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Abstract: There is a rising trend to integrate different types of distributed generation (DG), especially
photovoltaic (PV) systems, on the roofs of existing consumers, who then become prosumers. One
of the prosumer impacts is voltage violations, which conventional strategies find hard to solve.
However, some prosumers, such as those with PV with inverters in their configurations, can actively
participate in voltage optimization. To help find the optimal PV inverter setting with the objective
of voltage optimization, an optimal power flow (OPF) can be a promising and reliable tool. This
paper tries to shed light on the complex problem of voltage optimization in distribution networks
(DNs) with PV prosumers. Relevant scientific papers are analyzed and optimization characteristics
such as objective functions, variables, and constraints are summarized. Special attention is given
to the systematization and classification of papers according to the mathematical formulation of
the optimization problem (linear, nonlinear, integer, etc.) and the applied solving methods. Both
analytical and computational intelligence optimization methods as well as their advantages and
limitations are considered. Papers are also categorized according to the distribution network model
used for testing the developed solutions.

Keywords: active distribution networks; optimal power flow; prosumers; PV inverter volt/VAR
optimization; review

1. Introduction

The participation of renewable energy sources (RESs), battery storage systems, and
other flexible loads, commonly referred to as prosumers, changes the character of distri-
bution networks (DNs) from passive to active. For this reason, both generating units and
loads are included in the determination of power flow and voltage profile. The nature
of prosumers is unpredictable and intermittent, so existing DNs are not adapted to their
influence. This is particularly evident in frequent voltage violations [1]. A voltage rise is
addressed as a major issue caused by prosumers and impacts DNs [2]. The distribution
system operator (DSO) is responsible for maintaining voltage within the allowable limits
for the secure operation of DNs [3]. However, voltage control mechanisms that were once
applicable in passive DNs become less valid and new mechanisms are required [4–6].

While DG can cause voltage violation in the DN, the same DG can help solve the
problem of voltage violation, for example by managing active or reactive power. This
problem/solution principle is especially interesting in the case of reactive power manage-
ment [7]. When it comes to RESs in DNs, the main representative is a photovoltaic (PV)
system [8,9]. Traditionally, most DSOs require PVs to operate with the unit or fixed power
factor [1]. PV inverters have several modes of operation, but volt–VAR control has become
certainly significant for voltage optimization. A major advantage of using a PV inverter
and volt–VAR control is that reactive power can be injected/absorbed even where there
is no production. Since prosumers contribute to the complexity and unpredictability of
such DNs, it is crucial to use optimization methods and analyzed software tools that allow
DN monitoring and finding suitable and optimal set points for PV inverters. In addition,
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optimal power flow (OPF) has proven to be an efficient tool for the operation of active
DNs. In order to illustrate the problem/solution principle of PV inverters, a case study is
developed in this paper presenting the low voltage DN with the connected PVs. Different
power flow simulations are presented and they include:

• the situation when PVs production is maximal and voltage rise along the feeder
is present;

• the situation when PV inverters inject reactive power.

Nowadays, optimal management of active DNs represents an attractive topic, and a
large and growing body of literature focuses on this topic. Some related reviews on the
optimization DNs are listed in Table 1. Refs. [10,11] show the impact of PV on DNs, the
related problems, and possible solutions. Refs. [12–14] study voltage violation mitigation
and voltage control strategies. Ref. [12] deals with voltage control methods in DNs with
PVs and their advantages and disadvantages. In addition to [12], a comprehensive review
of voltage control methods is given in [13]. In [14], voltage control models and methods
are divided according to the communication strategy. The application of OPF in DNs is
discussed in [15,16]. The researchers in [15] address a probabilistic approach to solving
OPF in active DN. The authors in [16] study OPF in smart DNs and microgrids according
to objectives, methods, and future challenges.

Table 1. Related review papers on the optimization of DNs.

Review Paper Year Focused Topics Prosumer Notes

[10] 2016 Impact of distributed generation
(DG) on voltage control on DNs Yes

Reviewed voltage control with DG with a
focus on smart network

technologies—demand side management
(DSM) and energy storage systems (ESS)

[11] 2016
PV impact on DNs including voltage

regulation issues, harmonic, and
islanding operation

Yes

Reviewed issues caused by PV penetration
in DN insight voltage regulation, harmonic,

and islanding operation, and proposed
technical solution

[14] 2017 Distributed and decentralized
voltage control in smart DNs Yes

Reviewed smart DNs according to
communication systems, control models,

and methods

[16] 2017 Application of OPF in smart DNs
and microgrids Yes Reviewed OPF according to objectives,

constraints, methods, and challenges

[12] 2018 Mitigation methods for voltage
regulation in DNs with PV Yes

Discussed ESS strategies, active power
curtailment-based strategies, and reactive

power control strategies

[13] 2020 Mitigation methods for voltage
violation in DNs with PV systems Yes

Presented different mitigation methods for
voltage regulation in DNs and their merits

and shortcomings

[15] 2022 Probabilistic OPF in active DNs Yes Scientometric review of OPF in active
DNs—characteristics and challenges

While refs. [15,16] present interesting and useful reviews of OPF application to modern
DNs, they are mainly focused on active power objectives [16] and probabilistic OPF [15].
So far, the research gap is present in the area of voltage optimization objectives in the case
of using PV inverters for reactive power management. The problem/solution principle of
using PV inverter reactive power for voltage mitigation motivated the authors of this paper
to focus their review on scientific papers that applies OPF for voltage optimization in the
DN using PV inverter reactive powers. The contributions of this review paper are:

1. Summary and classification of OPF objectives and variables in the case of voltage
optimization in the DNs using PVs reactive power.
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2. Comparison of the used mathematical formulations of the OPFs and their connections
to analytical or computational intelligence solution methods.

