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Abstract: The engineering technology of undercrossing an airport flight area is relatively mature;
however, the use of shield tunnels crossing the operating airport flight area in high liquidity sandy
cobble stratum has rarely been reported. To discuss the feasibility of a double-line shield tunnel
undercrossing the airport flight area in a sandy cobble region. Based on the case of the Chengdu
Metro Line 10 that undercrosses the Shuang-Liu Airport, which is located in sandy cobble region,
the deformation and stress laws of airport runway pavement structures were investigated via a
three-dimensional numerical model. Stratum displacement, ground settlement and pavement tensile
stress under different tunnel depths were analysed. Then, the pavement tensile stress was taken
as the safety evaluation index and the vulnerable area of the pavement structure was proposed.
The results show that after excavation of the double-line tunnel, the maximum ground surface
settlement occurred above the tunnel centreline and the ground settlement curves presented a V-type
settlement trough instead of a W-type. The existence of a runway greatly limited the deformation of
the surrounding soil; with increasing depth, the effect degree of the runway pavement on the soil
settlement decreased. The most unfavourable region of the runway pavement structure under the
influence of tunnel excavation was found. With increasing burial depth, the maximum settlement
of the surface centre point decreased continuously. It is recommended that the tunnel burial depth
not exceed 23.5 m in this project. According to the displacement and stress control limitation of
the airport pavement, it can be judged that the shield construction method meets the structural
stability requirements of the pavement. The calculated results provide a reference for the shield
tunnel construction in the same geological condition areas.

Keywords: shield tunnel; undercrossing construction; settlement; stress; runway pavement

1. Introduction

With the rapid development of China’s economy, the demand for travel is increas-
ing. Zero distance transfer and seamless connections have become important factors in
people’s choice of travel mode. The rapid transportation network that is composed of
railway, rail transit and aircraft has entered the rapid construction period. The complex
three-dimensional transportation network has gradually formed, and some more complex
transportation construction projects have emerged, such as the construction of underpass
tunnels or other underground buildings in the airport flight area (runway, airport taxi-
way, etc.). At present, the existing domestic and foreign tunnels under the airport airfield
include: Taiwan Songshan municipal road underground runway crossing project, Taipei
shield tunnel crossing runway engineering, Beijing Capital Airport underground service
lane undercrossing l-shaped slideway project and the runway crossing project of Shang-
hai Hongqiao airport metro Lines 2 and 10, plus, the circular monorail tunnel under the
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Stuttgart Airport runway in Germany and the rail tunnel under the taxiway and apron of
Heathrow Airport in the UK.

In contrast to other shield undercrossing engineering projects, the normal operation
of the airport runway cannot be interrupted during the construction of the shield tunnel.
Additionally, airport runway construction has more stringent requirements on ground
settlement. Excessive ground displacement induced by underground crossings can cause
runway cracking; this phenomenon may cause airport outages or major accidents [1,2].
So, excavating shield tunnels in non-stop airport flight areas is extremely challenging.
It is necessary to carry out safety analysis and formulate a strict control scheme before
construction. At present, much research has been performed on the settlement of the
existing buildings and structures caused by shield tunnel construction. However, there
is no clear and unified regulation on the allowable settlement of airport runways. The
settlement control requirements of airport runways are mainly based on the experience of
highway construction on soft soil foundations. There are few studies on the laws of airport
runway settlement caused by an undercrossing shield tunnel.

Aiming at the issue of ground surface settlement caused by shield tunnel construction,
the research methods can be summarized as follows: empirical formula method, numerical
analysis method, theoretical analysis method and model test method. In terms of the empir-
ical formula method, Peck [3] proposed a formula fitted by a Gaussian function regarding
ground settlement induced by a tunnel. The Peck formula is widely accepted in tunnel
engineering. On the basis of Peck’s empirical formula, researchers have conducted more
in-depth research on empirical parameters [4–8]. Compared with the empirical formula
method, the theoretical analysis method is a conclusion analysis method based on some the-
oretical assumptions. Taking into account that the soil is elastic plane and incompressible,
Sagaseta [9] proposed the strain solution of an elastic isotropic homogeneous body in the
case of near-surface ground loss. Subsequent scholars solved the formation deformation
under different boundary conditions through a complex potential function method [10–13],
stochastic medium theory [14–17] and cavity expansion theory [18–21], etc.

