
Citation: Lee, S.-H.; Shiue, Y.-L.;

Cheng, C.-H.; Li, Y.-H.; Huang, Y.-F.

Detection and Prevention of DDoS

Attacks on the IoT. Appl. Sci. 2022, 12,

12407. https://doi.org/10.3390/

app122312407

Academic Editor: Muhammad

Awais Javed

Received: 7 November 2022

Accepted: 1 December 2022

Published: 4 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Detection and Prevention of DDoS Attacks on the IoT
Shu-Hung Lee 1, Yeong-Long Shiue 2, Chia-Hsin Cheng 2,* , Yi-Hong Li 2 and Yung-Fa Huang 3,*

1 School of Intelligent Manufacturing and Automotive Engineering, Guangdong Business and Technology
University, Guangdong 526020, China

2 Department of Electrical Engineering, National Formosa University, Yunlin 632301, Taiwan
3 Department of Information and Communication Engineering, Chaoyang University of Technology,

Taichung 413310, Taiwan
* Correspondence: chcheng@nfu.edu.tw (C.-H.C.); yfahuang@cyut.edu.tw (Y.-F.H.);

Tel.: +886-4-2332-3000 (Y.-F.H.)

Abstract: The Internet of Things (IoT) system has been a hot topic in recent years. Its operation is a
system that stores data in data storage and is completed by the exchange of network information
about things. Therefore, the security of information between network transmissions is very important.
In recent years, the most likely cause of information security problems has been a distributed denial
of service (DDoS) attack. In this paper, we proposed an autonomous defense system that combines
edge computing with a two-dimensional convolutional neural network (CNN) to recognize whether
the data server in IoT suffers from DDoS attacks and identify the attack mode. The accuracy of
trained two-dimensional CNN is up to 99.5% and 99.8% for packet traffic and packet features training,
respectively. A field experiment’s results show that the data server in the proposed system can
effectively distinguish the difference between the DDoS attacks and the normal transmission to
reduce the impact of DDoS attacks on the IoT data storage while it is under attack.

Keywords: Internet of Things; distributed denial of service; convolutional neural network; edge
computing

1. Introduction

In recent years, the Internet of Things (IoT) [1] based on Wireless Sensor Networks
(WSNs) has become more and more developed. The purpose of the IoT is to access data from
each other through the remote connection of machine to machine (M2M) without human
operation. The architecture of the IoT can be divided into three layers, named the sensing
layer, network layer, and application layer. To meet the heterogeneous network architecture
in the IoT system, most people choose to add a network layer gateway for heterogeneous
network processing and upload the processed information to the cloud. Most gateways
only process the heterogeneous network information and configure sufficient minimum
storage capacity. The limitation of storage capacity makes it impossible for users to install
anti-virus software on IoT devices, resulting in many potential loopholes.

With the rapid development of network technology, the speed of data exchange
between devices is getting faster and faster. In the case of vulnerabilities in the system
software or firmware, attackers can not only steal the data collected from the device for
selling personal data, phishing, spreading spam, etc., but can even launch distributed
denial of service (DDoS) attacks against other targets by controlling the device [2]. It is
difficult for common users to detect the device being attacked or controlled for the first
time until network resources or system resources are affected and network services are
temporarily delayed or interrupted. Therefore, we hope to make future IoT devices more
secure by analyzing network packets to prevent blocking attacks.

There is already much literature proposing a variety of methods to lessen the effect
of DDoS on IoT [3–6]. In addition, with the development of artificial intelligence, various
algorithms have been applied in different fields. Deep Learning is a framework belonging

Appl. Sci. 2022, 12, 12407. https://doi.org/10.3390/app122312407 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122312407
https://doi.org/10.3390/app122312407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6656-8921
https://orcid.org/0000-0003-3337-3551
https://doi.org/10.3390/app122312407
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122312407?type=check_update&version=2

Appl. Sci. 2022, 12, 12407 2 of 18

to artificial intelligence, which is derived from the Neural Network (NN) framework im-
proved by Hinton et al. in 2006 [7]. It can analyze sequential data and has been applied to
many fields, such as speech recognition, image recognition, natural language processing,
etc. Through [8–12], it can be demonstrated that deep learning can be applied to intru-
sion detection systems and can effectively improve the efficiency of network information
security detection.

However, the identification results on the edge computer when measured under
different conditions, in which Feature is the identification result of the feature model, and
Flow means the identification result of the traffic model. Therefore, we conducted our
research using the related neural network approach. The proposed architecture of edge
computing with a trained CNN model will make correct identifications under the normal
transmission, SYN flood attack, UDP flood attack, ICMP flood attack, and MIX flood attack,
respectively. In this proposal, we would like to maximize the use of information about
changes in related characteristics when packets are transmitted in the system, which can
effectively improve the accuracy of recognition and make up for the shortcomings of using
a single model for judgment.

Some relevant pieces of literature about machine learning (ML) based methods to
mitigate DDoS attacks in IoT systems in recent years will be reviewed below. An evaluation
of using a Random Neural Network (RNN) trained by normal traffic data compared to
the Long-Short Term Memory (LSTM) to detect SYN flood DDoS attacks was provided
in [13]. It shows better results in RNN than LSTM, but its accuracy was almost 81% and
not considered better enough to rely on. In [14], a new deep neural network to identify
the network flows being normal or abnormal was presented. The authors adopted a
feedforward back-propagation design with seven secret layers and tested the method for
DDoS detection using the most up-to-date Canadian dataset (CIC IDS 2017). The test
provided a value of 0.99 scores which means that the experimental results were accurate in
terms of Recall and Precision. A resource-friendly ML algorithm called Edge2Guard (E2G)
was introduced in [15]. It was trained and tested over the N-BaIoT dataset of normal and
attack network traffic logs recorded by using Mirai and Bashlitte Botnets. The algorithm
has resource-friendly detection depending on creating an E2G model for each MCU-based
IoT device separately in the system. The disadvantage of this algorithm is that the model
should be upgraded frequently after being trained with data from the developed type
of malware action resulting in rising difficulties in the deployment process. An effective
method employing two essential attributes named Volumetric and Asymmetric to detect
two forms of flooding-based DDoS attacks was presented in [16]. The proposed DDoS
attack detection method based on SDN can cause minimal disruption to effective user
activity and reduce both training and testing time.

In addition, it proposed the Advanced Support Vector Machine (ASVM) technique
to enhance the current Support Vector Machine (SVM) algorithm to detect DDoS flooding
attacks effectively. In [17], a new detection classification system based on SVM and CNN
ML algorithms was proposed. It converts the binary files into visualized images in grayscale.
Then the CNN and SVM process these images to detect if a file contains maliciously injected
code. The accuracy of this method is up to 94% in the binary classification case but only
81% in the multi-classification case. A new ML method based on clustering and graph
structure features to predict the occurrence of DDoS attacks was provided in [18]. The
method creates the edge and vertex structures in graph theory and extracts eight features of
traffic data as input variables. Then uses the principal component analysis (PCA) model to
extract the features of DDoS and normal communication. Finally, the fuzzy C-means (FCM)
clustering method is used to detect DDoS. The availability of this method is verified by
taking 2000 traffic data in CICIDS-2017 as an example. The results of recall, false positive,
true positive, true negative, and false negative were 100.00%, 1.05%, 68.95%, 0.00%, and
30.00%, respectively, indicating that it improves the reliability of detection and has a good
detection effect on DDoS attacks compared to other methods.

Appl. Sci. 2022, 12, 12407 3 of 18

In the IoT system, due to the different wireless sensing networks used by the sensing
layer, most of them need a gateway for cross-heterogeneous network processing. However,
most gateways are used for heterogeneous network processing and do not have a lot of
storage space. As a result, anti-virus software cannot be installed on the device, resulting in
security vulnerabilities in the system. That makes the storage devices of the IoT the target
of malicious attacks tested by novice hackers, among which the most common malicious
attack mode includes DDoS attacks, which exhaust the target network or system resources
through flood attacks, thereby slowing down or terminating their services. How to detect
malicious attacks will be the focus of this paper.

In the past, the method of preventing DDoS attacks was to track the source of the
attack and block the attack through functions such as Intrusion Detection Systems (IDS) and
firewalls. However, with the increasing scale of DDoS attacks in recent years, such as the
Mirai zombie virus in 2016, the Dyn.com domain name systems (DNS) services company,
Domain Name Services suffered a DDoS attack, affecting websites such as Cable News
Network and Twitter [19]. This kind of attack may be a Botnet formed by a large number
of IoT devices making massive DNS requests through a large number of IP addresses,
resulting in service interruption [20]. In addition, some attacks are carried out through
disguised IP addresses, and these methods cannot effectively defend against DDoS attacks.
It is easy to pass attack traffic or block normal traffic due to a single judgment. Therefore,
how to reduce the error rate in DDoS attacks is very important.