3. Review of the different DN examples that are used for testing the developed optimiza-
tion solutions.

This paper aims to provide the readers with starting points for OPF applications in
PV-rich DNs and, in some way, to compare with conventional OPF. Therefore, the authors
searched several bibliographical databases—IEEE Xplore, ScienceDirect, and MDPI.

The paper is structured as follows: Section 2 gives a prosumer definition, describes the
voltage control capabilities of PV inverter, and presents the case study that illustrates the
impact of PVs on the DN voltages. Section 3 addresses OPF in PV-rich DN—objectives and
variables. OPF formulation and solution methods are discussed in Section 4. Test network
models used in the literature are presented in Section 4. Conclusions with a note on future
research are given in Section 5.

2. PV Prosumers in Distribution Network

In this section, various definitions and configurations of prosumers are presented.
Then, the focus is on PVs and their voltage control capabilities. Finally, theoretical founda-
tions are supported by the case study in which the part of the low voltage DN is presented
and various cases are simulated.

2.1. Prosumer Definition and Configuration

Historically, the term “prosumer” was first mentioned in 1980 in Alvin Toffler’s book
The Third Wave [17]. In this book, the author discusses the transition of society from an
Industrial Era in which production and consumption were separated to the Information
Era. In this new concept of society, the term prosumer is created by combining a producer
and a consumer. Nowadays, with the increase of integration of PVs in DNs, the notion
of prosumer and prosumerism has become increasingly significant in electrical engineer-
ing [18]. Therefore, many authors propose the definition of a prosumer. The authors
in [19–21] define a prosumer as an end-user that consumes electrical energy, acts as an
energy producer, and shares surplus energy with utility networks and other consumers.
In [22], prosumers are described as energy consumers or energy producers in different
periods depending on their electricity demand and price. The focus is on the prosumer that
only generates electricity. In [23,24], the authors include a facility for electricity generation
and energy storage systems in the prosumer definition. The definition of prosumer was
expanded in [25,26] and includes consumers that generate electricity and/or contain in
their configuration home energy management systems (EMS), ESS, electric vehicles (EVs),
and electric vehicle-to-grid (V2G) systems. In [27], a prosumer has been deemed as a
consumer or an electricity producer and can be actively managed.

The European Union defined an active consumer uniform in its 2016 directive [28]. Ac-
cording to [28,29], an active consumer is “a customer or a group of jointly acting customers
who consume, store or sell electricity generated on their premises, including through aggre-
gators, or participate in demand response or energy efficiency schemes provided that these
activities do not constitute their primary commercial or professional activity”.

While a variety of definitions of the term prosumer have been suggested, this paper
uses the following definition: a prosumer is an entity that not only withdraws/retracts
energy from a network but also produces energy that can be consumed, stored or sold to
the network and other consumers and actively participates in providing more flexibility
such as voltage and reactive power control.

Prosumer configuration and interconnection with DN is shown in Figure 1. The main
representative of distributed generation is the PV system. It often includes an ESS such as a
battery in its configuration and together forms a hybrid system. EVs, electric V2G vehicles,
smart home EMS, and other flexible loads represent demand-side management (DSM).
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Figure 1. Prosumer configuration and interconnection with DNs.

2.2. PV System Capabilities for Voltage Optimization

This paper deals with PV prosumers with reactive power capability, i.e., other pro-
sumer types are not considered. DSOs have the main responsibility for voltage opti-
mization in DNs. Traditionally, the available variables are limited to the capacitor bank
placement, tap changing transformer, network reconfiguration, cross-section enhancement,
etc. However, some researchers [30,31] suggest that the aforementioned strategies may
not be effective for prosumer-based DNs due to their slow response. The application of
PV inverters represents a promising solution and in combination with already present
control mechanisms can give results, so several studies have proposed their use for voltage
optimization [32–36]. Different modes of operation are possible for PV inverters and the
authors of [30] distinguish the following:

• fixed power factor mode;
• volt–VAR control;
• volt–watt control;
• mode for power rate limit;
• voltage balance mode.

In the fixed power factor mode, the power factor is maintained at a constant value
and thus voltages are directly affected. Voltage control in the volt–watt control mode is
achieved by active power from PVs. In the power rate limit mode, the rate of active power
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output from the PV inverter is limited. In volt–VAR control, reactive power from the PV
inverter is used for voltage optimization. The general operating principle of volt–VAR
control is described using a volt–VAR curve shown in Figure 2 [37]. The volt–VAR curve
represents a relation between a voltage value at the point of common coupling (PCC) and
reactive power from the PV inverter. If the voltage value on PCC is lower than the specific
threshold, the PV inverter injects reactive power. On the other hand, in the case of the
higher voltage value on PCC, reactive power is absorbed.