With the rapid development of computer techniques, finite element numerical sim-
ulation is becoming the most efficient way to simulate the construction procedure of
underground engineering under various complex environmental conditions [22–24]. For
instance, Shan et al. [25] investigated the effects of shield tunnel construction on the differ-
ential settlement and the soil dynamic stress of an adjacent culvert-embankment transition
zone via finite element analysis. Fattah et al. [26–29] investigated the shape of the settlement
trough caused by tunnelling in cohesive ground by analytical solutions, empirical solutions
and the finite element method. Chakeri et al. [30] established a three-dimensional numerical
model to analyse the effect of tunnel spacing, horizontal distance between tunnels and
excavation sequence on surface settlement. Michael et al. [31] simulated the shield tun-
nel mechanical excavation process including variable muck pressure, cutterhead overcut,
shield conicity, installation of jointed segmental lining, annular gap grouting based on
ABAQUS. Then, the development of ground deformations and internal forces of the lining
were studied.

In the relevant study of undercrossing the airport runway, Tong et al. [32] analysed the
stress and deformation of runway pavement induced by undercrossing tunnel excavation
based on the mechanics method, and the calculation method of the soil settlement trough
limit value and the vault control value were proposed. Shen and Elbaz [33] presented a
novel deep learning model for real-time prediction of shield moving trajectory during tun-
nelling, and a tunnel case study at Bao’an International Airport, Shenzhen, was employed
to demonstrate the accuracy of the proposed model. The field observation is the most
popular and straightforward method for understanding the interaction between existing
buildings and undercrossing tunnels. Huang et al. [34] introduced a super-large diameter
earth pressure balance (EPB) shield tunnel crossing below an operating airport in a soft
soil region and the environmental effect of EPB shield tunnelling was investigated by
monitoring the surface settlement. Zhou et al. [35] studied the control rules of tunnel shield
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construction parameters through field tests; the corresponding control measurements were
given to reduce the settlement of airport taxiways, which provided guidance for construc-
tion parameter settings during shield advancing. Based on the observation data of runway
surface settlements for more than 6 years, Yang et al. [36] studied the settlement law of
airport runways under aircraft take-off and landing loads.

Different from the relatively mature technical conditions of shield tunnels undercross-
ing airports in coastal soft and clay areas, Chengdu Shuang-Liu Airport is located in a
sandy cobble stratum with rich water and high mobility. The characteristics of this stratum
are unstable mechanics, large gaps between particles, no cementation, sensitive response
and ease of producing disturbance loss. When the cutter head is rotating and cutting, the
stratum that is relatively stable or in equilibrium and is easily destroyed and then collapses,
resulting in large stratum loss and surrounding rock disturbance, which has brought great
challenges to the construction of metro shield tunnels that undercross airports. In addition,
there are few reports of shield tunnels undercrossing operating airports in a high-flow
sandy cobble stratum.

Therefore, it is necessary to conduct in-depth research on ground settlement and dis-
cuss the feasibility of shield tunnel undercrossing airport in sandy cobble area. Considering
above problems, based on the Chengdu Metro Line 10 project undercrossing Shuang-Liu
Airport, the influence law of double-line shield tunnel construction on the ground settle-
ment was investigated via a numerical simulation method. Finally, the vulnerable area of
the pavement structure was proposed through stress analysis and the shallowest tunnel
buried depth in this region was determined. It was expected to make a rational calculation
and assessments of the safety of the airport runway and provide reference for similar
projects in the future.

