results and Discussion

This section unveils the results acquired from the training and testing of various LSTM
models. There are three steps involved (refer to Figure 6). For Step 1, numerous LSTM
and ANN models are employed to perform streamflow prediction. The performance is
evaluated for the goodness of fit by executing several measures listed in Section 2.6. Table 1
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lists the best model results of the LSTM and ANN. Figures 7 and 8 show the graphs of
observed flow vs. forecast flow for the ANN model and LSTM model, respectively.
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Table 1. Best LSTM and ANN models for prediction.

Best ANN Model
# of Neurons in Layer 1 R.Train R.Test MSE MAE NSE RMSE

10 0.4520 0.4254 78.4215 3.7135 0.1994 8.8556

Best LSTM Model
Model R.Train R.Test MSE.Train MSE.Test MAE.Train MAE.Test NSE RMSE
Simul. 0.9055 0.8586 17.8532 28.8315 1.4365 2.4208 0.8190 5.3695
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Step 2 introduces rates of change and executes multi-step ahead forecasting to facilitate
the flood mitigation operation better. LSTM models are performed on multiple conditions,
mainly simulation, 30 min ahead forecasting, 1 h ahead forecasting and rates of change δQ.
Table 2 lists the performance of this exercise.

Table 2. LSTM forecasting models.

Model R.Train R.Test MSE.Train MSE.Test MAE.Train MAE.Test NSE RMSE
0 min. 0.9055 0.8586 17.8532 28.8315 1.4365 2.4208 0.8190 5.3695

30 min. 0.9470 0.9476 10.2326 10.0042 0.5640 0.6935 0.8963 3.1629
1 h 0.8849 0.8677 21.4296 25.0978 0.9397 1.2829 0.7828 5.0098
δQ 0.9545 0.9214 8.9746 15.6981 0.5434 0.8108 0.9090 2.9958

0 min refers to simulation of the streamflow in real time.

Step 3 develops several new hybrids of artificial intelligence. Three metaheuristic
frameworks are selected for execution with the deep learning LSTM models: the bat
algorithm, firefly algorithm and Jaya algorithm. Table 3 shows the streamflow prediction
performance models for the hybrid model of the bat algorithm and LSTM. The parameters
set for these models consist of maximum iteration = 40, alpha = 0.95, gamma = 0.95, bat
numbers = 4, bat minimum frequency = 0, bat maximum frequency = 1 and maximum
epochs = 500.

Table 3. Performance of LSTM with bat algorithm models for streamflow.

Model R.Train R.Test MSE.Train MSE.Test MAE.Train MAE.Test NSE RMSE
0 min. 0.9237 0.8525 14.2629 29.9912 1.4419 2.5535 0.8529 3.7766

30 min. 0.9512 0.9355 9.5954 11.4159 0.6157 0.7815 0.9043 3.0976
1 h 0.8932 0.8473 19.5178 28.9255 0.9876 1.3884 0.7976 4.4179
δQ 0.9757 0.9046 4.7187 19.8966 0.4672 0.8565 0.9514 2.1723

Table 4 displays the performance of the LSTM model after integration with the firefly
algorithm. The parameters set for these models consist of maximum iteration = 40, alpha = 0.95,
betta = 1, gamma = 0.95, firefly numbers = 4 and maximum epochs = 500.

Table 4. Performance of LSTM with firefly algorithm models for streamflow.

Model R.Train R.Test MSE.Train MSE.Test MAE.Train MAE.Test NSE RMSE
0 min. 0.9491 0.8214 9.6326 43.8420 1.3235 2.5607 0.9006 3.1036

30 min. 0.9743 0.9291 5.0785 12.5037 0.5178 0.7324 0.9493 2.2536
1 h 0.9146 0.8447 15.8306 30.6191 0.8815 1.2835 0.8365 3.9788
δQ 0.9733 0.8990 5.1913 20.4748 0.4910 0.8525 0.9465 2.2784

Table 5 shows the performance of the LSTM model with the Jaya algorithm. The
parameters set for these models consist of maximum iteration = 30, population = 5 and
maximum epochs = 500.

Table 5. Performance of LSTM with Jaya algorithm models for streamflow simulation.