To sum up, this research is mainly aimed at reducing the misjudgment probability
of regular traffic packets and attack traffic packets in DDoS attacks. The convolutional
neural network (CNN) is used to distinguish the captured packets to judge whether the
current system is normal and use CNN to analyze the difference between a DDoS attack
and normal transmission.

The remainder of the present work is structured as follows: Section 2 briefly describes
the scenario of a DDoS attack in the IoT network. Section 3 introduces the experimental
hardware and architecture, model training dataset, model training methods, IoT architec-
ture, DDoS attack architecture, and system detection architecture. Next, Section 4 is the
implementation of the proposed method and experimental outcomes. Finally, Section 5
summarizes the paper.

2. Scenarios of DDoS Attack

DDoS is an evolution of Denial of Service attack (DoS), which is a one-to-one trans-
mission mode. The purpose is to send a large number of forged or meaningless packets
to the target computer, exhaust the victim’s network bandwidth and system resources,
stop or interrupt the system services, and prevent other normal users from accessing re-
quired resources. However, with the development of computer hardware and network
communication, DoS attacks have become more difficult, so the DDoS attack has been
developed. It is a botnet composed of two or more hacked computers distributed all over
the world, launching a DoS attack on the same target to achieve the purpose of interrupting
or stopping the server network service [21], as shown in Figure 1.

A botnet means that hackers use Trojan viruses or system vulnerabilities to write
DDoS attack programs, turning other computers into zombie computers (BOT) and forming
control nodes that can be used to send forged or spam packets to block the target’s network.

2.1. Network Bandwidth Consumption DDoS Attacks

Botnets transmit large traffic packets to consume network bandwidth so that the
victim’s computer is frequently blocked.

Appl. Sci. 2022, 12, 12407 4 of 18Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 19

Figure 1. Schematic diagram of DDoS attack.

2.1. Network Bandwidth Consumption DDoS Attacks

Botnets transmit large traffic packets to consume network bandwidth so that the vic-

tim’s computer is frequently blocked.

2.1.1. User Datagram Protocol (UDP) Flood Attack

UDP is a connectionless transport protocol. When using the UDP protocol to transmit

packets, authentication is not required, and a large number of packets can be sent to the

victim’s computer, which can saturate the bandwidth and make normal services inacces-

sible. This attack method is shown in Figure 2.

Figure 2. UDP flood attack diagram.

2.1.2. Internet Control Message Protocol (ICMP) Flood Attack

If the ping command is normally used, the client sends an ICMP echo request header

packet to the master, and the master will send an ICMP echo reply header packet to the

client to check whether the connection between them can be transmitted properly, as

shown in Figure 3. However, the ICMP flood will send a large number of Ping commands

to the attacked server in a short time, consuming the host server resources and causing

service breakdown, as shown in Figure 4.

2.1.3. Teardrop Attack

Each packet is segmented and shifted before transmission, and the processing infor-

mation is recorded for future packet reassembly. The teardrop attack will use this method

to forge shift information so that the packet cannot be properly reassembled, causing er-

rors.

Figure 1. Schematic diagram of DDoS attack.

2.1.1. User Datagram Protocol (UDP) Flood Attack

UDP is a connectionless transport protocol. When using the UDP protocol to transmit
packets, authentication is not required, and a large number of packets can be sent to the vic-
tim’s computer, which can saturate the bandwidth and make normal services inaccessible.
This attack method is shown in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 19

Figure 1. Schematic diagram of DDoS attack.

2.1. Network Bandwidth Consumption DDoS Attacks

Botnets transmit large traffic packets to consume network bandwidth so that the vic-

tim’s computer is frequently blocked.

2.1.1. User Datagram Protocol (UDP) Flood Attack

UDP is a connectionless transport protocol. When using the UDP protocol to transmit

packets, authentication is not required, and a large number of packets can be sent to the

victim’s computer, which can saturate the bandwidth and make normal services inacces-

sible. This attack method is shown in Figure 2.

Figure 2. UDP flood attack diagram.

2.1.2. Internet Control Message Protocol (ICMP) Flood Attack

If the ping command is normally used, the client sends an ICMP echo request header

packet to the master, and the master will send an ICMP echo reply header packet to the

client to check whether the connection between them can be transmitted properly, as

shown in Figure 3. However, the ICMP flood will send a large number of Ping commands

to the attacked server in a short time, consuming the host server resources and causing

service breakdown, as shown in Figure 4.

2.1.3. Teardrop Attack

Each packet is segmented and shifted before transmission, and the processing infor-

mation is recorded for future packet reassembly. The teardrop attack will use this method

to forge shift information so that the packet cannot be properly reassembled, causing er-

rors.

Figure 2. UDP flood attack diagram.

2.1.2. Internet Control Message Protocol (ICMP) Flood Attack

If the ping command is normally used, the client sends an ICMP echo request header
packet to the master, and the master will send an ICMP echo reply header packet to the
client to check whether the connection between them can be transmitted properly, as shown
in Figure 3. However, the ICMP flood will send a large number of Ping commands to the
attacked server in a short time, consuming the host server resources and causing service
breakdown, as shown in Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 19

Figure 3. Normal ICMP diagram.

Figure 4. ICMP flood attack diagram.

2.2. System Resource Consumption DDoS Attacks

System resource consumption is caused by system transmission vulnerabilities or

fake IPs, which exhaust system memory or CPU resources, and eventually lead to service

suspension or interruption.

2.2.1. Synchronize (SYN) Flood Attack

SYN flood attacks take advantage of the vulnerability of the three-way handshake

between the sender and the receiver in the Transmission Control Protocol (TCP). There

are two types of SYN flood attacks. The attacker can intentionally not return ACK infor-

mation or use the fake source IP address in the SYN flood to make the server send SYN +

ACK packets to a fake IP address. Because it is a fake IP address, the server cannot receive

the ACK packet I response, so the server will keep sending SYN + ACK packets until it

times out. This, in turn, consumes server bandwidth and memory resources. The follow-

ing figure shows the three-way handshake process during normal TCP transmission, as

shown in Figure 5. Figure 6 shows the three-way handshake process of TCP transmission

during SYN flood attacks.

2.2.2. Local Area Network Denial (LAND) Attack

The main difference with SYN flood is that the fake IP is changed to the same as the

attacked host IP. As a result, the host continuously sends SYN + ACK packets back to

itself, forming an infinite loop and consuming the resources of the attacked host.

Figure 5. TCP normal three-way handshake process.

Figure 3. Normal ICMP diagram.

Appl. Sci. 2022, 12, 12407 5 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 19

Figure 3. Normal ICMP diagram.

Figure 4. ICMP flood attack diagram.

2.2. System Resource Consumption DDoS Attacks

System resource consumption is caused by system transmission vulnerabilities or

fake IPs, which exhaust system memory or CPU resources, and eventually lead to service

suspension or interruption.

2.2.1. Synchronize (SYN) Flood Attack

SYN flood attacks take advantage of the vulnerability of the three-way handshake

between the sender and the receiver in the Transmission Control Protocol (TCP). There

are two types of SYN flood attacks. The attacker can intentionally not return ACK infor-

mation or use the fake source IP address in the SYN flood to make the server send SYN +

ACK packets to a fake IP address. Because it is a fake IP address, the server cannot receive

the ACK packet I response, so the server will keep sending SYN + ACK packets until it

times out. This, in turn, consumes server bandwidth and memory resources. The follow-

ing figure shows the three-way handshake process during normal TCP transmission, as

shown in Figure 5. Figure 6 shows the three-way handshake process of TCP transmission

during SYN flood attacks.

2.2.2. Local Area Network Denial (LAND) Attack

The main difference with SYN flood is that the fake IP is changed to the same as the

attacked host IP. As a result, the host continuously sends SYN + ACK packets back to

itself, forming an infinite loop and consuming the resources of the attacked host.

Figure 5. TCP normal three-way handshake process.

Figure 4. ICMP flood attack diagram.

2.1.3. Teardrop Attack

Each packet is segmented and shifted before transmission, and the processing informa-
tion is recorded for future packet reassembly. The teardrop attack will use this method to
forge shift information so that the packet cannot be properly reassembled, causing errors.

2.2. System Resource Consumption DDoS Attacks

System resource consumption is caused by system transmission vulnerabilities or
fake IPs, which exhaust system memory or CPU resources, and eventually lead to service
suspension or interruption.

