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Abstract: During stockpile feeding, the small particles migrate to the center of the stock while large
particles end up around the edges. This phenomenon influences how the mineral is fragmented in the
subsequent stages of size reduction. In this study, the primary variables involved in this phenomenon
were studied using the discrete element to simulate particle segregation. Results show that the ratio
between coarse and fine particles strongly affects particle segregation. The segregation phenomenon
was not observed when there were fewer coarse particles in the mix. The feeding height was also
found to influence segregation and to affect the angles of repose and dumping. Finally, the rounded
polyhedral shape of particles generated the simulation performance most similar to actual particle
segregation based on a case study analyzed.

Keywords: discrete element method; granular material; gravity flow; mining; stockpile

1. Introduction

In mining, a stockpile is a storage location of ore, which is reserved to be later sent to
stages of size reduction and subsequent mineral processing in the plant. During the stock-
piling process, segregation and stratification occur spontaneously, leading directly to a state
of particulate system division [1]. In stockpiles, size segregation can limit temporal control
of the material placed in the pile without knowing its tonnage and grade requirements. In
addition, this segregation implies that when unloading from the bottom of the stockpile,
there will be a greater flow of fine particles initially that will then subsequently change to a
more significant coarse particle flow. Variations in the particle size of the extracted ore due
to segregation in stockpiles can result in significant fluctuations in the performance of the
comminution circuit [2].

Various methods have been used to study the segregation of granular material; these
include experimental and numerical methods such as the discrete element method and
cellular automata. For example, Cabrejos [3] presented a physical model that can determine
how fine materials with high moisture content affect the flowability of most ores in piles,
favoring the appearance of arches and ratholes. Ye et al. [4] developed a laboratory test
to quantify an ore pile’s propensity to segregate. Their results indicated it is possible to
quantify size segregation in the laboratory and scale up the results under the experimental
conditions used.

In recent years, numerical methods such as cellular automata have been used to
simulate the segregation in stockpiles in shorter simulation times. Tien-Fu [5] developed a
model based on cellular automata performing various stockpile simulations to know the
distribution of grades present in each sector of the pile. The main output parameter of
the program is information to identify in which sectors of the stockpile the highest grades
are concentrated. Castro et al. [6] proposed a small-scale, quasi-two-dimensional physical
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model and a mathematical model based on cellular automata; both were used to investigate
size segregation during stacking and gravitational reclaim of stockpiles. Stratification
patterns were observed during stockpile formation both in the physical model and in
the cellular automaton-based model. Furthermore, the cellular automaton-based model
successfully simulated segregation phenomena during gravitational discharging and the
topological features of segregation during stockpiling and reclaim. Ye et al. [7] proposed
a 3D cellular automaton (CA) model of ore pile formation incorporating size segregation
due to surface stratification. The model was found to adequately describe the segregation
behavior at a range of model scales, where coarse particles were rolled to the outside of
the pile and fine particles were concentrated at the center of the pile. Moreover, the model
is fast enough to be used in real-time applications such as dynamic process control and
digital twins.

On the other hand, the discrete element method (DEM) has been employed due to its
ability to model the physical behavior of particles with great precision and to control a large
number of variables, including complex particles’ shape [8] and interparticle friction [9].
Yu et al. [10] developed an experimental model with a simulation using the DEM. Using
symmetric models, they validated the discrete element method as a viable option for
studying the process of stockpile formation. Zhan et al. [1] proposed a 3D-DEM model to
study stockpile segregation. This model used two characteristic particle sizes of spheres to
separate between fine and coarse particles, where the main variations were in the percentage
of the mixture of fine and coarse particles with an experiment of discharge height. This
research determined that particles with a higher percentage of coarseness had a higher
segregation index. Vuilloz et al. [11] proposed a 2D and 3D stockpile DEM simulation
with spherical particles in the contact dynamics approach framework to simulate particle
segregation by varying the mixing ratio between fine and coarse particles. The preliminary
results of this study established that a greater separation between particles is observed
when there is a higher percentage of coarse particles.

Few studies have analyzed the influences of relevant variables (e.g., particle shape,
feeding height, and particle sizes) in stockpile during feeding and discharge; these variables
can be correctly simulated using the DEM. The DEM has been used successfully to replicate
segregation in stockpiles [1,12]. In this work, stockpile segregation was studied through
the discrete element method using the software Rocky DEM. Here, a sensibility analysis
was performed by changing not only discharge heights, material mixture, and sizes, but
also particle shapes to study the influence of all these variables on the segregation process
during feeding and discharge.

