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Abstract: Near infrared diffuse optical tomography (DOT) is a potential tool for diagnosing cancer
by image reconstruction of tissue optical properties. A variety of image reconstruction methods for
DOT have been attempted, in general, based on the diffusion equation (DE). However, the image
quality is still insufficient to clinical use, which is mainly attributed to the fact that the DE is invalid
in some regions, such as low-scattering regions, and the inverse problem is inherently ill-posed. In
contrast, the radiative transfer equation (RTE) accurately describes light propagation in biological
tissue and also the DOT by deep learning is recently thought to be an alternative approach to the
inverse problem. Distribution of time of flight (DTOF) of photons estimated by the time-domain
RTE lends itself to deep learning along a temporal sequence. In this study, we propose a new DOT
image reconstruction algorithm based on a long-short-term memory and the time-domain RTE. In
simulation studies, using this algorithm, we succeeded in detection of an absorbing inclusion with a
diameter of 5 mm, an absorber mimicking cancer, which was embedded in a two-dimensional square
model (4 cm × 4 cm) with an optically homogeneous background. Multiple absorbers and a bigger
absorber embedded in this model were also detected. We also demonstrate that, if simulation data by
beam injection from multiple directions are employed as a training set, the accuracy of detection is
improved especially for multiple absorbers.

Keywords: diffuse optical tomography; time-domain radiative transfer equation; deep learning

1. Introduction

Diffuse optical tomography (DOT) using near infrared light (700–900 nm) is one of
the most sophisticated optical imaging techniques for biological tissue. This technique is a
promising imaging modality for cancer detection owing to its sensitivity to the hemoglobin
oxygenation level. Diffuse optical tomography has mainly been developed with three
measurement methods: continuous wave (CW), time-domain (TD), and frequency-domain
(FD) measurements. Continuous wave and FD measurements provide information about
only intensity and that about intensity and phase, respectively. In contrast, distribution
of time of flight (DTOF) of photons, which is the histogram of arrival time of photons,
is obtained from TD measurement. Thus, TD measurement provides more information
needed for image reconstruction compared to CW and FD measurements.

To reconstruct optical properties of biological tissue in DOT, two mathematical prob-
lems must be solved, the forward problem and the inverse problem [1]. The forward
problem is to follow the propagation of scattered light in biological tissue with given
optical properties and thereby predict the scattered light measurements, while the inverse
problem is to reconstruct tissue optical properties from scattered light measurements using
the forward model. The image reconstruction for DOT is a nonlinear, ill-posed inverse
problem, which suffers from the lack of data diversity and from instabilities to noise. Hence,
the feasibility of DOT depends upon how precisely the forward problem is calculated and
how stably the inverse problem is solved.
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The propagation of light in turbid media with absorption is governed by the radiative
transfer equation (RTE) [2]. Numerical schemes to directly solve the RTE in biological
tissue have been proposed [3,4]. However, they are computationally expensive, since RTE
in three-dimensional space results in a six-dimensional problem in photon phase space. In
addition, for the solution of the inverse problem to converge, the forward problem must be
solved multiple times for a single reconstruction. Therefore, the RTE calculations have been
a bottleneck in algorithms when solving the inverse problem. Thus far, light propagation
has often been approximated by a diffusion equation (DE) using the P1 approximation of
the RTE. The diffusion approximation is a simplification of the RTE for optically thick media
in which multiple scattering is dominant [5]. Based on frequency-domain as well as time-
domain DE, various approaches for image reconstruction in DOT have been attempted [6].

However, actual tissue systems are in the so-called mesoscopic scattering regime, in
which light undergoes multiple scattering but the scattered light is not perfectly diffusive.
For mesoscopic scattering, the diffusion approximation breaks down especially near sources
and boundaries. To circumvent the shortcomings of the diffusion approximation, hybrid
schemes that combine radiative transfer with diffusion have been implemented [7,8].
Hybrid schemes can reduce the computational cost to solve light propagation dramatically,
but the transition between RTE and DE cannot be determined a priori. Therefore, full
RTE calculations are desirable. As for the frequency-domain RTE, several solvers of the
inverse problem have been proposed [9,10]. Since, however, image reconstruction based on
time-domain RTE is still immature, we have recently developed a time-domain RTE solver,
TRINITY (Time-dependent Radiation Transfer in Near-infrared Tomography) [11], which is
based on our former steady-state RTE solver, ART [12].