Figure 2. Volt–VAR curve of the PV inverter. Inductive reactive power reduces voltage value while
capacitive reactive power increases the voltage value.

Reactive power capability determines the amount of reactive power available from
the inverter [38]. Figure 3 represents reactive power capability determined with vectors
of apparent power S and active power P [8,38,39]. The reactive power of the PV inverter
depends on the active power and can be determined as:

Q2
1 ≤

√
S2

1 − P2
1 (1)

Figure 3. Power capability curve of PV inverter.

2.3. PV Inverter Impact on Distribution Feeder Voltage Profile

To provide a better insight into the voltage problem in DN caused by PVs, a case
study is carried out. Two PV inverter control modes are chosen to clarify its capabilities for
voltage optimization. The DN model, presented in Figure 4 [40], consists of three radial
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feeders supplied by a 10/0.4 kV substation. Each feeder supplies 20 residential consumers.
More information about the network model can be found in [40]. It is assumed that half of
the residential consumers have PV systems on their rooftops. The nominal power of each
PV plant is 5 kW. The case studied in the simulations corresponds to maximum production
and consumption of 0.2 kW with an inductive power factor of 0.9.

Figure 4. Model of DN used in the case study.

DIgSILENT PowerFactory [41] software is used for case study implementation and
the conventional power flow is analyzed. Two modes of PV inverter operation are used
in simulations: fixed power factor mode and volt–VAR control mode. The results for the
fixed power factor mode are presented in Figure 5. The power factor range is taken from a
real-life example of an inverter [42]. The voltage profiles at different power factor values
are compared. There is an increase in the voltage profile at the unit power factor. The
voltage profile is corrected by changing the power factor.

The comparison of voltage profiles at the unit power factor and the applied volt–VAR
control mode is shown in Figure 6. In the case without voltage control (unit power factor),
there is a voltage rise in the distribution feeder caused by PVs. The voltage values are in
the range of 1.005 p.u. to 1.05 p.u. In the volt–VAR control mode, the voltage values are
lower than the unit power factor and are in the narrower range of 0.992 p.u. to 1.005 p.u.
These values are more acceptable for the operation of DN, i.e., voltage deviation is smaller.
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Figure 5. Voltage profile in a distribution feeder obtained using the fixed power factor control mode.

Figure 6. Voltage profile in the distribution feeder obtained using the volt–VAR control mode.

The obtained results show an improvement in the voltage profile of DN compared to
the case without voltage control (unit power factor of the PV inverter). Voltage control in
PV prosumer-rich DNs has a positive impact. The case study shows the possibilities of
PV inverters regarding voltage control and the situation when there are lots of inverters
placed at different positions in the DN. Determining the optimal operating point of the PV
inverters imposes using optimization algorithms from which the OPF are imposed as a
logical solution.

3. Voltage Optimization in PV-Rich Distribution Networks—Objectives and Variables

The OPF concept was proposed in the early 1960s [43] as an enhancement of economic
dispatch to find the optimal solution for controlling variable settings under different
constraints. The OPF is used as a universal term for problems associated with network
optimization [44–47]. The OPF is ordinarily modeled to the appliance on transmission level
considering large generating units. Besides the fundamental variables, the OPF model may
contain ancillary generation units and variables representing the other segments of the
power system used for optimal operation.

The transmission network (TN) diverges from DN in topology, nature, electrical
parameters, power flow values, and a number of control devices. Unlike TNs, DNs are
inherently unbalanced and more complex [48]. The reason for the imbalance is that the DN
supplies unequal single-phase loads and contains unequal conductor interspace of three-
phase segments [49,50]. The R/X ratio is high in DNs and contributes to the complexity of
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control and optimization. In contrast, the R/X ratio is low for TNs. Compared to DNs, TNs
have a few direct consumers. The simple control and a well-built communication system
of TNs are the main reasons why OPF has applied only at the transmission level. The
integration of DGs and flexible loads such as EVs makes OPF feasible in DN optimization.
To incorporate unpredictable DG and to exploit the potential of flexible loads, OPF became
imminent for DNs [51]. Although there is no official record in the literature of the beginning
of the application of OPF in DNs, it can be said it started with the integration of different
types of prosumers in DNs [48].

3.1. General Formulation—Objectives and Variables

The OPF problem can be described as minimizing the objective function while taking
equality and inequality constraints into account [48]:

minF(x,u) = 0 (2)

g(x,u) = 0 (3)

h(x,u) ≤ 0 (4)

where F(x,u) represents the objective function and g(x,u) represents nonlinear equality
constraints i.e., power flow equations, h(x,u) represents nonlinear inequality constraints.
The vectors x and u present state variables, and control variables, respectively.

In [48], the generally used objectives for OPF formulation are given. It should
be noted that the objectives and constraints must be modeled accurately to obtain a
satisfactory solution.

