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Featured Application: Local anode effects occur more frequently in large-scale aluminum elec-
trolysis cell systems. But the existing equipment can only detect global anode effects, which
resulting in instability and high energy consumption in the aluminum electrolysis production
process. This work is mainly used in the prediction of local anode effect. Through the prediction
of anode effect, manual intervention can be carried out in advance, which can effectively avoid
the occurrence of unnecessary anode effect, thereby improving the stability of the production
system and reducing the DC power consumption of the system.

Abstract: A method of local anode effect prediction is proposed for the problem that it is difficult to
detect the local anode effect in large aluminum reduction cell in real time. Firstly, a fuzzy classification
of local anode effect prediction in terms of fuzziness level is proposed considering various working
conditions of anode current in the region. Secondly, a current volatility detection method based on
time-sliding window density is designed from the problem of uneven current distribution in the
region, and the anode currents in the region are classified and tracked for prediction according to
the different current volatility. Thirdly, an improved Gated Recurrent Unit (GRU) neural network
structure is proposed to improve the prediction accuracy of fluctuating currents. Finally, simulation
experiments are conducted based on actual data, and compared with Long Short-Term Memory
(LSTM) and Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), the proposed
method has certain advantages in both prediction time, training time, and the mean absolute error
(MAE) and mean square error (MSE), which verifies the effectiveness of the proposed method.

Keywords: aluminum electrolysis; local anode effect prediction; neural network; time series
tracking prediction

1. Introduction

Anode effect prediction is one of the research focuses in the production of modern
aluminum electrolysis industry. Anode effect is a special phenomenon in the production
process of aluminum electrolysis. If the anode effect occurs in one or some anodes, the
voltage and anode current density on these anodes will rise sharply in a short time, resulting
in a decrease in the current efficiency and a shortened life of the aluminum electrolytic
cell. In addition, the anode effect will produce two kinds of perfluorocarbon gases, CF4
and C2F6, with strong greenhouse effect, which have a global warming potential 6630 and
11,100 times higher than that of CO2 [1]. Therefore, the earlier detection of anode effect for
reducing its number has important theoretical value and practical significance.

In the last few years, the research on anode effect mostly focused on the prediction
of global anode effect, due to the small scale of aluminum electrolytic cell. The current
detecting methods for the occurrence of anode effect is to monitor the changes of cell
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voltage and cell resistance. Until now, the direct prediction of anode effect is not realized
in industrial production [2]. In literature [3], a model was proposed to extract the fault
signatures of anode effect based on the combination of digital filter and local mean de-
composition, which lays the foundation for anode effect prediction. Zhou et al. [4] used
generalized regression neural network to identify and simulate the cell voltage before
and after the anode effect of aluminum electrolytic cell. After training and verifying the
model with field data samples, the occurrence of anode effect can be predicted online about
half an hour in advance. Yang et al. [5] proposed a robust dictionary learning method,
which improved the fault detection rate of anode effect and reduced the false alarm rate.
In literature [6], a nonlinear process anode effect monitoring method was proposed based
on Kernel dictionary learning algorithm. Chen et al. [7] proposed a data fusion algorithm
based on collaborative prediction model to predict the global anode effect by using the
similarity search principle. Yin et al. [8] excavated the key feature information of the anode
effect by constructing a stacked denoising autoencoder, and sorted the key features by
the random forest algorithm to solve the problem of uneven sample distribution in the
prediction of the anode effect. At the same time, the Long Short-Term Memory (LSTM)
neural network was used to predict the global anode effect. The above research was aimed
at the prediction of global anode effect. Due to the violent reaction when the global anode
effect occurs, a large number of bubbles overflow, and the slot controller alarms, which
is convenient for observation and recording. At present, the study of global anode effect
based on data-driven has been relatively mature, and the prediction point of global anode
effect can be advanced to about 20 min. Neural network, machine learning, and other
methods are used to predict the occurrence of anode effect, which is feasible and accurate.