Deep learning brings a new possibility for image reconstructions. Thus far, most deep
learning schemes for DOT have been based on DE [13–15], although a deep learning scheme
based on the steady RTE has also been developed [16]. However, no attempt has yet been
made for the time-domain RTE. In this study, we construct a novel DOT algorithm based
on deep learning and a time-domain RTE, in which DTOFs are used as training data. As
for the deep learning, we utilize an LSTM (Long Short-Term Memory) method, which is an
extension of the artificial recurrent neural network (RNN) architecture to process not only
single data points but entire sequences of temporal data. We apply this algorithm to detect
highly absorbing areas in a two-dimensional mathematical model of biological tissue with
the optically homogeneous background. The approach similar to ours has been reported
by the other research group, whereas this study employed an FD DOT system [15].

In this paper, firstly we describe the details of the algorithm and image reconstruction
of a single absorber with datasets obtained from a single beam injection. Then, we present
image reconstruction of multiple absorbers with a subtraction method and improvement of
image quality by using datasets obtained from multiple beam injections.

2. Methodology
2.1. Model

Throughout this paper, we work with a two-dimensional model for solving the RTE
and performing image reconstruction. We consider a target tissue 4 cm × 4 cm in size,
which we divide into 28 domains to specify the positions of absorbers, as shown in Figure 1.
We model the absorber as a round absorber with a diameter of 5 mm. This setup is based on
an experiment using a phantom composed of polyurethane with titanium oxide (scatterer)
and carbon black (absorber).

In this paper, we present a two-dimensional model. We compare our RTE calculation
and image reconstruction with results from the setup of the experiment, which is a three-
dimensional cylinder model. The source of incident beam and detectors are located at
the half of the cylinder in height. The details of the experiment and the 3D model will be
separately reported. The optical properties of the phantom are characterized by

µa = 0.21/cm µs = 22.45/cm (1)
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where µa and µs are the absorption and scattering coefficient, respectively. Within this
background material, an absorbing pole with the following coefficients

µa = 0.64/cm µs = 22.63/cm (2)

is inserted. Scattering dominates absorption in the inserted pole as well as in the back-
ground. Absorption features appear in light emerging from the pole at the detectors, since
the absorption coefficient is larger by a factor of three in the pole. This is a principle for de-
tecting cancer positions in biological tissue. In this paper, we show the results for the cases
in which the absorption coefficient of the absorber is 3 times larger than the surrounding
tissue. However, we have also tested how smaller differences in absorption coefficient can
be identified by deep learning. It is shown that our classification method can work even for
cases in which the absorption coefficient is 1.5 times larger.

The sources of the incident beams and detectors are located at eight points as shown
in Figure 1, where the positions of the sources are labelled S1–S8 and positions of detectors
are labelled D1–D8.

S7S8

D1 S6

S5

S4S3

0

1

2

3

13

26

27
S1

S2

D2

D3 D4

D6

D5

D7D8

Figure 1. The configuration of target tissue. The dimensions are 4 cm × 4 cm. The tissue is divided
into 28 domains, each of which can possess a round absorber with a diameter of 5 mm. Eight incident
beam directions (labelled S1–S8) and eight detector positions (D1–D8) are shown. We divide the
whole area into eight groups, each of which has four or two domains.

We solve the following time-dependent radiative transfer equation in two-dimensional
space to follow scattered and absorbed light,

1
c

∂I
∂t

+ n · ∇I = −µI + η (3)

with
µ = µa + µsη = µs

∮
φ(n, n′)I(n′)dΩ′ , (4)

where I is the specific intensity of light, η is the emissivity by scattered photons, and φ is a
phase function. The emissivity term represents radiative transfer from one direction n′ to
another direction n. We employ the Henyey–Greenstein function for φ, that is,

φ(n, n′) =
1

2π

1− g2

1 + g2 − 2g(n · n′) (5)
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where g is the scattering anisotropy parameter. The case for g = 1 or g = 0 means
perfectly forward scattering and isotropic scattering, respectively. We take g = 0.62 for the
simulations. This value is consistent with the phantom experiment.

To solve Equation (3), we have developed a new solver, TRINITY (Time-dependent
Radiation Transfer in Near-infrared Tomography)(Yajima et al. [11]), which is based on
our former steady-state RTE solver, ART (Authentic Radiative Transfer) [12]. In this
method, the distribution of light rays is constructed independently from the the grids that
possess source functions. The most important advantage is the simultaneous reduction
of computational cost and numerical diffusion. We set up 642 cell grids for the radiative
transfer calculations.