2.2.1. Synchronize (SYN) Flood Attack

SYN flood attacks take advantage of the vulnerability of the three-way handshake
between the sender and the receiver in the Transmission Control Protocol (TCP). There are
two types of SYN flood attacks. The attacker can intentionally not return ACK information
or use the fake source IP address in the SYN flood to make the server send SYN + ACK
packets to a fake IP address. Because it is a fake IP address, the server cannot receive the
ACK packet I response, so the server will keep sending SYN + ACK packets until it times
out. This, in turn, consumes server bandwidth and memory resources. The following figure
shows the three-way handshake process during normal TCP transmission, as shown in
Figure 5. Figure 6 shows the three-way handshake process of TCP transmission during
SYN flood attacks.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 19

Figure 3. Normal ICMP diagram.

Figure 4. ICMP flood attack diagram.

2.2. System Resource Consumption DDoS Attacks

System resource consumption is caused by system transmission vulnerabilities or

fake IPs, which exhaust system memory or CPU resources, and eventually lead to service

suspension or interruption.

2.2.1. Synchronize (SYN) Flood Attack

SYN flood attacks take advantage of the vulnerability of the three-way handshake

between the sender and the receiver in the Transmission Control Protocol (TCP). There

are two types of SYN flood attacks. The attacker can intentionally not return ACK infor-

mation or use the fake source IP address in the SYN flood to make the server send SYN +

ACK packets to a fake IP address. Because it is a fake IP address, the server cannot receive

the ACK packet I response, so the server will keep sending SYN + ACK packets until it

times out. This, in turn, consumes server bandwidth and memory resources. The follow-

ing figure shows the three-way handshake process during normal TCP transmission, as

shown in Figure 5. Figure 6 shows the three-way handshake process of TCP transmission

during SYN flood attacks.

2.2.2. Local Area Network Denial (LAND) Attack

The main difference with SYN flood is that the fake IP is changed to the same as the

attacked host IP. As a result, the host continuously sends SYN + ACK packets back to

itself, forming an infinite loop and consuming the resources of the attacked host.

Figure 5. TCP normal three-way handshake process. Figure 5. TCP normal three-way handshake process.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 19

Figure 6. SYN flood attack diagram.

2.2.3. DNS Flood Attack

DNS flood is a network attack against the DNS. By sending randomly generated DNS

requests to the DNS server through botnets, the server fails to find the relevant subdomain

names, thus causing DNS service interruption.

3. System Model

This section introduces the experimental hardware and architecture, ML model train-

ing dataset, ML model training methods, IoT architecture, DDoS attack architecture, and

system detection architecture used in this paper.

3.1. Experimental Hardware and Environment Architecture

In this paper, we use one Raspberry pi 3B (802.11n) as the main server for IoT trans-

mission and a wireless network card (2.4 GHz 802.11n/5 GHz 802.11ac) for data transmis-

sion with the PC at the edge of computing. The DDoS attack side uses a Raspberry pi 3B

and a Raspberry pi 3B + (802.11b/g/n/ac). The transmission between the two is carried out

through the Wi-Fi frequency of 2.4 GHz, and system attacks on the data collection end

will be carried out through 2.4 GHz Wi-Fi. The mini D1, combined with the temperature

and humidity sensor, is used as an IoT sensor node to collect environmental sensor data

and transmit data through Wi-Fi at 2.4 GHz. A personal computer is used as the local end

of edge computing to monitor whether there is any abnormal transmission in the data

collection server. In this paper, the main reason for using edge operation is to reduce the

judgment error of the Raspberry pi system and to reduce the transmission delay caused

by DDoS attacks on edge operation. Therefore, the practical transmission mode of edge

operation is through Wi-Fi in different network domains from the data sensing node and

using 5 GHz for transmission. This paper will use two Wireless Access points (AP), AP1

and AP2, as illustrated below. The frequency used by AP1 is 2.4 GHz, and the Wi-Fi fre-

quency used by AP2 is 5 GHz. The Wi-Fi specifications list in Table 1.

Table 1. IEEE 802.11 specifications.

Standard Frequency (GHz) Bandwidth (MHz) TX Rate Mbit/s MIMO

IEEE 802.11 2.4 20 2 NA

IEEE 802.11a 5 20 54 NA

IEEE 802.11b 2.4 20 11 NA

IEEE 802.11g 2.4 20 54 NA

IEEE 802.11n 2.4/5 40 150 4

IEEE 802.11ac 2.4 160 866.7 (single stream) 8

IEEE 802.11ax 2.4/5/6 160 1120 (single stream) 8

Figure 6. SYN flood attack diagram.

Appl. Sci. 2022, 12, 12407 6 of 18

2.2.2. Local Area Network Denial (LAND) Attack

The main difference with SYN flood is that the fake IP is changed to the same as the
attacked host IP. As a result, the host continuously sends SYN + ACK packets back to itself,
forming an infinite loop and consuming the resources of the attacked host.

2.2.3. DNS Flood Attack

DNS flood is a network attack against the DNS. By sending randomly generated DNS
requests to the DNS server through botnets, the server fails to find the relevant subdomain
names, thus causing DNS service interruption.

3. System Model

This section introduces the experimental hardware and architecture, ML model train-
ing dataset, ML model training methods, IoT architecture, DDoS attack architecture, and
system detection architecture used in this paper.

3.1. Experimental Hardware and Environment Architecture

In this paper, we use one Raspberry pi 3B (802.11n) as the main server for IoT transmis-
sion and a wireless network card (2.4 GHz 802.11n/5 GHz 802.11ac) for data transmission
with the PC at the edge of computing. The DDoS attack side uses a Raspberry pi 3B and
a Raspberry pi 3B + (802.11b/g/n/ac). The transmission between the two is carried out
through the Wi-Fi frequency of 2.4 GHz, and system attacks on the data collection end
will be carried out through 2.4 GHz Wi-Fi. The mini D1, combined with the temperature
and humidity sensor, is used as an IoT sensor node to collect environmental sensor data
and transmit data through Wi-Fi at 2.4 GHz. A personal computer is used as the local end
of edge computing to monitor whether there is any abnormal transmission in the data
collection server. In this paper, the main reason for using edge operation is to reduce the
judgment error of the Raspberry pi system and to reduce the transmission delay caused
by DDoS attacks on edge operation. Therefore, the practical transmission mode of edge
operation is through Wi-Fi in different network domains from the data sensing node and
using 5 GHz for transmission. This paper will use two Wireless Access points (AP), AP1
and AP2, as illustrated below. The frequency used by AP1 is 2.4 GHz, and the Wi-Fi
frequency used by AP2 is 5 GHz. The Wi-Fi specifications list in Table 1.

Table 1. IEEE 802.11 specifications.

Standard Frequency (GHz) Bandwidth (MHz) TX Rate Mbit/s MIMO

IEEE 802.11 2.4 20 2 NA
IEEE 802.11a 5 20 54 NA
IEEE 802.11b 2.4 20 11 NA
IEEE 802.11g 2.4 20 54 NA
IEEE 802.11n 2.4/5 40 150 4
IEEE 802.11ac 2.4 160 866.7 (single stream) 8
IEEE 802.11ax 2.4/5/6 160 1120 (single stream) 8

3.2. Training Dataset and Model Training

In this paper, an additional Wi-Fi wireless network card is installed on the Raspberry
pi that collects the values of the sensing nodes so that it can have two IPs at the same time,
one is the wireless transmission IP of the Raspberry pi called IP1, and the IP provided by
the wireless card is called IP2. IP1 and IP2 will be used as per the description below. IP1
is used to receive information about the sensing node with a Wi-Fi frequency of 2.4 GHz,
while IP2 is used only for the connection to the edge computing computer. In this paper,
the number of packets per second and the characteristics of each packet flow in the DDoS
attack on the server is collected as the experimental dataset for training models of CNNs
and neural-like networks.

Appl. Sci. 2022, 12, 12407 7 of 18

3.2.1. Packet Traffic Capture Dataset

This dataset is based on the results of the paper in [22]. The CPU and memory usage
rate of the system hardware will be affected while suffering from attacks. The total number
of packet traffic per second will be counted, and the usage rate of the CPU and memory
will be measured under monitoring by adding TCP, UDP, ICMP, and other transmission
packets. In addition, normal transmission, SYN flood attack, UDP flood attack, ICMP flood
attack, and MIX flood attack are recorded, respectively. During each test, the packet traffic
capture time is 2 h per test, and the system is restarted to ensure that the data is not affected
by the previous attack tests. The packet traffic features capturing and delivering diagram
is shown in Figure 7. The packet traffic features captured directly from the packet infor-
mation are usage rates of CPU (CPU) and memory (Memory), the numbers of TCP packet
(No. TCP), UDP packet (No. UDP), ICMP packet (No. ICMP), and other packets
(No. Other). The packet traffic dataset under normal transmission is shown in Table 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 19

3.2. Training Dataset and Model Training

In this paper, an additional Wi-Fi wireless network card is installed on the Raspberry

pi that collects the values of the sensing nodes so that it can have two IPs at the same time,

one is the wireless transmission IP of the Raspberry pi called IP1, and the IP provided by

the wireless card is called IP2. IP1 and IP2 will be used as per the description below. IP1

is used to receive information about the sensing node with a Wi-Fi frequency of 2.4 GHz,

while IP2 is used only for the connection to the edge computing computer. In this paper,

the number of packets per second and the characteristics of each packet flow in the DDoS

attack on the server is collected as the experimental dataset for training models of CNNs

and neural-like networks.