2. Background

This study is based on the Chengdu subway project in China. The tunnel from Shuang-
Liu West Station to Shuang-Liu Airport Terminal 2 of Chengdu Metro Line 10 is located
in the Shuang-Liu District (Figure 1), which highlights the Chengdu Metro Line 10 Phase
II Project undercrossing the Chengdu Shuang-Liu Airport flight area. The undercrossing
area is mainly runways and sward, and the subway terminal station is Shuang-Liu Airport
Terminal 2. The lithological log around the shield tunnels mostly consists of miscellaneous
fill, silty clay, sandy cobble and weathered mudstone with increasing depth (Figure 2).
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Figure 2. Geological profile.

The plan view and spatial location of the project are shown in Figure 3. The distance
between the left tunnel and right tunnel is 13.0 m. The airport runway is a double line
with a width of 60 m, and the width of the sward between the runways is 40 m. The
undercrossing tunnel constructed by the shield-driven method is a conventional circular
section with single-layer reinforced concrete precast lining. The burial depth of the tunnels
is approximately 46.5 m. The thickness of the segment is 300 mm, the inner diameter is
5.4 m and the outer diameter is 6.0 m.
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The typical soil profile at the site is presented in Figure 3b. The geological soil layer of
the undercrossing of the airport runway section from top to bottom is pavement structure,
miscellaneous fill, silty clay, pebble soil and strongly weathered mudstone. The shield
tunnel is located in the weathered mudstone. The main physical and mechanical parameters
of each layer are shown in Table 1.

The pebble soil and weathered mudstone strata are widely distributed in the Chengdu
area; the special engineering characteristics of these strata have caused great difficulties
for shield construction, as shown in Figure 4. The characteristics of these two strata are
introduced in this section. The pebble stratum is brown grey or grey yellow, mainly
loose or medium dense. The pebbles are mainly slightly weathered magmatic rocks and
metamorphic rocks. The shape of pebbles is subcircular. The pebble content in this stratum
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is generally 60~70%, the particle size is mainly 2~15 cm and the maximum particle size
is approximately 40 cm. The filling materials are mainly fine and medium sand and
round gravel. A pebble stratum is a typical mechanically unstable formation with a large
gap between particles and almost no cohesion. Under anhydrous conditions, force is
transmitted through point contact between particles and the stratum reaction is sensitive.
During the construction of shield tunnels, the stable state of the stratum is easily destroyed
and collapses, resulting in large stratum loss and disturbance to the surrounding rock.

Table 1. Physical and mechanical parameters of the soil.

Soil Layer Number Unit Weight
γ (kN/m3)

Cohesion
c (KPa)

Internal
Friction

Angle φ (◦)

Es0.1–0.2
(MPa)

Poisson’s
Ratio v

Miscellaneous fill 19.0 10.0 8 / 0.32
Silty clay 20.0 40.9 19 5.7 0.30

Pebble soil 22.0 20.0 40 20 /
Weathered mudstone 23.5 300.0 35 23 0.18

Test Routine
physical test Direct shear test Compression testAppl. Sci. 2022, 12, 12498 6 of 19 
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The weathered mudstone stratum is dark red or purple red. The development degree
of the rock joint fissure is relatively great and the rock quality designation (RQD) is 75~90%.
The natural single axis compressive strength is in the range 3.15~6.70 MPa, the saturated
single axis compressive strength is in the range 1.76~3.91 MPa, the free expansion rate is in
the range of 12~28% and the expansion force is in the range 5.8~25.1 kPa.