Scientific papers are included in this review if at least one of the objectives is voltage
optimization and if one of the optimization variables is PV inverter reactive power injection.
Furthermore, the voltage optimization problem is mostly described as the objective of volt-
age deviation (VD) minimization, i.e., maintaining voltages within boundaries determined
by grid codes. The general mathematical expression for VD is:

Vdev = ∑
i∈N

(Vi −Vnom)2 (5)

where:
Vdev—voltage deviation;
Vi—voltage at bus i;
Vnom—nominal voltage.
Another objective that appears is related to the voltage unbalance, commonly pre-

sented as the voltage unbalance factor (VUF). The definition of VUF is given in [52] as
the ratio of negative V−sequence and positive V+

sequence voltage sequences and is most often
expressed in percentages:

VUF =
V−sequence

V+
sequence

. (6)

In addition to voltage optimization, the following objectives also appear: (i) power
loss minimization [53–55], (ii) on load tap changer (OLTC) switching operation mini-
mization [56], (iii) PV cost minimization [38], (iv) reactive power injection/absorption
minimization [57], (v) active power curtailment (APC) minimization [58], (vi) cost of pur-
chased energy minimization [59], (vii) peak shaving minimization [59], and (viii) security
margin index (SMI) minimization [59]. The mathematical expressions of the commonly
used objectives are given in Table 2.
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Table 2. Mathematical expressions of the commonly used objectives in voltage optimization problems.

Objective Formulation Explanation

Power loss minimization [53–55] ∑N
k=i gik(V2

i + V2
k − 2ViVk cos θik)

∑(i,k)∈B riklik,t

Vi, Vk—voltage magnitude at i th and k th
buses

θik—phase angle ith and kth elements of
conductance gik

lik,t and rik—square value of current and
resistance of branch line from bus i to

bus k

OLTC tap operation minimization [56] ∑M
m=1 sm,t

M—number of discrete devices
sm,t—status of discrete device m at time t

APC minimization [58] ∑N
i=1 |P

PV,curt
t,i | PPV,curt

t,i —curtailed active power of PV at
time t

PV inverter loss minimization [38] ∑3
p=1 ∑i∈γ(k

p
i1Sp

PVi
2
+ kp

i2Sp
PVi + kp

i3)

p—phases
γ—set of buses with PVs
Sp

PVi—apparent power
kp

i1, kp
i2, kp

i3—coefficients of each inverter’s
efficiency data

Reactive power inj./abs.
minimization [57] |Qinj.|/|Qabs.|

Qinj. and Qabs.—injected/absorbed
reactive power

Cost of energy minimization [59] ∑t∈T αtP1,t∆t

αt—price of energy at tth time
P1,t—active power imported from the

external network at time t
∆t—duration of time intervals

Security margin maximization [59] ∑t∈T(1−min| Il,t−Ir
l

Ir
l
|)

Il,t—line current in lth line at time t
Ir
l —ampacity of line current in lth line

In power systems, the conventional power flow is both nonlinear and nonconvex
and commonly solved by the Newton–Raphson iterative method. In constrained OPF
applications, equality constraints incorporate conventional power flow equations and other
constraints to ensure balance. A detailed version of the power flow is named AC power
flow [60]. AC power flow as a constraint in OPF is most often formulated in the polar
form [60]:

Pi =
N

∑
k=i
|Vi||Vk||Yik| cos(δi − δk − θik) (7)

Qi =
N

∑
k=i
|Vi||Vk||Yik| sin(δi − δk − θik) (8)

where:
Pi—active power at bus i;
Qi—reactive power at bus i;
Vi—voltage magnitude at bus i;
Vk—voltage magnitude at bus k;
Yik—ikth element of bus admittance matrix Ybus;
δi—voltage phase angle at ith bus;
δk—voltage phase angle at kth bus;
θik—phase angle of ikth element of bus admittance matrix Ybus.
Besides AC power flow, the authors use two other formulation approaches: decoupled

AC power flow [49] and DC power flow [50]. In decoupled AC power flow, active and
reactive powers are decoupled as a function of voltage angle and voltage magnitude, respec-
tively. Assumptions made for the DC power flow formulation include purely imaginary
elements of Y and a small difference between two voltage angles of two adjacent busses.

Various inequality constraints are given in [48,61]:
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• control variables limit;
• limits for power generation (active and reactive power upper and lower limits);
• network operational limit determined in the network analysis (e.g., MVA limit).

Voltage optimization needs to meet the following constraint requirements:

1. Power flow equations given as Equations (7) and (8);
2. Voltage constraint

Vmin
i ≤ Vi ≤ Vmax

i (9)

where Vmin
i and Vmax

i are the lower and upper voltage limits.
3. PV active and reactive power constraint

0 ≤ PPV,i ≤ PPV,av,i (10)

−
√

S2
PV,i − P2

PV,i ≤ QPV,i ≤
√

S2
PV,i − P2

PV,i (11)

where PPV,i, , QPVi , and SPV,i are active, reactive, and apparent powers at bus i. PPV,av,i
is available active power at bus i.

4. Line current (thermal) constraint

Imin
ik ≤ Iik ≤ Imax

ik (12)

where Imin
ik and Imax

ik are the lower and upper limits of the line current between buses i
and k.

5. OLTC tap position constraint (if it is included)

Tmin
i ≤ Ti ≤ Tmax

i (13)

where Tmin
i and Tmax

i are the lower and upper positions of OLTC tap at bus i.
6. Capacitor constraint (if it is included)

Qmin
Ci ≤ QCi ≤ Qmax

Ci (14)

where Qmin
Ci and Qmax

Ci are the lower and upper limits of capacitor reactive power at
bus i.

7. Energy storage constraint (if it is included)

SoCmin
i,t ≤ SoCi,t ≤ SoCi, tmax (15)

where SoCmin
i,t and SoCmax

i,t are the lower and upper limits of the charge state of the
storage system at time t.