2. Numerical Model

In the DEM, the contact forces are calculated from a contact model. The normal contact
forces (Sn) are defined through the normal superposition of the particles, whereas the
tangential forces (St) are determined through the tangential superposition [13,14]. In this
study, the models used were the hysteretic liner spring model to calculate the normal
repulsion force, the linear spring Coulomb limit model to calculate the tangential force, and
a constant model to calculate the adhesion force. Simulations were conducted using Rocky
DEM software version 4.2.0, widely used in granular material simulations [15–19].

Figure 1 shows an example of the stockpile model simulated through the DEM in this
study. The model is composed of the following:

• A feeding zone: Here, particles fall to form a pile. This zone is located at a height H
(input variable) over the model floor.

• A base: This zone has two components: a square box (3 m × 3 m), where the falling
particles form the stockpile, and a feeder (0.12 m × 0.15 m) located on the floor of the
base’s box below the stockpile. The feeder is opened once the stockpile is formed and
there are no falling particles from the feeding zone. The discharge from the feeder
forms an internal repose angle in the center of the stockpile here called “flow angle”.
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• Control zone: This zone is located below the base, directly under the feeder zone.
The control zone is used to analyze output variables such as the mass drawn and
particle size.
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Figure 1. Stockpile model example used in the simulation.

2.1. Input Variables and Numerical Parameters

The following input variables were used in the study:

• Coefficient of Uniformity (CU): Two different PSDs were tested and characterized
through their CU (1:2.5).

• Feeding height (H): Different heights were tested to observe their influence on segre-
gation [1]. Heights tested were 1 m, 2 m, and 3 m.

• Coarse to fine particle ratio: Two coarse/fine particle ratios were tested: 70/30%
and 60/40%.

• Particle shape: Sphere-shaped particles were initially used and calibrated. Other
particle shapes were subsequently simulated to analyze their influence on segregation.

• Number of particles: The number of particles was varied based on the PSD and the
coarse-to-fine particle ratio used.

Table 1 summarizes the input variables and the experimental plan (tests) simulated
through the DEM. The fine particle sizes are defined based on the study; here, particles below
11.8 mm were defined as fine particles. The PSDs used in the tests are shown in Figure 2.
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Table 1. Input variables used in the experimental plan.

Test Loading
Height CU Coarse/Fine

Particles Particle Shape Number of
Particles

m % ID Geometry Coarse Fine
1 1 2.5

70/30

S
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81,078 34,748

Additionally, the software used the following parameters that had to be defined
and calibrated:

• Force fraction: parameter that multiplies the gravity force (9.8 m/s2) to calculate the
force of adhesion (Sn) between particles.

• Adhesion distance: parameter that defines the distance of overlap between particles;
used to determine the force of adhesion.

• Dynamic friction (µD): parameter to calculate the friction between particles dur-
ing movement.

• Static friction (µS): parameter to calculate the friction between particles in static conditions.
• Rolling friction (µR): parameter used to include a contact moment in the opposite

direction of rotation.

Some software parameters were defined based on similar studies [10,11]:

• Elastic moduli: the stiffness of particles and surfaces.
• Density: the mass of a particle volume.
• Restitution coefficient: energy dissipated between contacts.

2.2. Output Variables

The following variables were used to analyze the segregation phenomenon in a stockpile:

• Repose angle: natural angle formed by the stockpile during particle feeding.
• Flow angle: internal angle formed in the center of the pile during particle discharge.
• Total and live capacities: mass of particles in the stockpile before and after discharge.
• PSD during discharge: particle size distribution (PSD) measured in the control zone.

Additionally, different stockpile views were used to observe the visual segregation
observed in previous studies [20,21].
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3. Calibration

A based case from a stockpile was used to calibrate the numerical model. Table 2
shows the variables used to calibrate the model. In this calibration stage, the numerical
parameters were calibrated for sphere particle shape. The following particle shapes tested
were simulated with the same calibrated parameters. Figure 1 shows the model used
during the calibration stage.

Table 2. Rock characteristics obtained from a stockpile.

Parameters Value Unit

Rock size min/max 10.1/25.4 mm
Repose angle 32 ◦

Bulk density 1.62 t/m3

The numerical parameters were calibrated minimizing the square error of the repose
angle using Equation (1),

Error =

√
∑n

i=1(M−O)2

n
(1)

where M is the real repose angle, O is the repose angle of the model, and n is the number of
simulations run per parameter. A summary of the parameters calibrated is presented in Table 3.

Table 3. Summary of calibrated parameters.