Using the radiative transfer calculations, we define the absorption measure as

A(t) = [Iabs(t)− Inoabs(t)]/Inoabs(t) (6)

where Inoabs is the intensity of outgoing light toward a detector when no absorber is
included, and Iabs is the intensity when one or multiple absorbers are embedded. The
quantity of this intensity has been integrated over angles. In Figure 2, the temporal profiles
of A(t) are shown for absorbers embedded in various domains. The absolute difference,
Iabs(t) − Inoabs(t), is used for DOT. However, Iabs(t) changes by orders of magnitude,
depending on the detector positions. Therefore, the relative values given by (6) are more
suitable for the deep learning. The temporal profiles of A(t) provide training data for
LSTM deep learning. For a given incident laser beam, we obtain datasets for temporal
profiles of A(t) at the positions of 8 detectors.

Figure 2. Temporal profiles of absorption measure A = Iabs(t)/Inoabs(t)− 1 on 8 detectors (D1–D8).
The horizontal axis is time in units of nanoseconds (ns). The upper left panel shows the profiles for
an absorber located at the #3 position, upper right panel for an absorber at #26 position, lower left
panel for an absorber at #0 position, and lower right panel for an absorber at the #13 position.

2.2. Multi-Step Classification Method

It is difficult to classify all 28 positions directly at once. Thus, we adopt a two-step
classification. In the first step, all datasets are classified into 8 groups of domains, and each
group is classified into domains in the second step. We find that this multi-classification
method is more effective for absorber detection than a single-step method. In Figure 1,
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the grouping for the two-step classification is illustrated. The small red boxes are the
8 groups, and one group is composed of either 4 or 2 domains. Although such domain
decomposition is not unique, we have found that this particular decomposition works for
our deep learning scheme.

The training and test data are the temporal profiles of absorption measure A(t) at
the eight detector positions, which are obtained through radiative transfer simulations
for an absorber located at a given domain. In addition, we add random noises on the
simulation data. We assume a Gaussian type of noise which forms exp(−x2/2σ2) with a
standard deviation of σ = 0.001 or 0.01. This is suitable for classification by LSTM deep
learning. Temporal profiles of the absorption measure with noises are plotted in Figure 3.
We generate 2500 datasets in total, which include 89 datasets for each absorber position.

Figure 3. Datasets with noises: the left panel shows training data with Gaussian noises whose
standard deviation is σ = 0.001, and the right panel is test data with Gaussian noises of σ = 0.01.

2.3. LSTM Deep Learning Method

In order to classify absorber positions, we employ a deep learning method. For
temporal data, Long Short Term Memory (LSTM) learning is an effective tool that is an
extension of the artificial recurrent neural network (RNN) architecture to analyze not only
single data points but also entire sequences of temporal data. In Figure 4, an example of a
LSTM networks that we employ is shown. LSTM networks have improved recurrent neural
networks by using gates to selectively retain and forget information, which are relevant
and not relevant, respectively. Lower sensitivity to time gaps makes LSTM networks robust
for analysis of temporal data compared with a simple recurrent network.

LSTM has four neural network layers. Figure 4 shows the explicit interaction of such
layers. The input data are xt at time step t. We put the absorption data A(t) in xt and
the output data are yt. Although RNN uses just one tanh layer, some output data are
reused as input data in the next time step in LSTM. In Figure 4, boxes and circles represent
layers and pointwise operations, respectively. The symbol σ is the sigmoid function, which
determines whether data can be transferred to the next gate. The symbol tanh is the
hyperbolic tangent function. It is used to restrict data in the range (−1, 1). The actual
calculations are conducted as follows:

Dt = σ
(

WD · yt−1 + UD · xt + bD

)
(7)

Et = σ
(

WE · yt−1 + UE · xt + bE

)
(8)

Ft = tanh
(

WF · yt−1 + UF · xt + bF

)
(9)

Gt = σ
(

WG · yt−1 + UG · xt + bG

)
(10)

Ct = Et × Ft + Dt × Ct−1 (11)

yt = Gt × tanh(Ct) (12)
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Here, W, U, and b are weight matrix and bias in the neural network, respectively.
Though we have to set the value of b as a parameter, the parameters, W and U, are
automatically determined by each learning step in order to make a good classification. This
is the key point for deep learning. The sigmoid and tanh activation functions are used for
each component of any 8-dimensional vector such as yt−1 and xt. The symbol × denotes
an element-wise product. LSTM uses three types of gates: input, output, and forget gates,
which are shown by different colors of circles in Figure 4. This allows the network to retain
or forget some information.