3.2.1. Packet Traffic Capture Dataset

This dataset is based on the results of the paper in [22]. The CPU and memory usage

rate of the system hardware will be affected while suffering from attacks. The total num-

ber of packet traffic per second will be counted, and the usage rate of the CPU and

memory will be measured under monitoring by adding TCP, UDP, ICMP, and other trans-

mission packets. In addition, normal transmission, SYN flood attack, UDP flood attack,

ICMP flood attack, and MIX flood attack are recorded, respectively. During each test, the

packet traffic capture time is 2 h per test, and the system is restarted to ensure that the

data is not affected by the previous attack tests. The packet traffic features capturing and

delivering diagram is shown in Figure 7. The packet traffic features captured directly from

the packet information are usage rates of CPU (CPU) and memory (Memory), the numbers

of TCP packet (No. TCP), UDP packet (No. UDP), ICMP packet (No. ICMP), and other

packets (No. Other). The packet traffic dataset under normal transmission is shown in

Table 2.

Figure 7. Schematic diagram of packet traffic features capturing and packet delivering.

Table 2. The packet traffic dataset.

Memory CPU No. TCP No. UDP No. ICMP No. Other

33.6351795 6.1 0 1 0 0

33.6638273 13.2 0 2 0 0

33.6333890 0 0 1 0 0

33.6329414 6.7 10 2 0 0

33.6387604 0 10 1 0 0

33.6324937 0 10 2 0 0

33.6602463 5.8 10 1 0 0

33.6602463 0.8 10 2 0 0

33.66.2463 6.9 10 1 0 0

33.6338366 10.8 10 1 0 0

Figure 7. Schematic diagram of packet traffic features capturing and packet delivering.

Table 2. The packet traffic dataset.

Memory CPU No. TCP No. UDP No. ICMP No. Other

33.6351795 6.1 0 1 0 0
33.6638273 13.2 0 2 0 0
33.6333890 0 0 1 0 0
33.6329414 6.7 10 2 0 0
33.6387604 0 10 1 0 0
33.6324937 0 10 2 0 0
33.6602463 5.8 10 1 0 0
33.6602463 0.8 10 2 0 0
33.66.2463 6.9 10 1 0 0
33.6338366 10.8 10 1 0 0

3.2.2. Packet Features Capture Dataset

This dataset is based on the results of the paper in [22]. It captures the information of
each packet flowing through IP1 by TShark and transmits the captured packet information
to the edge computing computer through IP2, as shown in Figure 8. The computer will
distinguish the packet transmission mode, the interval time between two packet transmis-
sions, the sequence number, and the captured transmission packet size from the captured
information. The pre-processing process performed by the edge computing computer
to capture the packet features is shown in Figure 9. The interval between two packets
(interval), sequence number (sequence), and packet size (size) will be captured directly
from the packet information. If the field is empty in packet, information under specific
conditions will be filled 0, and the transmission mode (TX mode) will be coded in 0, 1, and
2 for TCP, UDP, and ICMP, respectively. The preprocessing result from a packet information

Appl. Sci. 2022, 12, 12407 8 of 18

is shown in Figure 10. The packet features dataset under normal transmission is shown in
Table 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 19

3.2.2. Packet Features Capture Dataset

This dataset is based on the results of the paper in [22]. It captures the information of

each packet flowing through IP1 by TShark and transmits the captured packet information

to the edge computing computer through IP2, as shown in Figure 8. The computer will

distinguish the packet transmission mode, the interval time between two packet transmis-

sions, the sequence number, and the captured transmission packet size from the captured

information. The pre-processing process performed by the edge computing computer to

capture the packet features is shown in Figure 9. The interval between two packets (inter-

val), sequence number (sequence), and packet size (size) will be captured directly from

the packet information. If the field is empty in packet, information under specific condi-

tions will be filled 0, and the transmission mode (TX mode) will be coded in 0, 1, and 2 for

TCP, UDP, and ICMP, respectively. The preprocessing result from a packet information

is shown in Figure 10. The packet features dataset under normal transmission is shown in

Table 3.

Figure 8. Schematic diagram of packet features capturing and packet delivering for edge computing.

Figure 9. The procedure of data preprocessing for packet features capturing.

Figure 8. Schematic diagram of packet features capturing and packet delivering for edge computing.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 19

3.2.2. Packet Features Capture Dataset

This dataset is based on the results of the paper in [22]. It captures the information of

each packet flowing through IP1 by TShark and transmits the captured packet information

to the edge computing computer through IP2, as shown in Figure 8. The computer will

distinguish the packet transmission mode, the interval time between two packet transmis-

sions, the sequence number, and the captured transmission packet size from the captured

information. The pre-processing process performed by the edge computing computer to

capture the packet features is shown in Figure 9. The interval between two packets (inter-

val), sequence number (sequence), and packet size (size) will be captured directly from

the packet information. If the field is empty in packet, information under specific condi-

tions will be filled 0, and the transmission mode (TX mode) will be coded in 0, 1, and 2 for

TCP, UDP, and ICMP, respectively. The preprocessing result from a packet information

is shown in Figure 10. The packet features dataset under normal transmission is shown in

Table 3.

Figure 8. Schematic diagram of packet features capturing and packet delivering for edge computing.

Figure 9. The procedure of data preprocessing for packet features capturing. Figure 9. The procedure of data preprocessing for packet features capturing.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 19

Figure 10. The result of data preprocessing for packet feature capture.

Table 3. The packet features dataset.

Interval TX Mode Size Sequence

1.011111562 1 4 0

0.000112396 2 4 0

0.500199167 0 16 1

0.001090100 0 0 1

0.000265677 0 6 1

0.004458860 0 0 7

0.009158385 0 0 17

0.000061667 0 0 8

0.000308073 0 0 0

0.000065312 0 0 0

3.3. IoT Architecture

The sensor node used in this paper is a temperature and humidity sensor (DHT11)

for sensing the ambient temperature and humidity, and its sampling range is 0~50 °C with

a measurement error of ±5 °C, 20~90% RH with a measurement error of ±5% RH and a

sampling time of 1 time/s. The data is transmitted through D1 mini, IP1, and AP1 for Wi-

Fi connection with a frequency of 2.4, as shown in Figure 11, and the data is stored in the

server. The transmission process is shown in Figure 12.

Figure 11. The architecture of IoT in the real experiment system.

Figure 10. The result of data preprocessing for packet feature capture.

Appl. Sci. 2022, 12, 12407 9 of 18

Table 3. The packet features dataset.

Interval TX Mode Size Sequence

1.011111562 1 4 0
0.000112396 2 4 0
0.500199167 0 16 1
0.001090100 0 0 1
0.000265677 0 6 1
0.004458860 0 0 7
0.009158385 0 0 17
0.000061667 0 0 8
0.000308073 0 0 0
0.000065312 0 0 0

3.3. IoT Architecture

The sensor node used in this paper is a temperature and humidity sensor (DHT11)
for sensing the ambient temperature and humidity, and its sampling range is 0–50 ◦C with
a measurement error of ±5 ◦C, 20–90% RH with a measurement error of ±5% RH and a
sampling time of 1 time/s. The data is transmitted through D1 mini, IP1, and AP1 for Wi-Fi
connection with a frequency of 2.4, as shown in Figure 11, and the data is stored in the
server. The transmission process is shown in Figure 12.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 19

Figure 10. The result of data preprocessing for packet feature capture.

Table 3. The packet features dataset.

Interval TX Mode Size Sequence

1.011111562 1 4 0

0.000112396 2 4 0

0.500199167 0 16 1

0.001090100 0 0 1

0.000265677 0 6 1

0.004458860 0 0 7

0.009158385 0 0 17

0.000061667 0 0 8

0.000308073 0 0 0

0.000065312 0 0 0

3.3. IoT Architecture

The sensor node used in this paper is a temperature and humidity sensor (DHT11)

for sensing the ambient temperature and humidity, and its sampling range is 0~50 °C with

a measurement error of ±5 °C, 20~90% RH with a measurement error of ±5% RH and a

sampling time of 1 time/s. The data is transmitted through D1 mini, IP1, and AP1 for Wi-

Fi connection with a frequency of 2.4, as shown in Figure 11, and the data is stored in the

server. The transmission process is shown in Figure 12.