Parameter Value Unit

Radio inlet (circle) 0.75 m
Outlet size (rectangle) 0.12 × 0.15 m ×m

Fragment sizes (min/max) 10.16/25.4 mm
Surface density 7 mm

Fragment density 2.7 t/m3

Fragment bulk density 1.62 t/m3

Young modulus S 1 × 109 N/m2

Young modulus P 1 × 108 N/m2

Poisson’s ratio 0.3 Adim
Particle flow 80 t/h

Static friction S-P 0.53 Adim
Static friction P-P 0.62 Adim

Dynamic friction S-P 0.36 Adim
Dynamic friction P-P 0.5 Adim

Force fraction 0.4 Adim
Rolling resistance 0.3 Adim

After calibration, the numerical model was validated with the real dimension of the
base case (34 m of height) simulating the discharge from the feeder. Figure 3 shows the
initial segregation of coarse particles located at the external boundaries of the stockpile,
while the fine particles are located mainly in the center.

In this simulation, the mean particle size difference during discharge compared be-
tween the base case and the simulation and calculated during the same discharge time was
13% (Figure 4). The error was considered acceptable based on the particle size variability
and the similar tendency observed in Figure 4. In both cases (base and simulated), the parti-
cle flow begins with fine particles and then coarse particle flow follows. This phenomenon
is mainly associated with initial particle segregation.
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4. Segregation Results and Analysis

The numerical simulation through the DEM includes stockpile loading and discharge.
The live capacity is determined based on the difference between the total capacity and
the mass drawn during discharge [22]. The main results are presented in Table 4. The
particle shapes were modified in the last four tests. Tests 1 to 12 used sphere particles (S),
test 13 used rounded cylinder particles (RC), test 14 used rounded polygon particles (RPg),
test 15 used rounded polyhedrons (RPh), and test 16 used briquette particles (B).

The repose and flow angles did not necessarily increase with different particle shapes
when considering the same parameter calibrated using spheres. The sphere particles were
well distributed in the stockpile, resulting in a high total and live capacity. In tests 7 to 12,
the effect of increasing the number of fine particles was not clear, at least within the
range studied. The ore recovery from the stock increased in cases with non-spherical
particle shapes.
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Table 4. Numerical simulation of stockpile using the DEM.

Test
Particle
Shape

Repose Angle Flow Angle Total Capacity Live Capacity
◦ ◦ t t

1 S 31.06 44.53 0.325 23.50
2 S 30.75 42.71 0.322 23.51
3 S 30.24 41.95 0.321 23.93
4 S 31.40 45.00 0.324 23.21
5 S 30.61 44.05 0.322 23.43
6 S 30.68 40.94 0.317 23.81
7 S 31.32 44.88 0.324 23.30
8 S 30.53 43.12 0.323 23.80
9 S 30.10 42.85 0.321 23.86
10 S 31.82 43.09 0.324 22.89
11 S 30.46 43.01 0.322 23.64
12 S 28.44 40.03 0.321 24.52
13 RC 30.82 37.28 0.324 33.41
14 RPg 31.17 38.63 0.324 35.58
15 RPh 31.75 37.72 0.324 35.31
16 B 29.59 29.26 0.324 34.71

Figure 5 shows the visual particle distribution of the stockpile in tests 1 to 6, in which
a coarse-to-fine particle ratio of 70/30% was modeled. The particle uniformity increased
when lower feeding heights were used. Additionally, the segregation was less visible when
the coefficient of uniformity was increased.
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Figure 6 shows the visual particle distribution of the stockpile in tests 7 to 12, in which
a coarse-to-fine particle ratio of 60/40% was modeled. In these tests, the number of coarse
particles around the stockpile visually decreased because the percentage of coarse particles
in the system was decreased. Thus, the segregation was not clearly observed compared
with previous results. In the last three tests shown in Figure 6 (CU = 3.5), segregation
increased slightly.
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pile, and (iii) external profile view, respectively. Coarse particles in brown.

4.1. Segregation Coefficient

The segregation coefficient, S′, is defined in Equation (2) to compare the stockpile
segregation between simulated tests. The segregation coefficient takes values between
0 and 1, where 0 represents low fine particle concentration and 1 represents high fine
particle concentration in the place of measurement. This coefficient was measured in the
center of the stockpile (0.4 m × 0.4 m × 0.2 m).

S′ =
ns

nlvr + ns
(2)

In Equation (2), ns is the number of fine particles, nl is the number of coarse particles,
and vr is the volumetric ratio (volume of measurement/stockpile volume). Table 5 shows
the summary of the segregation coefficient measured in the 16 tests. The simulations with
a segregation coefficient less than 0.9 indicate low segregation and are not representative
compared with the base case. Tests 1 to 6 and 15 could effectively represent the segregation
observed in the numerical model based on the consideration used in this study.