The voltage optimization problem can be single-objective or multi-objective. OPF
objectives and variables used in the review papers are categorized and summarized in
Table 3.

Table 3. Overview of objectives and variables.

Reference Single/
Multi-Objective Objectives Variables

[62] multi-objective min VD from 0.95 pu threshold, min losses,
min reactive power from capacitors PV inverter reactive power, OLTC, SC, and

[63] multi-objective min losses, min VD—DN, min active power
curtailed from available power—prosumer PV active and reactive power

[64] multi-objective min VD from expected CVR voltage,
min losses

PV inverter reactive power, OLTC/AVR,
and CBs
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Table 3. Cont.

Reference Single/
Multi-Objective Objectives Variables

[65] single-objective min VD PV inverter reactive power, OLTC

[38] multi-objective min losses, min VD, min VUF, min PV
generation cost, min PV APC cost PV inverter reactive power

[66] multi-objective min losses, min VD, improvement VSI PV inverter reactive power and static
compensator

[53,54,67–69] multi-objective min losses, min VD PV inverter reactive power
[70] multi-objective min VD, min losses PV inverter reactive power, CBs, and OLTC

[71] single-objective min VUF PV inverter active and reactive power, power
injected by TS

[72] single-objective min VD PV inverter reactive power

[73] multi-objective
min losses, min cost of APC and

generated/consumed reactive power, min
VD

PV inverter reactive power

[74] multi-objective min VD, min voltage unbalance PV inverter reactive power, OLTC, VR, and
CB

[75] multi-objective min losses, min VD, min VUF PV inverter reactive power
[32] single-objective min VUF PV inverter reactive power
[76] single-objective min VD PV inverter reactive power, OLTC

[77] multi-objective min losses, min VD, min control action of
OLTC and SC PV inverter reactive power, OLTC, SC

[78] single-objective min VD PV inverter reactive power, OLTC
[79] multi-objective min VD, min losses PV inverter reactive power, OLTC, and SC

[57] multi-objective min VD, min losses, min reactive power
injection, and absorption PV inverter reactive power

[80] multi-objective min VD, min losses PV inverter reactive power, OLTC
[81] single-objective min VD PV inverter reactive power, OLTC, and VR
[58] multi-objective min VD, min losses, min APC PV inverter reactive power, OLTC and CB

[55] multi-objective min VD, min losses PV and EV inverter reactive power, the
compensation device

[56] multi-objective min VD, min OLTC tap operation PV inverter reactive power, OLTC

[82] single-objective min VD PV inverter reactive power,
charge/discharge rate of ESS

[83] multi-objective min losses, min VUF PV inverter reactive power

[34] multi-objective min cost, min losses, min cost associated
with active power setpoints, min VD PV inverter active and reactive power

[84] multi-objective min active and reactive power output, min
VD PV inverter active and reactive power

[37] multi-objective min VD, min losses, min peak of reactive
power PV inverter reactive power

[85] multi-objective min VD, min losses PV inverter reactive power, OLTC, CB

[59] multi-objective min VUF, min cost of purchased energy, min
peak shaving, min losses, min SMI, min VD

PV inverter reactive power, EV active and
reactive power, bus voltages at all time

intervals of the day
[86] multi-objective min VUF, min losses PV inverter reactive power, OLTC, CB
[87] single-objective min VD PV inverter reactive power
[88] multi-objective min VD, min losses PV inverter reactive power, SC, OLTC, ESS

[89] multi-objective
min VD, min losses, min number of

switching operations of OLTC and CB, min
APC

PV inverter active and reactive power, CB,
OLTC

[90] multi-objective min VD, min operational cost PV inverter active and reactive power, CB,
OLTC, ESS

[91] multi-objective min VD, min losses, min peak of reactive
power PV reactive power

[39] single-objective min VD PV inverter reactive power

The abbreviations are as follows: CVR: conservation voltage reduction; VSI: voltage stability index; SC: shunt
capacitor; AVR/VR: automatic voltage regulator; CB: capacitor bank.
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According to the literature review, the multi-objective problem prevails.
Besides PV inverter reactive power, other variables include: (i) PV active power,

(ii) OLTC, (iii) CB, (iv) static compensator, (v) reactive power from the substation, (vi) VRs,
(vii) charge/discharge rate of ESS, (viii) EV active power, and (ix) SC.

3.2. Objectives and Variables—Discussion

Figure 7 represents objectives quantitatively. Almost all objectives include VD. In
multi-objective problems, VD is most combined with losses, however, many other objectives
also appear.

If OPF is regarded as a part of the distribution energy management system (DEMS),
the dominance of the multi-objective formulation of OPFs is logical. DSO tries to reach
the optimal operation point regarding several objectives and the most commonly used
ones are loss minimization together with voltage deviation minimization. Additionally,
active power curtailment (APC) minimization is frequently a combined objective with the
minimization of voltage deviations. Other objectives are rare and they are used only in a
few papers.

The variables are presented quantitatively in Figure 8.
A similar conclusion can be made regarding optimization variables. DSO tries to

utilize all the available controls such as OLTC tap settings, CB reactive power, and ESS
variables. Some of the variables are continuous but some are discrete (such as OLTC tap
settings), which will affect the formulation of the OPF problem (the appearance of integer
variables) and largely the choice of the solution method.