Figure 11. The architecture of IoT in the real experiment system. Figure 11. The architecture of IoT in the real experiment system.
Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 19

Figure 12. Diagram of the transmission process.

3.4. DDoS Attack Architecture

To collect the status of the IoT server under a DDoS attack, this paper sets up a DDoS

attack environment. The DDoS tool used in this paper is TFN2K, which is used to simulate

the attack on the server. Its architecture is shown in Figures 13 and 14, and this tool can

launch SYN flood attacks, UDP flood attacks, ICMP flood attacks, and mixed attacks (MIX

flood) on the server, respectively. This tool can operate other hosts through control com-

mands to form a botnet to launch DDoS attacks. Therefore, this paper uses the four attack

methods available to the tool and normal transmission for data collection. There are 25,000

messages for packet traffic data capture and 4.5 million messages for packet feature data

capture.

Figure 13. Diagram of DDoS attack for the practical evaluation system.

Figure 12. Diagram of the transmission process.

Appl. Sci. 2022, 12, 12407 10 of 18

3.4. DDoS Attack Architecture

To collect the status of the IoT server under a DDoS attack, this paper sets up a
DDoS attack environment. The DDoS tool used in this paper is TFN2K, which is used
to simulate the attack on the server. Its architecture is shown in Figures 13 and 14, and
this tool can launch SYN flood attacks, UDP flood attacks, ICMP flood attacks, and mixed
attacks (MIX flood) on the server, respectively. This tool can operate other hosts through
control commands to form a botnet to launch DDoS attacks. Therefore, this paper uses the
four attack methods available to the tool and normal transmission for data collection. There
are 25,000 messages for packet traffic data capture and 4.5 million messages for packet
feature data capture.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 19

Figure 12. Diagram of the transmission process.

3.4. DDoS Attack Architecture

To collect the status of the IoT server under a DDoS attack, this paper sets up a DDoS

attack environment. The DDoS tool used in this paper is TFN2K, which is used to simulate

the attack on the server. Its architecture is shown in Figures 13 and 14, and this tool can

launch SYN flood attacks, UDP flood attacks, ICMP flood attacks, and mixed attacks (MIX

flood) on the server, respectively. This tool can operate other hosts through control com-

mands to form a botnet to launch DDoS attacks. Therefore, this paper uses the four attack

methods available to the tool and normal transmission for data collection. There are 25,000

messages for packet traffic data capture and 4.5 million messages for packet feature data

capture.

Figure 13. Diagram of DDoS attack for the practical evaluation system. Figure 13. Diagram of DDoS attack for the practical evaluation system.
Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 19

Start process

Control host

attack

instructions

SYN flood UDP flood ICMP flood MIX floodUDP flood

Attack side

Stop

instruction

Attacked end

Stop attack

Process End

Yes

No

Figure 14. The procedure of DDoS attack.

3.5. System Detection Architecture

The system detection in this paper is to capture the packet traffic passing through IP1

and analyze the packet features, and then transmit it to the edge computing computer

through IP2 to determine whether the system is abnormal. IP1 is connected to AP1 for the

transmission of the IoT system, so it is at a high risk of attack. Therefore, this study will

attack IP1 to simulate the server being attacked. Due to the defects in the Raspberry pi

hardware system that may lead to misjudgment, a wireless network card is added to the

data server in this paper, which is connected to AP2 to communicate with the edge com-

puter. Therefore, the IP of the additional network card is called IP2, and IP2 is only used

for Communicating with edge computers. The detection process is shown in Figure 15.

Figure 14. The procedure of DDoS attack.

Appl. Sci. 2022, 12, 12407 11 of 18

3.5. System Detection Architecture

The system detection in this paper is to capture the packet traffic passing through
IP1 and analyze the packet features, and then transmit it to the edge computing computer
through IP2 to determine whether the system is abnormal. IP1 is connected to AP1 for
the transmission of the IoT system, so it is at a high risk of attack. Therefore, this study
will attack IP1 to simulate the server being attacked. Due to the defects in the Raspberry
pi hardware system that may lead to misjudgment, a wireless network card is added to
the data server in this paper, which is connected to AP2 to communicate with the edge
computer. Therefore, the IP of the additional network card is called IP2, and IP2 is only used
for Communicating with edge computers. The detection process is shown in Figure 15.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 19

MIX floodnormal

Identify

UDP flood ICMP flood

Process End

Raspberry pi

SYN flood

normal

SYN flood UDP floodICMP flood
MIX flood

System

shutdown

Yes

No

Start process

Raspberry pi

IP1 packet

characteristics

Counting time

If<1s
No

IP2 send

PC receiving

pre-processing

Hardware usage

Yes

Figure 15. Procedure from packet receiving to edge computing.

4. Results and Discussion

In this paper, TFN2K is used to collect packet traffic statistics, CPU and memory us-

age, average network speed, and other characteristics for five scenarios, including normal

transmission, SYN flood attack, UDP flood attack, ICMP flood attack, and MIX flood at-

tack. The collected data are preprocessed to build a packet traffic dataset and packet fea-

ture dataset, respectively, which can be used as the data for artificial intelligence model

training. In this paper, the packet traffic is monitored for five minutes, and the relevant

features of the packet traffic during this period are captured. Figure 16a–e shows the total

number of TCP, UDP, ICMP, and other packets under the normal transmission, SYN flood

attack, UDP flood attack, ICMP flood attack, and MIX flood attack, respectively. The

Figure 15. Procedure from packet receiving to edge computing.

Appl. Sci. 2022, 12, 12407 12 of 18

4. Results and Discussion

In this paper, TFN2K is used to collect packet traffic statistics, CPU and memory usage,
average network speed, and other characteristics for five scenarios, including normal
transmission, SYN flood attack, UDP flood attack, ICMP flood attack, and MIX flood attack.
The collected data are preprocessed to build a packet traffic dataset and packet feature
dataset, respectively, which can be used as the data for artificial intelligence model training.
In this paper, the packet traffic is monitored for five minutes, and the relevant features of
the packet traffic during this period are captured. Figure 16a–e shows the total number
of TCP, UDP, ICMP, and other packets under the normal transmission, SYN flood attack,
UDP flood attack, ICMP flood attack, and MIX flood attack, respectively. The ordinate is
the cumulative total number of packets, and the abscissa is the number of counts per 3 s.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 19

ordinate is the cumulative total number of packets, and the abscissa is the number of

counts per 3 s.

(a) (b)

(c) (d)

(e)

Figure 16. Packet flow cumulative diagram. (a) Normal transmission; (b) SYN flood attack; (c) UDP

flood attack; (d) ICMP flood attack; (e) MIX flood attack.

Figure 16a–e shows the total number of TCP, UDP, ICMP, and other packets under

the normal transmission, SYN flood attack, UDP flood attack, ICMP flood attack, and MIX

flood attack, respectively. From Figure 16a, it can be seen that under normal transmission

conditions, there are all kinds of packets, and the cumulative number of packets increases

moderately. However, no matter what kind of flood attack, the cumulative number of

packets increases suddenly. Moreover, there are different cumulative numbers for differ-

ent packet types when under attack. These characters can not only be used to judge

whether an attack has been suffered but also can be used to identify the type of attack.

The experimental retrieval time is 5 min, so there are 100 records. Compared with

Figure 16a, it can be seen in Figure 16b that suffered from an SYN flood attack, its TCP

packets increased a lot, and the total number of TCP packets flowing through IP1 within

Figure 16. Packet flow cumulative diagram. (a) Normal transmission; (b) SYN flood attack; (c) UDP
flood attack; (d) ICMP flood attack; (e) MIX flood attack.

Appl. Sci. 2022, 12, 12407 13 of 18

Figure 16a–e shows the total number of TCP, UDP, ICMP, and other packets under
the normal transmission, SYN flood attack, UDP flood attack, ICMP flood attack, and MIX
flood attack, respectively. From Figure 16a, it can be seen that under normal transmission
conditions, there are all kinds of packets, and the cumulative number of packets increases
moderately. However, no matter what kind of flood attack, the cumulative number of
packets increases suddenly. Moreover, there are different cumulative numbers for different
packet types when under attack. These characters can not only be used to judge whether
an attack has been suffered but also can be used to identify the type of attack.

The experimental retrieval time is 5 min, so there are 100 records. Compared with
Figure 16a, it can be seen in Figure 16b that suffered from an SYN flood attack, its TCP
packets increased a lot, and the total number of TCP packets flowing through IP1 within
5 min was about 50,000, and other types of packets are almost equal to 0. In Figure 16c
of the UDP flood attack, it can be seen that UDP packets have increased a lot, while other
types of packets are almost equal to 0. The collection time is 5 min. It can be seen that the
sum of UDP packets during this period reached about 40000. In Figure 16d of the ICMP
flood attack, it can be seen that ICMP packets increased a lot, while other types of packets
are almost equal to 0, and the collection time is 5 min. During this period of time, the sum of
ICMP packets also reached about 40,000. Figure 16e shows the situation of being attacked
by other packets (MIX flood attack). At this time, the server flows through a large number
of various types of packets, and the number of packets with UDP and TCP characteristics is
almost the same. Therefore, in our experiment, it is obvious to observe that when attacked,
the increase of various packets with this time and the change of the number of packets.