Figure 7 shows the effect of the feeding height on the segregation coefficient. The
segregation coefficient decreased slightly when the feeding height was increased; however,
this effect is greater when coarse-to-fine particle ratios are lower.
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Table 5. Segregation coefficient measured in numerical simulation.

Test
Stockpile Volume vr

Fine Particles in the
Sample Zone S′

m3

1 0.158 0.203 29,872 0.968
2 0.152 0.211 28,998 0.960
3 0.149 0.215 28,498 0.955
4 0.156 0.205 27,932 0.957
5 0.151 0.212 27,680 0.953
6 0.158 0.203 26,577 0.946
7 0.155 0.206 22,389 0.857
8 0.150 0.213 20,480 0.827
9 0.148 0.217 20,009 0.818
10 0.158 0.202 20,950 0.844
11 0.150 0.213 19,989 0.823
12 0.145 0.221 19,633 0.813
13 0.152 0.210 19,946 0.865
14 0.161 0.199 19,140 0.860
15 0.158 0.203 24,966 0.926
16 0.145 0.221 12,748 0.724

4.2. Segregation during Discharge

The discharge of the stockpile from the feeder is performed by opening a space (feeder)
that allows the particles to fall freely (Figure 8). The discharge ends when no more particles
are falling, and the flow angle subsequently becomes defined inside the stockpile. In
Figure 8, an example of the discharge is presented. Here, the fine particles are expected to
start falling first, followed by the coarse particles, due to initial segregation [1,23].
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Figure 8. Example of stockpile discharge. (A) Fine particles start to flow first (green). (B) Then, the
large particles (brown) begin to flow.

The mean particle size was measured during discharge in all tests, similar to the
base case. Figure 9 shows the mean particle size during discharge in tests 1 to 6. These
six tests show similar results that are also similar to the behavior observed in the base
case (Figure 4).

Additionally, Figure 10 shows the mean particle size during discharge on tests 7 to 12,
where a different ratio between coarse and fine particles was simulated. Lower mean
particle size was observed, as was expected due to fewer coarse particles. Here, the
discharge time was shorter at higher discharge heights. This behavior was not observed
in Figure 9.
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4.3. Particle Shape Effect

In this section, the particle shape effect on stockpile segregation was analyzed. In
tests 13 to 16, the shape of the particles varied compared with the setup used in test 1.
Figure 11 shows the visual segregation of the stockpiles, which is less clearly observed in
briquette particles (Figure 11D). The briquette particles are probably the least representative
geometry of rock present in the stockpile of ore.
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Figure 11. Numerical simulation of stockpile with different particle shapes: (A) rounded cylinder
particles, (B) rounded polygon particles, (C) rounded polyhedron particles, and (D) briquette par-
ticles. (i) Top view, (ii) internal profile view in the center of the pile, and (iii) external profile view,
respectively. Coarse particles in brown.

The simulation time was found to increase for some of the particle shapes tested as
is summarized in Table 6. The number of faces was also directly related to the simulation
time. In addition, the particle flow rate decreased with irregular geometries, such as the
rounded polyhedron particles.

Table 6. Simulation time of different particle shapes.

Particle Shape Time Simulated
s

Computing Time
h

S 25 ~12
RC 35 ~24
PgR 35 ~36
PdR 35 ~96

B 35 ~24



Appl. Sci. 2022, 12, 12449 12 of 13

5. Conclusions

In this study, it was possible to represent the natural segregation process of stock-
piles of rock materials through simulations carried out using the DEM, considering the
typical parameters of these materials. The particle sizes were observed to be the main
parameter that influenced stockpile segregation during stockpile feeding and discharge.
In terms of particle shapes, the rounded cylinder and rounded polygon shapes showed
better representation of the segregation behavior during feeding, but during discharge
the expected behavior was not observed. The rounded polyhedron shape showed good
segregation behavior in the stockpile feeding, similar to previously calibrated spherical
particles. Additionally, it was found that feeding height affects particle segregation dur-
ing stockpile discharge such that particle segregation was decreased when height was
increased; this is a critical factor during discharge because it directly affects the angles
of repose and dumping. Then, the feeding height can be used as a design parameter to
influence stockpile segregation.
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Nomenclature

B Briquette particles
CU Coefficient of uniformity (d60/d10)
DEM Discrete element method
H Feeding height
M Real repose angle
ns number of fine particles
nl number of coarse particles
n number of simulations
O Observed repose angle
PSD Particle size distribution
RC Rounded cylinder particles
RPg Rounded polygon particles
RPh Rounded polyhedron particles
S Sphere particle
S′ Segregation coefficient
vr volumetric ratio (volume of measurement/stockpile volume)
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