𝑥𝑡

𝑦𝑡

𝑥𝑡−1 𝑥𝑡+1

𝑦𝑡−1 𝑦𝑡+1

𝑦𝑡−1

𝐶𝑡−1

𝐷𝑡
𝐹𝑡

𝐶𝑡

𝑦𝑡 𝑦𝑡

𝐸𝑡

𝐺𝑡

+×

×

×

𝜎 𝜎
𝜎

𝑡𝑎𝑛ℎ

𝑡𝑎𝑛ℎ

+

𝐶𝑡

Forget Gate

Input Gate

Output Gate

Pointwise Operation

Layer

Figure 4. A schematic view of our deep learning scheme based on LSTM. Boxes and circles represent
layers and pointwise operations, respectively. Blue circles are input gates and yellow circles are
output gates. In addition, a forget gate shown by red circles is embedded, which allows the network
to retain or forget some information. See text for the details of the algorithm. For example, the text
σ means a sigmoid function and tanh means a tangent hyperbolic function, respectively, which are
written in Equations (7)–(12).

We implement a deep learning scheme composed of two LSTM layers plus a final
dense layer utilizing TensorFlow 2.1.0, a free and open-source library for deep learning. We
set the bias function b zero as a simple setup. In order to classify multiple domains, we use
a categorical cross entropy as a loss function and a softmax activation function. The cross
entropy loss function is defined as

−
M

∑
j=1

dj log(pj) (13)

where M is the number of domains, dj is a binary indicator which assumes the value 1
if domain label j is the correct classification, and is otherwise 0, and pj is the predicted
probability observing from the LSTM network domain j. We calculate a separate loss for
each domain label and sum over all domains. The softmax activation function is defined as

pj(xj) =
exj

∑M
i=1 exi

(14)

where xi is element of the input data vector x. We use the softmax activation function to
solve a classification problem.

We conduct deep learning based on the the algorithm shown in Figure 5. What we are
doing in deep learning this time is classification learning. The output data are categorized
by positions. The learning steps are taken as three methods as follows:



Appl. Sci. 2022, 12, 12511 7 of 14

• Multi-step classification: First, we divide the 28 positions into 8 groups and identify
an appropriate group using a deep learning model for the groups. Then, an absorber
in the group is identified with a different deep learning model;

• Data subtraction method, where we subtract the data of a firstly detected absorber
and then reanalyze the remaining data. In the case of an absorber larger than the size
used for the training data, we put the data into the deep learning model twice, where
the machine predicts two domains to express the big absorber;

• Multi-beam injection method: we use time-domain data for beams with different
injection places. The accuracy of detection is improved especially for multi absorbers,
that is, improving accuracy for the prediction.

All detailed explanations will be shown in the later section.

Figure 5. The algorithm of the present deep learning based on the LSTM method.

3. Results on Single Absorber Detection

The TD data in our simulations consist of signals at eight detectors. The multi-position
of detectors leads to time difference in a picosecond scale. Light propagation simulations
by RTE provide precise information on the time difference at detectors. We aim to develop
a new method to predict the position of the absorber from the experimental data.

Here, we consider the case for a laser beam injected from S2. Figure 2 shows the
resultant temporal profiles of the absorption measure A(t), depending on the position
of the absorber. For example, the upper left panel shows temporal profiles of A(t) for
an absorber at #3. Since the absorber is very close to detector D8, the curve labeled D8
shows significant absorption. Similarly, the lower left panel (absorber at #0) and the upper
right panel (absorber at #26) exhibit strong absorption at the detectors in the vicinity of
the absorber. The lower right panel (absorber at #13) shows the result for an absorber near
the center of the whole region. In this case, all detectors register significant absorption,
and the temporal profiles depend strongly upon the detector position. These features of the
absorption measure A(t) are used for training data in the deep learning method used in
this work as described below.