With the development of computer technology and the improvement of the production
process of aluminum electrolytic cell, the aluminum electrolytic cell is gradually developing
towards large scale [9], which leads to the difficulty of controlling the production of
aluminum electrolysis. In addition, because of the increasing scale of the cell, the key
parameters of the aluminum electrolytic cell are unevenly distributed, and the local anode
effect happened frequently. The occurrence of local anode effect often precedes the global
anode effect. The effective prediction of local anode effect is conducive to preventing the
occurrence of global effect. Therefore, with the development of large-scale electrolytic
cell, the prediction of local anode effect has gradually become the focus of research. Ding
et al. [10] proposed the distribution of alumina concentration in the feeding process based
on the finite element mechanism analysis, however the finite element algorithm takes a
long time to calculate. So it will take a long time to get the training data, and it is not
feasible to predict the anode effect. Wong et al. [11] obtained the influence of fluoride
bubbles on the cell voltage by simulating the equivalent circuit of aluminum electrolytic
cell, and then predicted the occurrence of local anode effect. By analyzing the distributed
anode current, Håkon [12] divided the anode effect into conventional anode effect and
low-voltage anode effect according to the cell voltage setting threshold of 8 V. The detection
of low-voltage anode effect is analyzed by monitoring the non-uniformity of the current
distribution of the anode rod, which proves the feasibility of the distributed anode rod
current to predict the anode effect. Aiming at the problem of uneven alumina concentration
distribution in large-scale aluminum reduction cells, Zhang et al. [13] proposed the idea of
uniform alumina concentration control based on single point feeding and combined with
the effect prediction system based on anode current distribution, which greatly reduces
the probability of anode effect in the in aluminum reduction cells. By analyzing the
power spectrum of the distributed anode rod current, Cui et al. [14] divided the aluminum
reduction cell into areas, and determined the occurrence of local anode effect by setting
the current fluctuation threshold. Yang et al. [15] developed a low-voltage anode effect
prediction method based on the periodic average current deviation ratio by averaging the
distributed anode current in time windows, and proposed a multi-point feeding strategy
based on the probability distribution of low-voltage anode effects.
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Due to the complex on-site environment of high temperature, high magnetism and
multi-field coupling in the aluminum electrolysis industry and the complex physicochem-
ical process reaction in the cell, it is difficult to achieve online real-time measurement of
alumina concentration, the core parameter that reacts to local anodic effect. While dis-
tributed current, as an important parameter affecting the occurrence of anode effect, can
be collected in real time. By tracking and predicting the fluctuation of anode current data,
the occurrence time and intensity of local anode effect can be effectively predicted, so as to
prevent the occurrence of global effect through reasonable and effective measures.

This paper proposes a prediction method of local anode effect of aluminum reduction
cell based on distributed current fluctuation detection. Firstly, through the analysis of the
aluminum electrolysis production process, a current fluctuation detection method based
on the density of the time sliding window is designed to detect the fluctuation of anode
current. Secondly, according to the difference of current fluctuation, the anode current in
the area is classified and predicted. The Gated Recurrent Unit-Long Short-Term Memory
(GRU-LSTM) hybrid neural network is used to track and predict the anode rod current
with fluctuation, and the Autoregressive Integrated Moving Average (ARIMA) algorithm
is used to track and predict the anode rod current without fluctuation. The occurrence time
and intensity of local anode effect are given by combining these two algorithms. Finally,
the local anode effect prediction simulation experiment is carried out based on the actual
industrial aluminum plant data.

Innovations: (1) The local anode effect is predicted, and the fuzzification level classi-
fication of the local anode effect prediction is proposed. (2) A current volatility detection
method based on time-sliding window density is designed to classify and track the predic-
tion of anode current in the region according to the current volatility.

2. Aluminum Electrolysis Process and Anode Effect Analysis
2.1. Aluminum Electrolysis Production Process

The purpose of aluminum electrolysis is to obtain high purity aluminum. In the
modern aluminum electrolysis industry, the Hall-Eruit method is still the main method
due to its wide applicability and ease of operation. Pre-baked aluminum reduction cells are
widely used in modern aluminum electrolysis. The structure diagram is shown in Figure 1.
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Figure 1. Structure diagram of modern aluminum reduction cell.

The entire production process of aluminum electrolysis is carried out in the aluminum
electrolytic cell. The raw material for production is aluminum oxide powder, the electrolyte
is molten cryolite, and the anode material is carbon. Under the action of high temperature
and direct current, reaction occurs in the cell, and aluminum liquid is produced at the
cathode. After processing, aluminum liquid is made into various aluminum products.
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2.2. Analysis of Anode Effect

Anode effect is a special phenomenon when carbon anode is used in molten salt
electrolysis. When the concentration of locally dissolved aluminum oxide in the aluminum
reduction cell is insufficient (<1%) or the local current density of the anode increases to
its critical current density, the anode effect starts on several separate anodes locally and
gradually spreads to the whole cell over time [16].

With the development of large-scale aluminum reduction cells, the problem of uneven
distribution of parameters gradually appears in aluminum reduction cells. Therefore, the
concentration of aluminum oxide is too low in local areas. Then the current of one or
two local anodes fluctuates and slowly affects the nearby anodes, after which the anode
effect occurs in one or two local anodes, which is called local anode effect. The generation
of fluorinated gas makes the contact between several local anodes and the electrolyte
worse, thus seriously increasing the local anode resistance. The current is transferred to
other anodes of the electrolytic cell, resulting in the increase of current density on other
anodes. When the critical current density is exceeded, the anode effect also occurs on
other anodes, and the anode effect spreads in the electrolytic cell, eventually leading to the
global anode effect [17,18]. Therefore, the local anode effect often precedes the global anode
effect. So effective prediction of the local anode effect is conducive to preventing the global
anode effect.