In view of the particularity of sandy pebble strata, a project with a shield tunnel
crossing an operating airport in a sandy pebble area has not been reported. Based on
the actual project in Chengdu and the numerical simulation test, this paper discusses
the feasibility of shield tunnels undercrossing airports in sandy pebble areas, which can
provide some technical support for shield construction in other sandy pebble areas. The
research scheme is shown in Figure 5.
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3. Three-Dimensional Numerical Model
3.1. FEM Model

A three-dimensional numerical model was established using the finite element soft-
ware ANSYS to simulate the construction procedure of the shield tunnel. Figure 6 shows
the finite element model used in this study, which was 100 m in the x direction, 70 m in
the y direction and 200 m in the z direction. The tunnel was 200 m long, 5.4 m in inner
diameter, 6.0 m in outer diameter and 13 m in tunnel spacing. The widths of the runway
pavement and sward were 60 m and 40 m, respectively, and the thickness of the pavement
was 1 m. As presented in Figure 6, the Solid 45 element was used to simulate the soil and
the shell element Shell 63 was used to simulate the shield shell and lining. The allowable
displacement boundary conditions were as follows: no horizontal displacement along the
full vertical mesh boundaries, no vertical and horizontal displacement along the bottom
boundary of the mesh and free displacement along the top boundary.
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3.2. Material Model and Parameters

The stratum, grouting material, shield shell and lining were simulated using three-
dimensional solid elements. For the grouting material, shield shell and lining, the elastic
model was adopted. For soil, the Mohr-Coulomb model was adopted, and the material
parameters used in this study are shown in Tables 1 and 2. The binding constraints were
set at the interface of the soil-shield shell, soil-grout and grout-lining. As shown in Figure 7,
the runway pavement structure consisted of a concrete layer and a pebble layer. In this
model, the pavement structure was simplified as linear elastic materials with an elastic
modulus of 10,000 MPa. The groundwater infiltration and soil consolidation creep were
not considered in this model.

Table 2. Material parameters in the model.

Materials Density (g/cm3) Elastic Module (MPa) Poisson Ratio

Pavement 2.5 10,000 0.25
Shield shell 2.5 30,000 0.25

Initial grouting 2.1 3 0.30
Hardening grouting 2.1 20 0.30

Lining 14.2 20,000 0.30
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3.3. Simulation of the Excavation Process

In the simulation of the tunnel excavation, an excavation step was set as twice the
duct piece width (2.4 m). The simulation of soil excavation, shield tunnelling, segment
installation and synchronous grouting were realized via the element birth–death method;
the excavation simulation diagram is shown in Figure 8. The detailed process is as follows:
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Excavation step-2Excavation step-1
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3#Soil
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Soil
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1#Soil

Figure 8. Simulation process of shield excavation.

STEP 1: Thrust was applied on the #1 soil element, and then the #1 soil element was
removed. At the same time, the corresponding shield shell unit was activated.

STEP 2: The #2 soil element was removed. At the same time, the corresponding
shield shell unit was activated. The shield shell unit in excavation step 1 was removed,
the corresponding lining and grouting unit were activated and circumferential grouting
pressure was applied to the surrounding soil. In the subsequent excavation steps, the above
two steps were repeated until a total of 84 excavation steps were completed.

4. Settlement Caused by Shield Tunnel Excavation

To explore the influence of the runway pavement structure on ground surface settle-
ment, three conditions were set for simulation. (1) Condition 1: shield tunnel undercrossing
a double runway. (2) Condition 2: shield tunnel undercrossing a single runway. (3) Con-
dition 3: shield tunnel undercrossing sward without runway. The accuracy of the model
was verified by comparing the simulated and measured ground surface settlement under
condition 1 and the simulations for conditions 2 and 3 were conducted based on this model.
Thirteen surface settlement monitoring points were arranged by the hole-drilling method,
and the distribution layout is shown in Figure 9. First, a Φ120 mm hole was opened in the
ground and a Φ20 mm ribbed rebar was inserted. The length of the ribbed rebar was 1 m.
Then, fine sand was filled around the rebar. The top of the fine sand was 5 cm away from
the ground surface, the rebar was exposed to the fine sand for 1 cm and then a protective
cover was used to cover the exposed steel bar.
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of settlement monitoring points; (c) schematic diagram of monitoring points by hole-drilling method.