The first classification is conducted to determine a target group out of eight groups. In
this classification, the number of learning epochs is about 40 and the number of training
data and the number of test data are 2500 and 500, respectively. The final loss value is 0.03,
and the resultant accuracy to determine the target group reaches 99%. As the the second
step, the sub-classification is achieved to determine a domain containing an absorber in



Appl. Sci. 2022, 12, 12511 8 of 14

the group. For groups composed of four domains, the number of learning epochs is 10
and the number of training data and test data are 1000 and 200, respectively. For groups
composed of two domains, the number of learning epochs is 10 and the number of training
data and test data are 600 and 100, respectively. As a result, we find that the final accuracy
rate to predict the domain reaches 99.9%. The accuracy rate depends on the noise level. If
we employ Gaussian noises with σ = 0.01 that is ten times larger than the fiducial value
(σ = 0.001), then the accuracy rate is further improved.

We also study the detection of an absorber shifted from a domain. Figure 6 shows the
results for the detection of a shifted absorber. The absorber is shown by a red circle, and
the predicted position is indicated by a square. In Figure 6, the upper left panel shows that
the model can predict a position near the correct position. The upper right panel shows the
results for an absorber at the center of four domains. Again, a near position is predicted.
Next, we consider the refinement of domains. In the lower panels of Figure 6, the results for
eight domains are shown. The accuracy for the prediction of a position can be improved.
These results demonstrate that, by the refinement of domains, we can predict the position
of absorber more precisely.

Figure 6. Results of position prediction for absorbers with offsets. Red circles are absorbers, and blue
squares are predicted positions.

4. Applications to Multiple Absorbers

In the above, we have used just the data for a single absorber to predict the position.
However, if there are multiple absorbers, the temporal profiles of A(t) emerge as the
superposition of information of those absorbers. Hence, it is hard to predict all positions
simply using the above method. In this case, it is effective to subtract the data of the firstly
detected absorber and then reanalyze the remaining data in order to predict the position of
another absorber. Here, we demonstrate the effectiveness of such data subtraction method
to detect two absorbers or an absorber bigger than a domain.

4.1. Two Absorbers

First, we obtain temporal profiles of A(t) for absorbers located at two different do-
mains. We then apply our method to the data. Once a position of an absorber is predicted,
we subtract the profile data of the absorber from the original data. Then, we again apply
our detection method to the remaining data after subtraction. Figure 7 shows the results
for two absorbers, where orange and green circles are absorbers and predicted positions
are indicated by blue squares. These results show that the subtraction method works
successfully to predict positions of two absorbers. In most cases, correct positions or close
positions are predicted, while in the case shown in the lower right panel, prediction is
not so accurate. This can be improved by multi-beam injection as shown below. After we
tested 60 cases for two absorbers, we found that the data subtraction method is effective for
detecting multiple absorbers at a high accuracy rate of 88%.
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Figure 7. Example results for two absorbers. Orange and green circles are absorbers, and predicted
positions are indicated by blue squares.

These results imply that a linear combination of each absorption profile is a good
approximation for most cases of two absorbers. When the distance between two absorbers
is large, the linearity is expected to hold good. However, the upper middle panel in Figure 6
shows that linearity is a good approximation even for adjacent absorbers, if they are located
parallel to the incident beam direction. On the other hand, as seen in the lower right panel,
the adjacent absorbers are located perpendicular to the incident beam direction. In this
case, the nonlinear effects seem to be significant.

As shown here, the data subtraction method is capable of accurately predicting the
correct position or nearest positions. In order to evaluate the probability of a correct
detection, it is useful to introduce a scoring scheme. As shown in the left panel of Figure 8,
the score for a correct position is 2, while the score for correctly predicting adjacent positions
is 1. The right panel of Figure 8 shows an example of a total score of 3. In this case,
the detection probability of the two absorbers is 3

4 = 75% because the score of correct
prediction for both absorbers is 4. Based on such scoring rule, we tested 60 examples for
two absorbers and found the average of the detection probability to be 72%.