3. Anode Rod Sequence Fluctuation Detection Algorithm Based on Sliding Window

The current 400 kA aluminum electrolytic cell has six feeding points evenly distributed
over the space, and each port has the greatest impact on the nearest surrounding area. In
order to reduce the time and computational effort in the process of tracking and predicting
the distributed anode current sequence, the 400 kA aluminum electrolytic cell is divided
into six areas according to the feeding point, as shown in Figure 2. Each area contains
four anode rods on the A side and four on the B side. The current sequence of each area is
divided into several window current segments through the sliding window [19], and the
current of each sliding window is analyzed to monitor the current fluctuation.
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Figure 2. Partition diagram of anode rod of 400 kA aluminum reduction cell.

3.1. Sliding Window Current Series Segmentation

First, current sequence data was segmented by sliding window, and set the current
sequence as:

Ianode = (i(t1), i(t2), i(t3), i(t4), · · · i(tn)) (1)

where, Ianode is current data of the acquisition point at each time, and t1 − tn represents the
time. In the current sequence, a fixed length sliding window m(m� n) is used for sliding
segmentation of the current sequence. The principle is shown in Figure 3. The window
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moves backward one step length l for each sliding, and slides (n−m)/l times to form
(n−m)/l + 1 subsequences.

Appl. Sci. 2022, 12, 12403 5 of 17 
 

where, anodeI  is current data of the acquisition point at each time, and 1 nt t−  represents 

the time. In the current sequence, a fixed length sliding window ( )m m n  is used for 
sliding segmentation of the current sequence. The principle is shown in Figure 3. The win-
dow moves backward one step length l  for each sliding, and slides ( )n m l−  times to 

form ( ) 1n m l− +  subsequences. 

 
Figure 3. Principle of current sequence sliding window. 

Assuming one of the subsequences is ( )( )1 1jY j n m l≤ ≤ − + , the slope between 
any two adjacent data points in the subsequences can be calculated according to Formula 
(2): 

( ) ( ) ( )
1

1
, 2j j

i
i i

Y i Y i
k i m

t t −

− −
= ≤ ≤

−
 (2)

In this time window jY , there are 1m−  slopes of adjacent current data. meanK  is 
the average of the current slope of the time window, while c  is the average of the current 
data within the time window. The window length m , the average slope value meanK , 

and the average value c form an array ( ), ,j meanX m K c . Then, the current sequence slid-
ing window data is analyzed, and its fluctuation is determined by the standard deviation 
and the change in the slope of the window data. 

3.2. Fluctuation Monitoring of Current Sequence 
To better monitor the fluctuation of the current sequence, the classification monitor-

ing is performed by setting the distance radius threshold of the slope confidence interval 
to determine whether the time series produces fluctuations, and let the distance radius 

jd  of the slope confidence interval of the j -th sub-time window current sequence jY  
be: 

2
j j

jd
θ θ−

=  (3)

2

j
j js Z

l α

σ
θ = +  (4)

2

j
j js Z

l α

σ
θ = −  (5)

where, jθ  is the upper confidence limit; jθ  is the lower confidence limit. js  is the 

mean slope of the current sequence of the j -th sub-time window; jσ  is the mean 

square deviation of the current sequence slope of the j -th sub-time window; Z  is the 

Figure 3. Principle of current sequence sliding window.

Assuming one of the subsequences is Yj(1 ≤ j ≤ (n−m)/l + 1), the slope between
any two adjacent data points in the subsequences can be calculated according to Formula (2):

ki =
Yj(i)−Yj(i− 1)

ti − ti−1
, (2 ≤ i ≤ m) (2)

In this time window Yj, there are m− 1 slopes of adjacent current data. Kmean is the
average of the current slope of the time window, while c is the average of the current data
within the time window. The window length m, the average slope value Kmean, and the
average value c form an array Xj(m, Kmean, c). Then, the current sequence sliding window
data is analyzed, and its fluctuation is determined by the standard deviation and the change
in the slope of the window data.

3.2. Fluctuation Monitoring of Current Sequence

To better monitor the fluctuation of the current sequence, the classification monitoring
is performed by setting the distance radius threshold of the slope confidence interval to
determine whether the time series produces fluctuations, and let the distance radius dj of
the slope confidence interval of the j-th sub-time window current sequence Yj be:

dj =

∣∣∣θ j − θ j

∣∣∣
2

(3)

θ j = sj +
σj√

l
Z α

2
(4)

θ j = sj −
σj√

l
Z α

2
(5)

where, θ j is the upper confidence limit; θ j is the lower confidence limit. sj is the mean slope
of the current sequence of the j-th sub-time window; σj is the mean square deviation of
the current sequence slope of the j-th sub-time window; Z is the standard normal distri-
bution; α is the confidence level, which is used to improve or reduce the sensitivity of the
confidence interval.