The comparison result of the simulated ground surface settlement and measured
ground surface settlement for condition 1 is shown in Figure 10. It can be concluded that
the measured settlement was less than the simulated settlement because of the influence
of the complex construction environment on settlement was not considered in the model.
However, the simulated settlement trend was similar to that of the measured settlement,
which verified the accuracy of the model.
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4.1. Ground Surface Settlement Trough

Based on the proposed model, the influence of the double-line tunnel excavations
on ground surface settlement was investigated. When the double-tunnel excavation was
finished, the ground surface settlement curves along the runway pavement longitudinal
section are shown in Figure 11. L1 and L2 represent the sections of the runway midline
and sward midline, RL1′ and RL2′ are the sections of runway midline and sward midline
when the right-line tunnel excavation was finished and LL1′ and LL2′ are the sections
of runway midline and sward midline when the left-line tunnel excavation was finished,
respectively. The ground surface settlement curves of RL1′, LL1′, RL2′ and LL2′ were
normally distributed and the Peck formula was used to fit the settlement trough. As shown
in Figure 8, there was a good fit between the settlement trough and the Peck formula. The
settlement of the monitoring points above the tunnel axis was maximum. The farther the
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monitoring point from the shield tunnel axis, the smaller the ground surface settlement. The
ground surface settlement induced by a double-line shield tunnel excavation was always
larger than that induced by a single-line shield tunnel excavation for different sections.
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Figure 11. Ground surface settlement trough at different sections.

The ground surface settlement curves at different sections induced by a double-line
tunnel undercrossing were V-type settlement troughs instead of W-type. A previous study
showed that the type of settlement trough induced by tunnel undercrossing is closely
related to the tunnel spacing (L), depth (H) and radius (R). When L/(H + R) ≤ 0.5, the
settlement curves are V-type; in this study, L/(H + R) = 0.255, which was consistent with
the V-type settlement trough characteristic. Among them, the maximum settlement at the
L1 section was 1.96 mm, and the maximum settlement at the L2 section was 2.14 mm. This
is because the runway pavement structure has a greater stiffness compared with the soil, so
the runway itself had a small settlement.

4.2. Settlement of the Characteristic Point

The settlement variation of the characteristic monitoring point (D1) on the runway
pavement and characteristic monitoring point (C1) on the sward with excavation steps is
shown in Figure 12. When the shield machine advanced to the 40th loop, the settlement of
D1 reached the maximum value of 1.96 mm. When the shield machine advanced to the 60th
loop, the settlement of C1 reached the maximum value of 2.14 mm. After excavation step 40,
the settlement increased slightly and the rising value basically remained at 1 × 10−3 mm.
Similarly, after excavation step 60, there was a very small decrease of the settlement and the
rising value basically remained at 0.5 × 10−3 mm. The magnitude of the increase was very
small. Basically, it can be considered that the settlement is stable and the small amplitude
increase of this settlement is probably caused by the formation of the shield shell and
lining segment.

By comparing the simulated settlement with the measured settlement, the accuracy
of the finite element model was verified. This can provide some guidance for settlement
prediction in the construction process.
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Figure 12. Settlements of characteristic points (a) D1 and (b) C1.

4.3. Stratum Displacement at Different Depths

To investigate the stratum displacement at different stratum depths affected by tunnel
excavation, the settlement curves of the sward midline cross section at the ground surface
and 15 m, 30 m and 45 m below the ground surface were calculated by the established
model, as shown in Figure 13. It can be concluded that the ground settlement above the
tunnel increased with the stratum depth and the maximum stratum settlement occurred
above the tunnel axis. For condition 1, the maximum settlement of the ground surface was
2.14 mm and the maximum settlement of the stratum 45 m below the ground surface was
4.30 mm. For these conditions, the settlement curves of the cross section in the shallow
stratum were V-type troughs. However, the settlement curves of the stratum near the
tunnel top were W-shaped troughs and the maximum settlement occurred above the left
and right tunnels.
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Figure 13. Settlement of soil layers at different depths under different conditions (a) condition 1,
(b) condition 2 and (c) condition 3.