Model R.Train R.Test MSE.Train MSE.Test MAE.Train MAE.Test NSE RMSE
0 min. 0.9420 0.7773 10.9191 46.4891 1.4316 2.9865 0.8873 3.3044

30 min. 0.9741 0.9102 5.1395 15.7782 0.5536 0.8486 0.9487 2.2670
1 h 0.9401 0.7928 11.2678 38.2200 0.8736 1.5270 0.8836 3.3568
δQ 0.9738 0.9010 5.1252 20.5746 0.4766 0.8563 0.9475 2.2639

Figure 9 displays graphs of observed vs. forecast flow based on simulation, 30 min
ahead forecasting, 1 h ahead forecasting and rates of change model.
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A further check is performed on the hybrid optimization models to determine the
MAPE, MAE and maximum error values for the flows equal to or greater than 150 m3/s.
This ensures the accuracy of forecasting high flow values, which is important in a flood
mitigation operation.

3.1. Performance of Step 1

In Step 1, the LSTM and ANN algorithms were developed and compared. It was found
that LSTM performed much better than ANN. Several literature reviews also supported
this by identifying the LSTM as the best deep learning model for time series data due to its
ability to keep selective memory. LSTM algorithm could also filter the hydrological noise
and retrieve the intrinsic characteristics of the hydrological series for simulation and future
forecasting purposes.

Table 1 indicated that the ANN model had a regression of 0.4520, MSE 78.4215, MAE
3.7135 m3/s, NSE 0.1994 and RMSE 8.8556 m3/s. Furthermore, the best LSTM had regres-
sion 0.9055, MSE 17,8532, MAE 1.4365 m3/s, NSE 0.8190 and RMSE 5.3695 m3/s. Generally,
it had shown a double improvement in overall results.

When comparing the graphs between Figures 7 and 8 on peak-to-peak values between
the observed and forecast flows, it was evident that LSTM was much better than ANN
models. Therefore, LSTM was chosen as the primary research model for this study.

3.2. Performance of Step 2

Step 2 introduced rates of change as an innovative approach to the model develop-
ment. In addition, multi-step ahead forecasting was performed as a requirement for flood
mitigation operations. Table 2 revealed that the worst result was acquired for the 1 h ahead
forecasting, where the regression value for training was the lowest at 0.8849. However, it
had a better regression value for testing when compared to simulation. This trend was
applicable to MSE and MAE for having the worst values. The NSE value also turned out to
be the worst. Considering the longer forecasting time, the results of this study were still
regarded as logical and satisfactory. The longer the forecasting time, the more uncertainties
and missing information would appear.
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The output from 30 min ahead forecasting turned out to be quite good as it had a
regression training value of 0.9470, and the regression value for testing was not far off,
which was 0.9476. The MSE and MAE values were low, which was good, with acceptable
values for NSE and RMSE.

However, the best performance of the model was discovered with the novel method
when applying rates of change as the target values. The regression value for training was
the highest, 0.9545, while the error values were the lowest. The NSE value was the highest,
0.9090, while the RMSE was the lowest at 2.9958 m3/s. The δQ model was the most superior
among the four models tested.

The study did not seek an experiment of more than 1 h forecasting as the lag time
determined was 30 min for this catchment. The results would deteriorate further as the
time of forecasting increased.

3.3. Performance of Step 3

Step 3 was one of the main contributions of this study. Current metaheuristics studies
mainly concentrate on developing a hybrid model with ANN or primary neural networks.
Therefore, this study initiated the hybrid models for the deep learning algorithm, mainly
the LSTM. Three metaheuristic frameworks, the bat algorithm, firefly algorithm and Jaya
algorithm, were selected for this study. The bat algorithm and firefly algorithm belonged to
swarm intelligence algorithms. They required trials on nature-based characteristics to find
the optimum yield. Jaya algorithm, on the other hand, was designed based on searching
for the best solutions. The effort to introduce numerous hybrid optimization algorithms
was intended to further enhance the model performance results from steps 1 and 2.

Tables 3–5 represent each of the selected optimization algorithms. From the three
tables, it was determined that all the hybrid models produced better results. However, the
best model identified was the bat-LSTM hybrid algorithm where the δQ model yielded
R.train 0.9757, R.test 0.9046, MSE.train 4.7187, MSE.test 19.8966, MAE.train 0.4672 m3/s,
MAE.test 0.8565 m3/s, NSE 0.9514 and RMSE 2.1723 m3/s.

The results also proved that the choice of metaheuristic algorithms did not significantly
impact the performance. The performance inclination is still the same as the LSTM-only
model in step 2, where 30 min ahead of forecasting yielded the best results. As the time of
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forecasting increased, the results deteriorated accordingly. δQ models consistently yielded
the best results by keeping the error values to a minimum.