Figure 7. Quantitative presentation of the objectives.

Figure 8. Quantitative presentation of the variables.
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4. Voltage Optimization in PV-Rich Distribution Networks—Formulation and
Solution Methods

The complexity of the OPF depends on the power flow formulation approach. If the
original AC power flow equations are used for OPF formulation, an optimization problem
is nonlinear and hard to solve. Thus, many researchers try to simplify OPF formulation in
order to obtain a linear or quadratic optimization problem that is easier to solve. According
to [60], the OPF formulation can be classified into:

• nonlinear programming (NLP);
• linear programming (LP);
• quadratic programming (QP);
• mixed-integer linear programming (MILP);
• mixed-integer nonlinear programming (MINLP).

In early papers, continuous NLP formulation is used. All discrete variables are
approximated as continuous for simplicity. This formulation includes nonlinear objectives
and constraints. The LP formulation uses the DC power flow approach, i.e., both the
objectives and the constraints are linear. Due to its simplicity, robustness, speed, and well-
developed solution methods, it is an attractive OPF formulation, especially for industry [51].
However, due to the modeling assumptions, LP is not adequate for problems such as
minimizing power losses, and a global optimum cannot be guaranteed. QP is a special case
of NLP with quadratic objective and linear constraints and represents an alternative to LP.
The inclusion of discrete variables (transformer tap settings, shunt capacitor settings, etc.)
in NLP results in MINLP being the most realistic and accurate formulation of OPF, but also
the most complex and difficult to solve. However, there is a trade-off between the system
description and the tractability of the problem. One way is to linearize and apply MILP.
For more details, see [60,92].

The OPF formulation determines which solution method is used. Figure 9 presents
the mathematical formulation and solution methods. For each solution method in Figure 9,
a scientific paper in which it is applied is listed. The basic categorization of OPF solu-
tion methods is divided into analytical methods and computational intelligence methods.
The most commonly used analytical methods for linear OPF are the well-developed sim-
plex methods [93], sequential linear programming (SLP) [94], and interior point methods
(IPMs) [95]. In the first period, analytical iterative methods were applied to the NLP OPF.
They were Newton-based methods [96]; gradient methods—reduced gradient method
(RG) [97], conjugate gradient method (CG) [98], and generalized reduced gradient method
(GRG) [99]; IPMs [100]; sequential quadratic programming (SQP) [101]. Recently, computa-
tional intelligence methods have been applied to solving OPF problems. Computational
intelligence methods have been developed to overcome the weak capabilities of analyti-
cal methods for solving global optimization [102]. Although computational intelligence
methods do not require a precise mathematical formulation of the OPF problem, the au-
thors include them in the group of solution methods that can solve nonlinear and integer
formulations of the OPF since they can take into account nonlinearities in the original prob-
lem. Computational intelligence methods include artificial neural networks (ANNs) [103],
genetic algorithms (GAs) [104], particle swarm optimization (PSO) [105,106], ant colony op-
timization (ACO) [107,108], bacterial foraging algorithm (BFA) [109], simulated annealing
(SA) [110], tabu search (TS) [111], and fuzzy logic (FL) [112].
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Figure 9. Mathematical formulation and solution methods used in OPF solving.

4.1. Analytical Methods

Classical analytical methods are used in multi-field optimization problems. In addition
to the basic methods such as LP, QP [69], NLP, MINLP [76], and MILP, some papers deal
with problems that reduce to the basic ones (see Table 4). In [65], SLP is developed to
solve the optimization problem in real time. To obtain global optima, SQP has been
developed in [38]. The iterative gradient projection method is implemented to specify
VAR outputs for voltage optimization in [87] and additionally, active power outputs
in [84]. A method for solving linear and nonlinear optimization problems was developed
in [34,78]. The alternating direction method of multipliers (ADMM), which is one of the
augmented Lagrangian-based methods, was developed as one of the most used methods for
a network optimization problem. In ADMM, the optimization problem is decomposed into
subproblems to deal with it. The subproblems are coordinated to seek the global optimal
solution. The authors in [70,72,73] solve the voltage optimization problem using ADMM.

Table 4. Overview of formulation and analytical methods.

Formulation Analytical Methods Reference

NLP
ADMM-based method

IPM
SQP

[69]
[36]
[54]

LP SLP [63]

QP
QP

Gradient projection methods
ADMM-based method

[52,53,74]
[59,82]
[70,71]

MILP MILP [58]

MINLP QP
IPM

[74]
[76]
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4.2. Computational Intelligence Methods