4.2. Bigger Absorbers

Here, we consider an absorber with double size in each direction of a domain. The
temporal profiles of A(t) for this absorber are obtained through radiative transfer calcu-
lations. Then, the data subtraction method is applied for the data. Figure 9 shows the
results of predictions for a big absorber. The left panel of Figure 9 shows the classification
based on the subtraction method for four domains. Two domains adjacent to the absorbers
are predicted with this method. The right panel of Figure 9 shows the classification using
eight refined domains. The prediction probabilities are 72% for domain #34, 16% for #33,
and 10% for #32. Such probability distributions are informative for a big absorber. We also
tested the case of a 1.5 times bigger absorber, and the resultant probabilities are 75% for #34,
13% for #33, and 8% for #32. Compared to the two times bigger absorber, probabilities at #32
and #33 are slightly lower. Thus, the probability distributions reflect the size of absorber.
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Figure 8. The left panel shows a point at the position for our scoring. If one detects the absorber
position, one obtains two points. The right panel shows one example of scoring for two absorbers
that leads to three total points, which means the detection probability of 75%.

Figure 9. Example results for a big absorber. The left panel shows the classification for four domains,
while the right panels shows eight domains. We apply a subtraction method for the case using four
domains, but not for the case using eight domains. This figure shows the comparison between the
results using a subtraction method and those for small domains without using subtraction. The red
circle is the absorber, and predicted positions are indicated by blue squares.

4.3. Multi-Beam Injection Model

Thus far, we have considered the case of only one incident laser beam from S2 shown
in Figure 1. Here, we analyze the cases for laser beams injected at multiple positions, that
is, S1 to S8 in Figure 1. We can use eight datasets for different incident beams. Applying the
data subtraction method, it is found that the detection probability is higher for an absorber
located near an incident beam.

Figure 10 shows distributions of detection probabilities. In yellow domains near the
beam position, the detection probabilities are high, while probabilities are low in blue do-
mains. If we apply the present method to datasets for three incident beams simultaneously
from S1, S2, and S4, the accuracy rate is 99.9% to detect one absorber. In addition, we tested
the multi-beam model for three absorbers, using the data subtraction method. The results
are shown in Figure 11, where each symbol corresponds to predicted positions for each
beam. In this example, the blue absorber is correctly detected, while the orange absorber
is correctly detected for one position by detector S1. The total score is 7, 4 for S2, 2 for S1
and 1 for S4. The maximum score is 12. Thus, the accuracy rate is 7/12 = 58%. Additional
datasets for different beams will improve the detection accuracy rate.
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Figure 10. Distributions of detection probabilities for an incident beam from S2 (left panel) and S1
(right panel): yellow domains highlight most probable positions for detection, while green domains
correspond to moderate probabilities and blue domains correspond to low probabilities.

Detection
from S2

Detection
from S1

Detection
from S4

S2

D8 D7

D5

D6

D4D3

D2

S1

D1

S4

Figure 11. Example for a multi-beam injection model. three absorbers, and three different incident
beams. Each symbol corresponds to detected positions for each beam.

5. Discussion
5.1. Sampling Effect

In the analyses presented in this paper, we employed datasets of all time steps for
deep learning. A time step in our simulations is ∆t = 0.0006 ns, while it is ∆t = 0.01 ns
in experiments using the phantom. One advantage of LSTM deep learning is to recognize
global behaviors of temporal data. Utilizing this advantage, we conducted the LSTM deep
learning study using only 1/16 of the simulation snapshots (16 times longer time steps). As
a result, we confirmed that the our LSTM model works well even for such coarse-grained
data. This allows us to speed up the deep learning dramatically, by adjusting the time step
of the simulations to that of phantom experiments.

In addition, in the present analysis, we have assumed noises of a Gaussian type for
the training data. We have further investigated a different type of noise, which is a uniform
one. As a result, we have confirmed that the training data with uniform noises give results
similar to those with the Gaussian noises. Actually, if experiments are conducted many
times, the noises in obtained data are expected to approach a Gaussian distribution. Indeed,
the experimental data obtained in the phantom show Gaussian-like noises.

Finally, in this paper, we have used 2D simulation data calculated with the radiation
transfer solver TRINITY [11]. We have compared the present results to 3D Monte Carlo
simulations, and confirmed that the present 2D models show a good agreement with 3D
Monte Carlo simulations.
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5.2. Comparison with the Conventional DOT Method

Here, we compare the results by our deep learning method with the profile recon-
structed by the conventional DOT method [17]. The differences emerge in two ways, that
is, in solving the forward problem and the inverse problem, respectively. On the forward
problem, the conventional DOT method [17] solves a diffusion equation to trace light
propagation. On the other hand, we use RTE calculation that gives us more accurate data.
On the inverse problem, one can reconstruct the image by estimating the mean, variance,
and skew of DTOF in the conventional DOT method. However, it makes the reconstructed
image unclear due to hyperparameter problems. Therefore, here, we use the deep learning
method to solve the inverse problem.