With increasing stratum depth, the trends of the settlement curves under the three
conditions were similar; that is, the existence of a runway pavement structure had little
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influence on the stratum settlement law. Comparing the maximum settlement of stratum at
different depths under these conditions, it can be found that the maximum ground surface
settlements for conditions 1, 2 and 3 were 2.14 mm, 2.63 mm and 3.13 mm, respectively,
and the existence of a runway pavement structure can obviously decrease the ground
surface settlement. This is because the settlement of the runway structure with larger
rigidity compared with the soil is small and the existence of the runway can greatly limit
the deformation of the surrounding soil, thus reducing the ground settlement.

Comparing the maximum settlement difference of the soil layers at different depths
under conditions 1, 2 and 3, the settlement differences between the soil layers at different
depths were 0.98, 0.81, 0.60 and 0.39 mm. The maximum settlement difference between
conditions gradually decreased with increasing stratum depth, indicating that the influence
of the runway layer on the ground settlement gradually decreased with increasing stratum
depth. The existence of the runway structure was mainly manifested by the obvious
increase in surface stiffness, the settlement of the surface and upper soil was reduced
and the settlement difference between different conditions was mainly in the surface and
upper soil.

4.4. Ground Surface Settlement for Different Burial Depths

Based on the proposed numerical model, to guide tunnel construction the minimum
tunnel burial depth when the surface settlement does not exceed the limit was proposed and
the influence of the tunnel burial depth H = 15.0 m, 22.5 m, 30.0 m, 43 m and 46.5 m on the
ground surface settlement was investigated. The ground surface settlement curves along
the runway pavement longitudinal section for different tunnel burial depths are shown
in Figure 14a. The ground surface settlement trough under different tunnel burial depths
was approximately consistent with the Peck formula and the tunnel burial depth had a
significant effect on the surface settlement. When the burial depth was 22.5 m, the maximum
surface settlement was 10.35 mm, and when the burial depth was 15.0 m, the maximum
surface settlement was 15.09 mm. According the limit value of pavement settlement
proposed by the previous literature [35] (settlement difference between construction area
and surrounding area is no more than 10 mm), it is suggested that the buried depth of
the shield tunnel in this project should be no greater than 22.5 m. Figure 14b shows the
variation in the maximum surface settlement with different tunnel burial depths, which
basically conformed to the exponential curve law. This shows that with increasing tunnel
burial depth, the maximum settlement of the surface centre point decreased continuously
but the decreasing trend gradually slowed down. Given the variation of runway pavement
characteristic monitoring point (D1) settlement with excavation steps for different tunnel
buried depths, it can be concluded that for a buried depth of 46.5 m, when the shield
machine advanced to the 40th loop, the settlement of D1 reached the maximum value of
1.96 mm. For a buried depth of 15.0 m, when the shield machine advanced to the 70th
loop, the settlement of D1 reached the maximum value of 15.09 mm. This shows that with
the increasing shield tunnel buried depth, the development time of the ground surface
settlement increased as well.

4.5. Pavement Structure Stress for Different Tunnel Burial Depths

During the tunnel excavation period, the ground surface settlement and pavement
structure stress will change. In this paper, the finite element numerical model was used to
investigate the pavement structure stress characteristics caused by the tunnel excavation un-
der different tunnel burial depths. According to the distribution of pavement tensile stress,
the pavement vulnerable areas were proposed for reference of pavement maintenance.