In recent years, computational intelligence methods have been increasingly used to
solve voltage optimization problems. One of the main advantages of computational intelli-
gence methods is that they do not require a mathematical formulation of the optimization
problem. For the sake of unification and formality, the authors keep the formulation of
the OPF problem in Table 5 even though it is not required for computational intelligence
methods. The most commonly used methods are GA [37,57,62,83] and PSO [64,82,85,88].
Other computational intelligence methods that appear in the literature are the sine-cosine al-
gorithm (SCA) [66], feasibility pump (FP) method [67], sparrow search algorithm (SSA) [74],
pattern search algorithm [80], and grey wolf optimization (GWO) [81]. In some papers,
hybrid methods are applied. In [79], a GA is applied to solve the day-ahead scheduling
optimization problem in the first stage, while the pattern search algorithm (PSA) is used
to solve the real-time optimization problem in the second stage. The branch-bound algo-
rithm is combined with the IPM in [86] to solve the discrete problem. The combination
of modified PSO and direct load flow (DLF) is used in [75]. DLF is used for power flow
analysis and according to obtained data and PSO is used to evaluate network performance.
In [77], the authors used both computational intelligence methods and analytical methods.
In [55], five multi-objective evolution algorithms (MOEAs), named promising-region-based
evolutionary many-objective algorithm (PREA), strength Pareto evolutionary algorithm 2
(SPEA 2), nondominated sorting genetic algorithm II (NSGA-II), nondominated sorting
genetic algorithm III (NSGA-III), and two-phase framework (ToP), are used to determine
the reactive power capacity of PVs and EVs. The results obtained by MOEAs are used
to train a deep deconvolution neural network (DDNN) to solve the problem of voltage
deviation and loss minimization. For inverter coordination, the authors in [113] use deep
deterministic policy gradient (DDPG).

Table 5. Overview of formulation and computational intelligence methods.

Formulation Computational Intelligence
Methods Reference

NLP GA [37,57]
MINLP GA [62]

NLP NDSGA II [83]
NLP PSO [68,82]

MINLP PSO [64,85,88,114]
NLP SCA [66]

MINLP C&CG algorithm [53]
NLP SSA [74]

MINLP GWO [81]
MINLP Modified PSO, DLF algorithm [75]
MINLP MOPSO, IPM [77]
MINLP GA,PSA [79]

NLP PREA, SPEA2, NSGA-II,
NSGA-III, ToP, DDNN [55]

MINLP FP [67]
MINLP PSA [80]
MINLP NSGA-III [89]
MINLP ε-constrained method and FL [90]
MINLP DDPG [113]
MINLP ANN [114]

4.3. Formulation and Solution Methods—Discussion

Analytical solution methods require a strictly mathematical formulation of the OPF
problem, which can then be solved by an appropriate analytical method. Since there
are a few effective analytical algorithms for solving nonlinear problems (especially with
integer variables), most of the papers in which analytical methods are used transform the
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original NLP (or MINLP) into some of the more convenient forms—usually QP or MIQP.
Transformations into a linear form (LP or MILP) are very rare due to the nature of the
problem, i.e., the quadratic function of voltage deviation and poor performance of DC
power flows in the environment of the DN (ratio R/X is not as small as in the TN).

According to Table 5, the popularity of computational intelligence methods can be
observed. According to Figure 10, a decision about which solution method would be used
depends on the objective and mathematical formulation. To briefly address Table 3, multi-
objective optimization problems dominate. In single-objective problems, analytical solution
methods prevail. Analytical methods require that a multi-objective (usually known as
Pareto optimization) problem transforms (scalarizes) into a single-objective using weighting
coefficients, which is not a straightforward procedure. Computational intelligence methods
are most used for multi-objective problems. A comparison of analytical and computational
intelligence methods is presented in Table 6.

Analytical methods are well-developed and applicable in systems where the require-
ments of modeling accuracy are low. Analytical methods are able to straightforwardly find
an optimal solution but there is no guarantee that the optimum is global. If multiple local
optima exist, global optima cannot be guaranteed and the analytical method can stuck in
local optima. To apply the analytical method, it is necessary to perform a transformation
of the original problem to a level that it can solve. This is where the problem of trade-off
comes in. On the one hand, there is an accurate real-life system description and, on the
other hand, there is an applicable solution method. Some shortcomings of analytical meth-
ods are solved by computational intelligence methods. These methods do not depend on
mathematical formulation because they required only parameters that can be calculated
separately (for example solution of the power flows). Compared to analytical methods, a
hard computational effort is required and there is no guarantee of finding an optimal solu-
tion thus some expert knowledge of the system is needed. In recent years, computational
intelligence methods are used in co-simulation with proven power flow tools DIgSILENT
PowerFactory [41], DLF [75], OpenDSS [115], etc. This approach simplified the application
of computational intelligence methods for large-scale DNs.

(a) (b)

(c)

Figure 10. Solution methods for different objectives and formulations. (a) Multi-objective problem
and continuous formulation. (b) Multi-objective problem including integer variables. (c) Single-
objective problem.
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Table 6. Comparison of analytical and computational intelligence methods.

Advantages Shortcomings

Analytical methods
(simplex method, SLP, SQP, ADMM,

gradient projection method, IPM)

- well-developed methods
- fast computational performance of

linear methods and IPMs

- stuck in local optima
- modeling accuracy problem
- the sensibility of initial conditions
- cannot handle the multi-objective

problem properly
Computational intelligence methods
(evolutionary and biologically inspired

methods, artificial intelligence
methods, FL)