Figure 17a–e are the usage rates of their CPU and memory, respectively. As can be
seen from Figure 17a, the CPU usage rate changes little during normal transmission, but it
will fluctuate greatly under attacks. Similarly, the memory usage rate is much lower under
normal transmission than under attacks. It helps to detect whether the system is under
attack. In Figure 17b, it can be seen that when an SYN flood attack is encountered, the
usage rate of CPU is about 20% higher than that in Figure 17a under normal conditions. As
shown in Figure 17c, when suffering from UDP flood attacks, the CPU usage rate fluctuates
violently, and its highest usage rate reaches more than 50%. In Figure 17d, we can see that
when the ICMP flood attack is encountered, the CPU’s usage rate fluctuates violently. The
situation of the oscillation is the same as that of the UDP flood attack, but it has different
characteristics. In Figure 17e, it can be seen that when the MIX flood is encountered During
the attack, the CPU’s usage rate will suddenly rise and fluctuate violently, just like the
previous attacks. As shown in Figure 17b–e, the usage rate of the memory remains roughly
the same as normal. Therefore, we can find out its characteristics from the fluctuation of
CPU usage. From the results in Table 4, it can be seen that various attacks will affect the
network speed during transmission. In our experiment, the average network transmission
speed will drop from an average of 14.2 Mbps to about 0.3 Mbps. Based on the above
experimental results, we use a neural network for edge computing and model training.

Table 4. Average speed under the normal transmission, SYN flood attack, UDP flood attack, ICMP
flood attack, and MIX flood attack.

Condition Value

Normal Transmission 14.2 Mbps
SYN Flood Attack 0.30 Mbps
UDP Flood Attack 0.30 Mbps
ICMP Flood Attack 0.31 Mbps
MIX Flood Attack 0.31 Mbps

Appl. Sci. 2022, 12, 12407 14 of 18

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 19

5 min was about 50,000, and other types of packets are almost equal to 0. In Figure 16c of

the UDP flood attack, it can be seen that UDP packets have increased a lot, while other

types of packets are almost equal to 0. The collection time is 5 min. It can be seen that the

sum of UDP packets during this period reached about 40000. In Figure 16d of the ICMP

flood attack, it can be seen that ICMP packets increased a lot, while other types of packets

are almost equal to 0, and the collection time is 5 min. During this period of time, the sum

of ICMP packets also reached about 40,000. Figure 16e shows the situation of being at-

tacked by other packets (MIX flood attack). At this time, the server flows through a large

number of various types of packets, and the number of packets with UDP and TCP char-

acteristics is almost the same. Therefore, in our experiment, it is obvious to observe that

when attacked, the increase of various packets with this time and the change of the num-

ber of packets.

Figure 17a–e are the usage rates of their CPU and memory, respectively. As can be

seen from Figure 17a, the CPU usage rate changes little during normal transmission, but

it will fluctuate greatly under attacks. Similarly, the memory usage rate is much lower

under normal transmission than under attacks. It helps to detect whether the system is

under attack. In Figure 17b, it can be seen that when an SYN flood attack is encountered,

the usage rate of CPU is about 20% higher than that in Figure 17a under normal condi-

tions. As shown in Figure 17c, when suffering from UDP flood attacks, the CPU usage rate

fluctuates violently, and its highest usage rate reaches more than 50%. In Figure 17d, we

can see that when the ICMP flood attack is encountered, the CPU’s usage rate fluctuates

violently. The situation of the oscillation is the same as that of the UDP flood attack, but it

has different characteristics. In Figure 17e, it can be seen that when the MIX flood is en-

countered During the attack, the CPU’s usage rate will suddenly rise and fluctuate vio-

lently, just like the previous attacks. As shown in Figure 17b–e, the usage rate of the

memory remains roughly the same as normal. Therefore, we can find out its characteris-

tics from the fluctuation of CPU usage. From the results in Table 4, it can be seen that

various attacks will affect the network speed during transmission. In our experiment, the

average network transmission speed will drop from an average of 14.2 Mbps to about 0.3

Mbps. Based on the above experimental results, we use a neural network for edge com-

puting and model training.

(a) (b)

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 19

(c) (d)

(e)

Figure 17. CPU and memory usages (a) normal transmission; (b) SYN flood attack; (c) UDP flood

attack; (d) ICMP flood attack; (e) MIX flood attack.

Table 4. Average speed under the normal transmission, SYN flood attack, UDP flood attack, ICMP

flood attack, and MIX flood attack.

Condition Value

Normal Transmission 14.2 Mbps

SYN Flood Attack 0.30 Mbps

UDP Flood Attack 0.30 Mbps

ICMP Flood Attack 0.31 Mbps

MIX Flood Attack 0.31 Mbps

In this paper, the model of a NN, one-dimensional CNN, and two-dimensional CNN

are respectively trained and evaluated. The best-performing model will be applied to the

practical validation of the proposed system. Accuracy is used to evaluate the proportion

of correct predictions of true and false under all conditions, which can be expressed as

Accurary =
TP+TN

TP+TN+FP+FN
× 100% (1)

where the four conditions, True Positive (TP), True Negative (TN), False Positive (FP), and

False Negative (FN), are described in Table 5.

Table 5. Definition of TP, FP, FN, and TN.

Transmission Mode
AI Model Identification Results

Normal Transmission Abnormal Transmission

Normal TP FN

Abnormal FP TN

Figure 17. CPU and memory usages (a) normal transmission; (b) SYN flood attack; (c) UDP flood
attack; (d) ICMP flood attack; (e) MIX flood attack.

In this paper, the model of a NN, one-dimensional CNN, and two-dimensional CNN
are respectively trained and evaluated. The best-performing model will be applied to the
practical validation of the proposed system. Accuracy is used to evaluate the proportion of
correct predictions of true and false under all conditions, which can be expressed as

Accurary =
TP + TN

TP + TN + FP + FN
× 100% (1)

where the four conditions, True Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN), are described in Table 5.

Appl. Sci. 2022, 12, 12407 15 of 18

Table 5. Definition of TP, FP, FN, and TN.

Transmission Mode
AI Model Identification Results

Normal Transmission Abnormal Transmission

Normal TP FN
Abnormal FP TN

In this paper, we use the packet traffic dataset to train the three models mentioned
above. One data is used as the labeled input, and the training parameters are 10, 50, 100,
150, and 200 times respectively. The batch size of each training is 2500, and the learning rate
is 0.00001. The model uses three hidden layers, 128, 64, and 32 neurons, respectively, with
an excitation function of “ReLU” and the output layer using the “softmax” as an excitation
function for classification. When using the packet feature dataset for training, four pieces
of data are used as label input and trained 10, 20, 30, 40, and 50 times respectively. The
batch size is 2500, and the learning rate is 0.00001. The model has three hidden layers of
128, 64, and 32 neurons, respectively, and the excitation function is “ReLU.” The excitation
function “softmax” is used for classification in the output layer. For one-dimensional and
two-dimensional CNN, a dropout layer is added after the first layer to prevent overfitting.

The training accuracies of the two different pieces of training are shown in
Tables 6 and 7, respectively. It can be seen from Tables 6 and 7 that with the increase in the
number of training times and the ratio of input, the accuracy of training can reach more
than 99% in the end. This shows that according to the characteristics of the environment,
there must be more than a certain amount of data collected in order to have good training
results. As shown in Tables 6 and 7, the two-dimensional CNN model is more accurate
after training, both in terms of packet traffic and feature training, named traffic model and
feature model, respectively hereafter, so it will be used as the identification model for the
practical validation.

Table 6. Accuracy for NN, 1D CNN, and 2D CNN trained by using packet traffic dataset.

Model
Number of Training

10 50 100 150 200

NN 49.9% 83.7% 99.2% 99.1% 99.0%
1D CNN 50.9% 53.4% 98.8% 99.1% 99.1%
2D CNN 15.4% 43.0% 99.3% 99.2% 99.5%

Table 7. Accuracy for NN, 1D CNN, and 2D CNN trained by using packet feature dataset.

Model
Number of Training

10 20 30 40 50

NN 58.0% 86.0% 98.9% 99.3% 99.7%
1D CNN 93.5% 95.5% 99.7% 99.8% 99.8%
2D CNN 97.4% 99.5% 99.8% 99.8% 99.8%

Both the correct rate and loss rate of the two-dimensional CNN for the traffic model
and feature model is shown in Figures 18 and 19, respectively.