The comparison between our deep learning method and the conventional DOT method
is shown in Figure 12. The absorption coefficient and position reconstructed by the con-
ventional method is shown by a pink line. This method gives a broader profile, compared
to the true value. The absorption coefficients presumed by the deep learning are shown
by a blue line. The blue lines show the primary candidate by the deep learning, where
the absorption coefficient and position are well presumed compared to the true values. In
the present deep learning, it is possible to presume the absorption coefficient and position
more accurately.

Figure 12. Comparison of the present method with the conventional DOT method. The true absorp-
tion coefficient is shown by the dotted line. The pink curve depicts the reconstructed coefficient using
the conventional DOT method. The blue line represents the probability distributions of the absorption
coefficients predicted by our deep learning method, where the setup is the same as Figure 1. The left
(right) panel is used by resolution as 28 domains (168 domains).

We also compared a higher resolution model using 168 domains. In the right panel of
Figure 12, the location of the absorber is identified by a sharp boundary without spatial
spread, which comes from a hyperparameter in the conventional DOT method. Thus, our
deep learning scheme can provide a more reliable reconstruction method compared to the
conventional DOT method. In addition, see [13], which shows a possibility of giving a
good reconstructed image since a similar situation can be improved.

We tested the RNN approach to classify the position. The model with RNN shows
20 percent lower accuracy for classification of 28 domains with the same setting. The LSTM
approach has an advantage of analyzing data in chronological order. We also tested this
RNN approach to predict for the same experimental data above used. The result tells us
the wrong prediction that is caused by identifying some data in the wrong position. It is
useless to reconstruct the image. The reason why the RNN gives a bad prediction is not
good for analyzing long time sequence data, which has long term changes over time. It
means that the RNN approach is not suitable for such time sequence. In Ref. [14], they
showed the overview of DOT by using deep learning, and there is a good possibility to
solve the inverse problem by using deep learning. They tested that propagation of light
through the digital phantom and reconstructed image by using deep learning to solve the
inverse problem. The result shows a remaining background noise on the reconstructed
image. This is related to the fact that their algorithm has hyperparameters for both solving
the inverse problem and reconstructing the image. On the other hand, to solve the inverse
problem, we try to identify the position by using LSTM deep learning. Its process does
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not basically contain a hyperparameter and such parameters can be fixed through every
learning step, and it is possible to make the reconstructed image clear when one takes more
high resolution. They also showed that the deep learning approach to solve the inverse
problem is highly dependent on the type of datasets used. We used the time dependent data
to reconstruct the absorber’s position. The data we deal with have accurate time dependent
information, and it is then good to analyze data by using the LSTM deep learning. The
fact that LSTM obtains more information for identifying positions than the RNN leads to a
good reconstruction shown as in Figure 12.

6. Conclusions

In this paper, as a novel deep learning scheme for DOT, we have applied a LSTM deep
learning method to temporal absorption profiles of target tissue, which are obtained by
directly solving the time-domain RTE.

We have two original contributions in this paper. One is using Trinity code to solve
the RTE as accurate time dependent data and the second is using the LSTM deep learning
with multi-step classification to solve the inverse problem. The classification of 28 domains
increases its accuracy by two-step classification. The time dependent data used in this
work have a lot of information, and using LSTM with multi-step classification and a data
subtraction method is suitable to classify and identify such data.

On the phantom experiment, we have shown that positions of absorbers can be
predicted with high accuracy rates by a multi-step classification method. We have also
developed the data for the subtraction method to detect two absorbers or an extended
absorber larger than a domain. Our results demonstrate that the application of LSTM deep
learning in DOT allows us to detect absorbers without the need to solve an inverse problem.
We have shown that positions of absorbers can be predicted with high accuracy rates by a
multi-step classification method.

In addition, in applying our method for the data of phantom experiment data, it has
been shown that the location of the absorber is identified by a sharp boundary without a
spatial spread, which is a weak point in the conventional DOT method.

In this paper, we have shown the first attempt to draw a high absorption coefficient part
by combining time-domain RTE and deep learning. In the future work, if we discriminate
lower absorption coefficients at multiple wavelengths, then we can convert them into
Hb concentrations.
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