This process was then followed by the plotting of a peak-to-peak flow graph between
the observed and the forecast values. Figure 9 indicated that the best graph with the highest
accuracy was the δQ models.

A further experiment was performed to seek high flow performance for each hybrid
model in terms of MAPE, MAE and maximum error. This study concentrates on the flows
equal to or greater than 150 m3/s, which was the high flow indicator to initiate modes 3 and
4 in the SMART control center’s standard operating procedure. The results are tabulated in
Table 6. From the results, it could be seen that δQ models again outperformed the rest with
the smallest error values, where the bat and Jaya algorithms yielded the best with MAPE
6.33%, MAE 12.2865 m3/s and maximum error 97.70% for bat-LSTM algorithm while
MAPE 6.22%, MAE 12.6687 m3/s and maximum error 97.70% for Jaya-LSTM algorithm.
The maximum error values could be ignored in this case as they could not represent the
overall performance of the models.

Table 6. Performance of LSTM-optimization algorithm models for streamflow forecasting.

MAPE MAE m3/s Max. Error
Bat-LSTM algorithm
0 min 26.41% 59.6951 64.71%
30 min 24.03% 55.7999 64.02%
1 h 37.63% 80.4564 83.81%
δQ 6.33% 12.2865 97.70%
Firefly-LSTM algorithm
0 min 15.11% 31.7240 56.92%
30 min 11.33% 22.8895 56.52%
1 h 27.55% 55.1539 86.05%
δQ 7.40% 14.6589 97.71%
Jaya-LSTM algorithm
0 min 17.29% 37.1065 61.75%
30 min 11.08% 24.7873 53.09%
1 h 16.98% 35.3379 78.41%
δQ 6.22% 12.6687 97.70%

4. Conclusions

The effectiveness of flood management and disaster preparedness is in tandem with
the ability to accurately forecast the immediate condition of streamflow in the catchment
area. This study intended to develop the best deep learning model for the SMART control
center in managing the river flow through streamflow forecasting. The aim was to create
a novel approach in using rates of change for model development and introduce new
metaheuristic algorithms with LSTM hybrid models to enhance the performance results.

This study employed LSTM models to develop and train historical data at the Ampang
River and Klang River. The task is to forecast river streamflow with simulation, 30 min
ahead, 1 h ahead and rates-of-change models. In order to ascertain the best performance
that can be achieved, three steps of the improvement process were introduced.

Step 1 is where the comparison of ANN and LSTM models is performed. The best
results come from the LSTM model with regression 0.9055, MSE 17,8532, MAE 1.4365 m3/s,
NSE 0.8190 and RMSE 5.3695 m3/s. ANN yielded weaker results, and therefore LSTM
model is the center of this research.

Step 2 introduces rates of change and performs multi-step ahead streamflow forecasting.
The best result comes from the δQ model with performance values of R (training) = 0.9545, R (test-
ing) = 0.9214, MSE (training) = 8.9746, MSE (testing) = 15.6981 , MAE (training) = 0.5434 m3/s,
MAE (testing) = 0.8108 m3/s, NSE = 0.9090 and RMSE = 2.9958 m3/s. The finding reveals
that a shorter forecasting time yields better performance results. The second finding shows
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that applying new rate changes in model development has significantly improved the
model results.

The last step of the experiment is to introduce new hybrid models between optimiza-
tion and LSTM algorithms. The bat algorithm, firefly algorithm and Jaya algorithm were
selected for this study. From the results, all hybrid models demonstrate better outcomes.
Therefore, the third finding shows that metaheuristic algorithms play a role in model
improvement. Under this study, it is also noticeable that the selection of an optimization
algorithm does not significantly affect performance.

δQ model for the bat algorithm with LSTM hybrid model yielded the best results with R
(training) = 0.9757, R (testing) = 0.9046, MSE (training) = 4.7187, MSE (testing) = 19.8966, MAE
(training) = 0.4672 m3/s, MAE (testing) = 0.8565 m3/s, NSE = 0.9514 and RMSE = 2.1723 m3/s.

Findings from this study are beneficial to improving the deep learning process so that
the performance can yield better results with higher precision. This knowledge also helps
elevate a new approach to flood mitigation operations. This study is significant as it has
presented several new steps to improve the learning process leading to a better relationship
between the input and output data. The current study is limited to a small catchment area
and several optimization models. The results may differ for bigger catchments and with
more optimization models. In order to further improve the experiment, it is suggested to
try reinforcement learning for future studies.
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