In this paper, we use a trained two-dimensional CNN model for real experiment
verification. The data collection server IP1 is subjected to normal transmission, SYN flood
attack, UDP flood attack, ICMP flood attack, and MIX flood attack, respectively, and the
number and feature of packets flowing through IP1 are collected. It will be sent to the edge
computing computer through IP2 to identify the current situation of the server by using
a trained model. The edge computing computer will preprocess the received data and
input them into the traffic model and feature model, respectively, for identification. The
final identification result is obtained by combining the obtained identification rates and

Appl. Sci. 2022, 12, 12407 16 of 18

their weights. Considering that the data of the packet traffic dataset may be affected by the
increasing number of users in the IoT, and the features captured will not be able to identify
because the data captured is too small, this paper gives the traffic model and feature model
the weights of 70% and 30% respectively, as the basis for judging the identification results.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 16 of 19

In this paper, we use the packet traffic dataset to train the three models mentioned

above. One data is used as the labeled input, and the training parameters are 10, 50, 100,

150, and 200 times respectively. The batch size of each training is 2500, and the learning

rate is 0.00001. The model uses three hidden layers, 128, 64, and 32 neurons, respectively,

with an excitation function of “ReLU” and the output layer using the “softmax” as an

excitation function for classification. When using the packet feature dataset for training,

four pieces of data are used as label input and trained 10, 20, 30, 40, and 50 times respec-

tively. The batch size is 2500, and the learning rate is 0.00001. The model has three hidden

layers of 128, 64, and 32 neurons, respectively, and the excitation function is “ReLU.” The

excitation function “softmax” is used for classification in the output layer. For one-dimen-

sional and two-dimensional CNN, a dropout layer is added after the first layer to prevent

overfitting.

The training accuracies of the two different pieces of training are shown in Tables 6

and 7, respectively. It can be seen from Tables 6 and 7 that with the increase in the number

of training times and the ratio of input, the accuracy of training can reach more than 99%

in the end. This shows that according to the characteristics of the environment, there must

be more than a certain amount of data collected in order to have good training results. As

shown in Tables 6 and 7, the two-dimensional CNN model is more accurate after training,

both in terms of packet traffic and feature training, named traffic model and feature

model, respectively hereafter, so it will be used as the identification model for the practical

validation.

Table 6. Accuracy for NN, 1D CNN, and 2D CNN trained by using packet traffic dataset.

Model
Number of Training

10 50 100 150 200

NN 49.9% 83.7% 99.2% 99.1% 99.0%

1D CNN 50.9% 53.4% 98.8% 99.1% 99.1%

2D CNN 15.4% 43.0% 99.3% 99.2% 99.5%

Table 7. Accuracy for NN, 1D CNN, and 2D CNN trained by using packet feature dataset.

Model
Number of Training

10 20 30 40 50

NN 58.0% 86.0% 98.9% 99.3% 99.7%

1D CNN 93.5% 95.5% 99.7% 99.8% 99.8%

2D CNN 97.4% 99.5% 99.8% 99.8% 99.8%

Both the correct rate and loss rate of the two-dimensional CNN for the traffic model

and feature model is shown in Figures 18 and 19, respectively.

(a) (b)

Figure 18. (a) Accuracy rate; (b) Loss rate of the two-dimensional CNN for the packet traffic model.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 17 of 19

Figure 18. (a) Accuracy rate; (b) Loss rate of the two-dimensional CNN for the packet traffic

model.

(a) (b)

Figure 19. (a) Accuracy rate, (b) loss rate of the two-dimensional CNN for the packet feature

model.

In this paper, we use a trained two-dimensional CNN model for real experiment ver-

ification. The data collection server IP1 is subjected to normal transmission, SYN flood

attack, UDP flood attack, ICMP flood attack, and MIX flood attack, respectively, and the

number and feature of packets flowing through IP1 are collected. It will be sent to the edge

computing computer through IP2 to identify the current situation of the server by using a

trained model. The edge computing computer will preprocess the received data and input

them into the traffic model and feature model, respectively, for identification. The final

identification result is obtained by combining the obtained identification rates and their

weights. Considering that the data of the packet traffic dataset may be affected by the

increasing number of users in the IoT, and the features captured will not be able to identify

because the data captured is too small, this paper gives the traffic model and feature

model the weights of 70% and 30% respectively, as the basis for judging the identification

results.

Table 8 lists the identification results on the edge computer when measured under

different conditions, in which Feature is the identification result of the feature model, Flow

means the identification result of the traffic model, and Weighted is the identification re-

sult after individual weighting on the two models. According to the table, the proposed

architecture of edge computing with a trained CNN model can make correct identifica-

tions under the normal transmission, SYN flood attack, UDP flood attack, ICMP flood

attack, and MIX flood attack, respectively. Even in the lack of packets case during normal

transmission, the feature model cannot recognize it normally, but the traffic model can

still recognize it when the data is rare. Since the traffic model accounts for 70% of the

weight, the weighted identification result is normal. The above experimental results are

mainly because this system adopts two independent two-dimensional CNN models

trained by the packet traffic dataset and packet features dataset, respectively, and recog-

nizes the existing situation of the system at the same time and then adds appropriate

weights to them as a basis for judgment. This design can maximize the use of information

about changes in related characteristics when packets are transmitted in the system, which

can effectively improve the accuracy of recognition and make up for the shortcomings of

using a single model for judgment.

Figure 19. (a) Accuracy rate, (b) loss rate of the two-dimensional CNN for the packet feature model.

Table 8 lists the identification results on the edge computer when measured under
different conditions, in which Feature is the identification result of the feature model, Flow
means the identification result of the traffic model, and Weighted is the identification
result after individual weighting on the two models. According to the table, the proposed
architecture of edge computing with a trained CNN model can make correct identifications
under the normal transmission, SYN flood attack, UDP flood attack, ICMP flood attack, and
MIX flood attack, respectively. Even in the lack of packets case during normal transmission,
the feature model cannot recognize it normally, but the traffic model can still recognize it
when the data is rare. Since the traffic model accounts for 70% of the weight, the weighted
identification result is normal. The above experimental results are mainly because this
system adopts two independent two-dimensional CNN models trained by the packet traffic
dataset and packet features dataset, respectively, and recognizes the existing situation of the
system at the same time and then adds appropriate weights to them as a basis for judgment.
This design can maximize the use of information about changes in related characteristics
when packets are transmitted in the system, which can effectively improve the accuracy of
recognition and make up for the shortcomings of using a single model for judgment.

Appl. Sci. 2022, 12, 12407 17 of 18

Table 8. Time interval identification under the normal transmission, SYN flood Attack, UDP flood
Attack, ICMP flood Attack, and MIX flood Attack.

Condition Feature Flow Weighted

Normal Transmission
(lack of packets) Lack data Normal Normal

Normal Transmission Normal Normal Normal
SYN Flood Attack SYN Flood SYN Flood SYN Flood
UDP Flood Attack UDP Flood UDP Flood UDP Flood
ICMP Flood Attack ICMP Flood ICMP Flood ICMP Flood
MIX Flood Attack MIX Flood MIX Flood MIX Flood

Table 9 shows the time interval, named identification time, between Raspberry pi
transmitting the captured data to the edge computing computer and receiving the iden-
tification result returned by the edge computing computer. From this table, it can be
concluded that the identification time does not cause the system identification delay due to
the DDoS attack.

Table 9. The identification time under the normal transmission, SYN flood Attack, UDP flood Attack,
ICMP flood Attack, and MIX flood Attack.

Condition Identification Time (s)

Normal Transmission 8.12
SYN Flood Attack 8.00
UDP Flood Attack 8.72
ICMP Flood Attack 8.12
MIX Flood Attack 8.17

5. Conclusions

This paper proposes a DDoS attack detection system based on edge computing. The
edge computing computer in this system uses a trained two-dimensional CNN model to
identify whether the data collection server in the IoT is under a DDoS attack and how the
attack is conducted, and immediately notify the data collection server to reduce the impact
of DDoS attacks on the data transmission in the IoT system.

The proposed DDoS detection system can be built properly without changing the
original IoT hardware structure due to adopting the edge computing architecture. In
addition, two two-dimensional CNN models trained by packet traffic and packet features
data, respectively, are used simultaneously to identify DDoS attacks that can effectively
improve the accuracy of identification. However, the two-dimensional CNN models only
trained for usual DDoS attacks will cause reducing the accuracy of identification for new
types of DDoS attacks. Moreover, the datasets used in the experiments in this paper were
completely captured from the experimental network, which will result in the result of
the paper falling into a special case. Thus, using an open dataset to verify this system is
necessary for the future.