Case 1: the tunnel buried depth = 46.5 m.
The stress in the x direction of the runway in the transverse section when the buried

depth = 46.5 m is shown in Figure 15. The pavement within 29.8 m of the shield tunnel axis
was subjected to compressive stress. When the pavement was 56.5 m away from the tunnel
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axis, the stress basically dissipated to 0 kPa and the pavement 29.8–56.5 m away from the
shield tunnel axis was subjected to tensile stress; the maximum tensile stress was 6.82 kPa.
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Figure 14. Influence of buried depth on ground surface settlement. (a) settlement trough. (b) the
relationship between maximum settlement and tunnel burial depth. (c) settlement development.
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Case 2: the tunnel buried depth = 43.0 m.
The stress in the x direction of the runway in the transverse section when the buried

depth = 43.0 m is shown in Figure 16. The pavement within 28.1 m of the shield tunnel axis
was subjected to compressive stress. When the pavement was 56.5 m away from the tunnel
axis, the stress basically dissipated to 0 kPa and the pavement 28.1–56.5 m away from the
shield tunnel axis was subjected to tensile stress; the maximum tensile stress was 8.56 kPa.

Case 3: the tunnel buried depth = 30.0 m.
The stress in the x direction of the runway in the transverse section when the buried

depth = 30.0 m is shown in Figure 17. The pavement within 23.8 m of the shield tunnel axis
was subjected to compressive stress. When the pavement was 56.5 m away from the tunnel
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axis, the stress basically dissipated to 0 kPa and the pavement 23.8–56.5 m away from the
shield tunnel axis was subjected to tensile stress; the maximum tensile stress was 76.10 kPa.
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Figure 17. Stress in x direction of runway in transverse section (the buried depth = 30.0 m).

Case 4: the tunnel buried depth = 22.5 m.
The stress in the x direction of the runway in the transverse section when the buried

depth = 22.5 m is shown in Figure 18. The pavement within 21.6 m of the shield tunnel axis
was subjected to compressive stress. When the pavement was 56.5 m away from the tunnel
axis, the stress basically dissipated to 0 kPa and the pavement 21.6–56.5 m away from the
shield tunnel axis was subjected to tensile stress; the maximum tensile stress was 89.77 kPa.

Case 5: the tunnel buried depth = 15.0 m.
The stress in the x direction of the runway in the transverse section when the buried

depth = 15.0 m is shown in Figure 19. The pavement within 20 m of the shield tunnel axis
was subjected to compressive stress. When the pavement was 56.5 m away from the tunnel
axis, the stress basically dissipated to 0 kPa and the pavement 20~56.5 m away from the
shield tunnel axis was subjected to tensile stress; the maximum tensile stress was 95.01 kPa.
Therefore, in the construction stage, the safety detection of this region should be considered
to prevent the occurrence of runway cracks and other hidden dangers.
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Figure 19. Stress in x direction of runway in transverse section (the buried depth = 15.0 m).

After the completion of the shield tunnel excavation, the uneven settlement of the
overlying pavement structure will occur, which will cause sudden changes in the bending
tensile stress of the pavement structure, leading to structural damage. The allowable tensile
stress of the structural layer is the maximum fatigue stress when the pavement is subjected
to repeated vehicle loads and reaches the critical failure state; this parameter can be used
to characterize the flexural-tensile resistance of the structural layer. For the calculation of
the allowable tensile stress of the pavement we referred to the provisions of specifications
for “Specification for Design of Highway Asphalt Pavement (JTGD50-2006)” [37]. The
allowable tensile stress σR of the asphalt concrete pavement was defined as:

σR = σSP/Ks (1)

where σSP is the splitting strength (MPa) of the asphalt concrete and KS is the tensile strength
coefficient, Ks = 0.09 Ne