- do not depend on mathematical for-
mulation

- convergence is easier to set up com-
pared to analytical methods

- hard computational effort
- do not guarantee optima

4.4. Test Network Models

To validate the efficiency of different solution methods for the voltage optimization
problem, the authors use test network models that can be divided into a standard test
model and a test model based on real-life examples. The most common test network
models used in literature represent IEEE test network models which, depending on the
number of buses, can be IEEE–13 bus, IEEE–15 bus, IEEE–33 bus, IEEE–34 bus, IEEE–37
bus, IEEE–69 bus, IEEE–123 bus, and IEEE–8500 bus. Almost all have radial topology.
According to the processed problem, some authors modify standard test models. For
instance, the standard test model [70] is modified according to balance. Real-life-based
models represent urban residential feeders located in the US, China, Italy, Egypt, Australia,
Ireland, and the UK. Unbalanced networks are mostly low voltage and belong to real-life
models. In Table 7, test network models, their voltage level, and balance are summarized.
According to the reviewed literature, more authors utilize standard test network models
IEEE–33 bus, IEEE–69 bus, and IEEE–123 bus node due to their flexibility and robustness.
One possible problem that can appear is the OPF application for unbalanced DNs. For
instance, the authors in [72] reduce an unbalanced system to a balanced assuming that
voltage magnitudes between phases are analogous and phase angles on nodes are not
drastic. Therefore, an unbalance between phases is low, and almost balanced. For more,
see [72].

Table 7. Overview of test network models.

Reference Test Network Model Voltage Level Balanced/Unbalanced

[32,79,80] IEEE–34 bus MV–24.9 kV and 4.16 kV Balanced

[70] IEEE–34 bus modified according
to balance MV–24.9 kV and 4.16 kV Unbalanced

[55,63,67,81,82,85,89,90] IEEE–33 bus MV–12.66 kV Balanced
[63] Real–266 bus, Shenzen, China MV–20 kV Balanced

[53,64,83,88,113] IEEE-123 bus MV–4.16 kV Unbalanced

[70,72] IEEE–123 bus modified according
to balance MV–4.16 kV Balanced

[65] Real distribution feeder–187 bus MV–12.47 kV and LV–120/240 V Balanced
[38,75] Perth Solar City–101 bus LV–415/240 V Unbalanced

[66] Tala City, Egypt–37 bus MV–11 kV Balanced
[67,76,78,81] IEEE–69 bus MV–12.66 kV Balanced

[32,57] IEEE–13 bus MV–4.16 kV Balanced
[70] IEEE–13 bus MV–4.16 kV Unbalanced
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Table 7. Cont.

Reference Test Network Model Voltage Level Balanced/Unbalanced

[71] Real UK l LV–0.4 kV Unbalanced
[72] IEEE–15 bus MV–11 kV Unbalanced
[74] IEEE–8500 bus MV and LV Both
[75] Real Australian–565 bus MV–22 kV and LV–415 V Both
[68] 22 bus MV–11.4 kV Balanced
[78] 17 bus MV–25 kV Balanced

[56,113] IEEE–37 bus MV–4.16 kV Unbalanced

[56] Real Californian utility
feeder–2884 bus N/A Unbalanced

[34] Illustrative model LV N/A

[84] K1 feeder–1747 bus in the
southeastern US MV and LV N/A

[69,116] 33 bus MV–12.66 kV N/A
[69] 830 bus N/A N/A

[37,91] Real South Korean–20 bus MV–22.9 kV Balanced
[59] Real South Italian–16 bus LV Unbalanced
[39] Real Irish suburban–85 bus LV N/A
[58] Modified PG&E–69 bus MV Balanced

[114] CIGRE–12 bus MV N/A
[116] 118 bus MV N/A

5. Conclusions

This paper aims to systematize and categorize scientific papers that are dealing with
the optimization of voltage in the DN using the reactive power management of PV in-
verters. Additionally, the papers are categorized according to the optimization problem
formulation and applied solution methods. It can be observed that the original voltage
optimization problem is nonlinear due to a quadratic objective function and nonlinear
power flow equations. Additionally, some authors propose a mixed-integer nonlinear
formulation due to integer variables such as the OLTC tap setting. To solve such complex
optimization problems, some authors use analytical methods and some use computational
ones. In this review paper, the authors tried to point out the advantages and shortcomings
of both approaches without favoring one. When analytical methods are used, the compro-
mise regarding the transformation of the original problem into a standard one is present
but the analytical approach enables the straightforward method to find the optimum of a
well-defined optimization problem (although special attention is required in order to deter-
mine whether a calculated optimum is local or global). On the other hand, computational
intelligence methods can solve complex optimization problems without the transformation
of the original formulation but they required higher computational performance as well
as more computational time. One of the trends in applying computational intelligence
methods is using well-known power flow calculation tools in order to feed the computa-
tional intelligence method with multiple power flow solutions. This principle is recognized
as co-simulation.

The research potential of the reviewed field lies in the fact that more and more inverter-
based sources are installed in distribution networks worldwide. The importance of voltage
optimization is specifically stressed in microgrids where voltage supports depend mainly
on the inverter-based source. Since the PV active power production depends on variable
and stochastic sun irradiation, further research direction in the field of voltage optimization
will strive to create an adequate probabilistic formulation of the OPF problem which is
computationally more demanding since large numbers of possible scenarios need to be
analyzed. Some probabilistic OPF solutions are already created for the transmission system
environment but their replication in the distribution network (or microgrid) is not straight-
forward. It is hard to foresee which solution methodology (analytical or computational
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intelligence) will show better performance in a probabilistic environment and there is still
plenty of research challenges and gaps present for further research.
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