Author Contributions: Conceptualization, S.-H.L., C.-H.C. and Y.-F.H.; Investigation, Y.-H.L., Y.-L.S.,
and C.-H.C.; Methodology, S.-H.L., C.-H.C., Y.-H.L. and Y.-F.H.; Software, Y.-L.S., Y.-H.L. and C.-H.C.;
Validation, C.-H.C.; Supervision, C.-H.C. and Y.-F.H.; Writing—original draft, Y.-L.S., S.-H.L. and
C.-H.C.; Writing—review and editing, S.-H.L., C.-H.C. and Y.-F.H. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology (MOST), R.O.C. grant
number MOST 111-2221-E-324-018 and MOST-111-2637-E-150-001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2022, 12, 12407 18 of 18

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ziaei, M.; Zamani, B.; Bohlooli, A. A Model-Driven Approach for IoT-Based Monitoring Systems in Industry 4.0. In Proceed-

ings of the 2020 4th International Conference on Smart City, Internet of Things and Applications (SCIOT), Mashhad, Iran,
16–17 September 2020; pp. 99–105. [CrossRef]

2. Mirkovic, J.; Prier, G.; Reiher, P. Attacking DDoS at the source. In Proceedings of the 10th IEEE International Conference on
Network Protocols, Paris, France, 12–15 November 2002; pp. 312–321. [CrossRef]

3. Wang, S.; Gomez, K.; Sithamparanathan, K.; Asghar, M.R.; Russello, G.; Zanna, P. Mitigating DDoS Attacks in SDN-Based IoT
Networks Leveraging Secure Control and Data Plane Algorithm. Appl. Sci. 2021, 11, 929. [CrossRef]

4. Lin, H.-C.; Wang, P.; Lin, W.-H.; Huang, Y.-H. A Multiple-Swarm Particle Swarm Optimisation Scheme for Tracing Packets Back
to the Attack Sources of Botnet. Appl. Sci. 2021, 11, 1139. [CrossRef]

5. Yan, Q.; Huang, W.; Luo, X.; Gong, Q. A multi-level DDoS mitigation framework for the industrial Internet of Things. IEEE Comm.
Mag. 2018, 56, 30–36. [CrossRef]

6. Rodrigues, B.; Bocek, T.; Lareida, A. A blockchain-based architecture for collaborative DDoS mitigation with smart contracts. In
Proceedings of the IFIP International Conference on Autonomous Infrastructure, Management and Security, Zurich, Switzerland,
10–14 July 2017; Springer: Cham, Switzerland, 2017; pp. 16–29.

7. Hinton, G.E.; Osindero, S.; Teh, Y. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527–1554. [CrossRef]
8. Doriguzzi-Corin, R.; Millar, S.; Scott-Hayward, S.; Martínez-del-Rincón, J.; Siracusa, D. Lucid: A Practical, Lightweight Deep

Learning Solution for DDoS Attack Detection. IEEE Trans. Netw. Serv. Manag. 2020, 17, 876–889. [CrossRef]
9. Manimurugan, S.; Al-Mutairi, S.; Aborokbah, M.M.; Chilamkurti, N.; Ganesan, S.; Patan, R. Effective Attack Detection in Internet

of Medical Things Smart Environment Using a Deep Belief Neural Network. IEEE Access 2020, 8, 77396–77404. [CrossRef]
10. Roopak, M.; Tian, G.Y.; Chambers, J. Deep Learning Models for Cyber Security in IoT Networks. In Proceedings of the 2019

IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019;
pp. 0452–0457. [CrossRef]

11. Alzahrani, R.J.; Alzahrani, A. Security Analysis of DDoS Attacks Using Machine Learning Algorithms in Networks Traffic.
Electronics 2021, 10, 2919. [CrossRef]

12. Ali, M.H.; Jaber, M.M.; Abd, S.K.; Rehman, A.; Awan, M.J.; Damaševičius, R.; Bahaj, S.A. Threat Analysis and Distributed Denial
of Service (DDoS) Attack Recognition in the Internet of Things (IoT). Electronics 2022, 11, 494. [CrossRef]

13. Evmorfos, S.; Vlachodimitropoulos, G.; Bakalos, N.; Gelenbe, E. Neural network architectures for the detection of SYN flood
attacks in IoT systems. In Proceedings of the 13th International Conference on Pervasive Technologies Related to Assistive
Environments, Corfu, Greece, 30 June–3 July 2020; pp. 1–4. [CrossRef]

14. Asad, M.; Asim, M.; Javed, T.; Beg, M.O.; Mujtaba, H.; Abbas, S. Deepdetect: Detection of distributed denial of service attacks
using deep learning. Comput. J. 2020, 63, 983–994. [CrossRef]

15. Sudharsan, B.; Sundaram, D.; Patel, P.; Breslin, J.G.; Ali, M.I. Edge2Guard: Botnet attacks detecting offline models for resource-
constrained IoT devices. In Proceedings of the 2021 IEEE International Conference on Pervasive Computing and Communications
Workshops and other Affiliated Events (PerCom Workshops), Kassel, Germany, 22–26 March 2021; pp. 680–685. [CrossRef]

16. Jia, Y.; Zhong, F.; Alrawais, A.; Gong, B.; Cheng, X. FlowGuard: An intelligent edge defense mechanism against IoT DDoS attacks.
IEEE Internet Things J. 2020, 7, 9552–9562. [CrossRef]

17. Su, J.; Vasconcellos, D.V.; Prasad, S.; Sgandurra, D.; Feng, Y.; Sakurai, K. Lightweight classification of IoT malware based on image
recognition. In Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo,
Japan, 23–27 July 2018; Volume 2, pp. 664–669. [CrossRef]

18. Jing, H.; Wang, J. Detection of DDoS Attack within Industrial IoT Devices Based on Clustering and Graph Structure Features.
Secur. Commun. Netw. 2022, 9. [CrossRef]

19. Vormayr, G.; Zseby, T.; Fabini, J. Botnet Communication Patterns. IEEE Commun. Surv. Tutor. 2017, 19, 2768–2796. [CrossRef]
20. Najafimehr, M.; Zarifzadeh, S.; Mostafavi, S. A Hybrid Machine Learning Approach for Detecting Unprecedented DDoS Attacks.

J. Supercomput. 2022, 78, 8106–8136. [CrossRef] [PubMed]
21. Ravi, N.; Shalinie, S.M. Learning-Driven Detection and Mitigation of DDoS Attack in IoT via SDN-Cloud Architecture. IEEE

Internet Things J. 2020, 7, 3559–3570. [CrossRef]
22. Sahi, A.; Lai, D.; Li, Y.; Diykh, M. An Efficient DDoS TCP Flood Attack Detection and Prevention System in a Cloud Environment.

IEEE Access 2017, 5, 6036–6048. [CrossRef]

http://doi.org/10.1109/SCIOT50840.2020.9250202
http://doi.org/10.1109/ICNP.2002.1181418
http://doi.org/10.3390/app11030929
http://doi.org/10.3390/app11031139
http://doi.org/10.1109/MCOM.2018.1700621
http://doi.org/10.1162/neco.2006.18.7.1527
http://doi.org/10.1109/TNSM.2020.2971776
http://doi.org/10.1109/ACCESS.2020.2986013
http://doi.org/10.1109/CCWC.2019.8666588
http://doi.org/10.3390/electronics10232919
http://doi.org/10.3390/electronics11030494
http://doi.org/10.1145/3389189.3398000
http://doi.org/10.1093/comjnl/bxz064
http://doi.org/10.1109/PerComWorkshops51409.2021.9431086
http://doi.org/10.1109/JIOT.2020.2993782
http://doi.org/10.1109/COMPSAC.2018.10315
http://doi.org/10.1155/2022/1401683
http://doi.org/10.1109/COMST.2017.2749442
http://doi.org/10.1007/s11227-021-04253-x
http://www.ncbi.nlm.nih.gov/pubmed/35017789
http://doi.org/10.1109/JIOT.2020.2973176
http://doi.org/10.1109/ACCESS.2017.2688460

	Introduction
	Scenarios of DDoS Attack
	Network Bandwidth Consumption DDoS Attacks
	User Datagram Protocol (UDP) Flood Attack
	Internet Control Message Protocol (ICMP) Flood Attack
	Teardrop Attack

	System Resource Consumption DDoS Attacks
	Synchronize (SYN) Flood Attack
	Local Area Network Denial (LAND) Attack
	DNS Flood Attack

	System Model
	Experimental Hardware and Environment Architecture
	Training Dataset and Model Training
	Packet Traffic Capture Dataset
	Packet Features Capture Dataset

	IoT Architecture
	DDoS Attack Architecture
	System Detection Architecture

	Results and Discussion
	Conclusions
	References