0.22/Ac. Where Ac is the road grade coefficient, 1.0 for expressway
and Class I highway, and Ne is the cumulative equivalent axle time in a lane within the
design life; 1.8 × 107 was taken in this study. The allowable tensile stress of the pavement
structure layer was calculated is 0.225 MPa. Considering the requirements for allowable
tensile stress of the surface layer, the relationship between the tunnel buried depth and the
pavement maximum tensile stress, the tensile stress area width was analysed, as shown in
Figure 20. It can be concluded that there is a good linear relationship between the maximum
tensile stress, the tensile stress area width and the tunnel buried depth; the judgment
coefficients, R2, were 0.9279 and 0.9852, respectively. With decreasing tunnel burial depth,
the tensile stress area width and the maximum tensile stress value of pavement structure
increased. Even if the tunnel buried depth was very shallow (15.0 m), the maximum
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tensile stress of the asphalt pavement did not exceed the allowable tensile stress value;
however, considering the influence of aircraft fatigue load after runway operation, the
safety detection of the tensile area should be considered to prevent the occurrence of
runway cracks and other hidden dangers.
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5. Conclusions

In this study, based on the case of the Chengdu Metro Line 10 undercrossing Shuangliu
Airport in a sandy cobble region, a three-dimensional numerical model was established
to investigate the ground settlement during the shield tunnel construction procedure.
Then, the development law of the surface settlement during the double-line shield tunnel
construction period was investigated and the influence of runway pavement on ground
settlement at different depths was analysed. Subsequently, according to the stress analysis
of the pavement structure, the most unfavourable regions of the runway pavement structure
under the influence of tunnel excavation was determined. Finally, the influence of the
tunnel burial depth on the ground surface settlement was studied. The main conclusions
are as follows:

(1) When the double-line tunnel excavation was finished, the ground surface settle-
ment curves at different sections induced by the double-line tunnels undercrossing were
V-type settlement troughs instead of W-type settlement troughs. Among them, the maxi-
mum surface settlement at the pavement section was 1.96 mm and the maximum surface
settlement at the sward section was 2.14 mm.

(2) When the shield machine advanced to the 40th loop, the settlement of the character-
istic monitoring point at the sward surface reached the maximum value. When the shield
machine advanced to the 60th loop, the settlement of C1 reached the maximum value.

(3) The existence of the runway pavement greatly limited the deformation of the
surrounding soil; with increasing stratum depth, the effect degree of runway pavement on
ground settlement decreased.

(4) With increasing tunnel buried depth, the maximum settlement of the surface centre
point decreased continuously and the development time of the ground surface settlement
was extended. It is suggested that the tunnel buried depth of the shield tunnel in this
project should be no greater than 22.5 m.

(5) There were good linear relationships between the maximum tensile stress, the
tensile stress area width and the tunnel buried depth. With decreasing tunnel buried
depth, the tensile stress area width and the maximum tensile stress value of the pavement
structure increased. Even if the maximum tensile stress of the asphalt pavement did not
exceed the allowable tensile stress value, considering the influence of aircraft fatigue load
after runway operation the safety detection of the tensile area should be considered.

The effect of shield construction on surface buildings has always been a complex
problem in the engineering. This study only discussed the influence of tunnel buried depth
and surface roads on the ground settlement of the operating airport in a sandy pebble region.
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However, there are still some limitations, the influence of shield construction parameters,
anisotropy of soil and the seepage of water needed be investigated in further research.
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Abbreviations

FP First pavement
SP Second pavement
LT Left tunnel excavation
RT Right tunnel excavation
γ Unit weight
c Cohesion
φ Internal friction angle
v Poisson’s ratio
RQD Rock quality designation
Φ Diameter
L1 Sections of runway midline
L2 Sections of sward midline
RL1′ Sections of runway midline when right-line tunnel excavation was finished
RL2′ Sections of sward midline when right-line tunnel excavation was finished
LL1′ Sections of runway midline when left-line tunnel excavation was finished
LL2′ Sections of sward midline when left-line tunnel excavation was finished
L Tunnel spacing
H Tunnel burial depth
R Tunnel radius
C1 Sward characteristic monitoring point
D1 Runway pavement characteristic monitoring point
σR Allowable tensile stress of asphalt concrete
σSP Splitting strength
KS Tensile strength coefficient
Ne Cumulative equivalent axle time
Ac Road grade coefficient
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