After obtaining its confidence interval radius, the fluctuation threshold is set to β

according to the historical current fluctuation. If dj > β, the current sequence of sub-time
window is judged to fluctuate, and the serial number j of the fluctuating sub-time window
is output.

In order to further improve the detection rate, the density difference between the array
matrix Xi(m, Kmean, c) and ten adjacent sliding windows (select the first five and the last
five of the current windows) is compared. If there are more densities similar to this current
sequence, the smaller the probability of its generation fluctuations. The array density
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of sliding windows and the distance between different sliding windows are somewhat
correlated. For example, the time window object X1 and X2 define its distance as:

d(X1, X2) =

√
(m1 −m2)

2 + (Kmean1 − Kmean2)
2 + (c1 − c2)

2

3
(6)

Then the fluctuation monitoring algorithm process is:
STEP1: Select ten sliding windows;
STEP2: For the sliding window, the attainable density lrdk(X) is calculated according

to Equation (7):

lrdk(X) =
|Nk(X)|

∑o∈Nk(X) reachdist(X, o)
(7)

where, |Nk(X)| is the number of sub time series in the neighborhood of the k-th distance
of sub window object X (expressed as k-distance(X), where distance(X) is calculated by
Formula (8)), Nk(X) is the set of sub-time window objects in the neighborhood of the k-th
distance of sub-time window object X, and o is an element of it. The k-th distance neighborhood
is defined as the set of objects whose distance between the selected sample space and object
X is less than or equal to k-distance(X). reachdist(X, o) = max{k-distance(o), ‖X− o‖} is the
maximum value of the k-th distance of sub-time window o and the distance between sub-time
window object o and sub-time window object X.

STEP3: Calculate the ratio LOFk(Xi) of the mean value of reachable density of the
ten neighboring sub-time-window objects X to the local reachable density of object Xi as
shown in Formula (8):

LOFk(Xi) =

1
|Nk(Xi)|∑o∈Nk(Xi)

lrdk(Xi)

lrdk(Xi)
(8)

STEP4: The calculated results are compared with 1. The closer the reachable density
ratio is to 1, the closer the density is, the more stable the current sequence remains; and the
greater the calculation result is than 1, the greater the difference between it and the mean
of the attainable density of the time window of the nearest neighbor, and the stronger the
fluctuation of the current sequence. The current fluctuation intensity can be determined by
the parameter LOFk(Xi).

STEP5: Through the comprehensive results of the comparison between the distance
radius of the slope confidence interval of the current sequence Yj of the sub-time window
and the threshold value and the density comparison between the array matrix and the
adjacent ten sliding windows (select the first five and the last five of the current windows),
it is shown whether current fluctuations occur and the their intensity of current fluctuations.

4. Prediction of Local Anode Effect Based on Analysis of Anode Guide
Current Fluctuation

The above method is used to detect the anode current fluctuation in different areas
of the aluminum electrolytic cell. If current fluctuation is detected in an anode rod of the
electrolytic cell, the current of eight anode rods in the current fluctuation area is tracked and
predicted. The anode rods in this area are divided into two groups, non-fluctuation anode
rods and fluctuation anode rods, according to the current fluctuation detection results.
The ARIMA model is used to track and predict the current of non-fluctuation anode rods
in this area, GRU-LSTM hybrid neural network is used to track and predict the current
of fluctuating anode rods, and the predicted value Tp at the moment of anode effect is
determined from the current tracking results of fluctuation anode rods, and the local anode
effect level is determined according to the number of changes from non-fluctuation anode
rods to fluctuation anode rods and violently fluctuating guides predicted by the ARIMA
model within Tp. The flow diagram of local anode effect prediction based on fluctuating
anode current detection is shown in Figure 4.
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STEP1: The current sequence data of eight anode rods in one of areas is obtained
by dividing the areas according to the electrolytic cell structure. The current sequence is
divided by a sliding window. The current sequence fluctuation detection algorithm is used
to detect its fluctuation and locate the anode rod where the current fluctuation occurs.

STEP2: For the fluctuation detection results in STEP1, the GRU-LSTM hybrid neural
network is used to track and predict the current of the fluctuating anode rod in this area,
and the predicted value of the strong fluctuation current determines the strong fluctuation
occurrence time Tp (fluctuating anode rod→ strong fluctuating anode rod); the AMIRA
model is used to track and predict the current of the non-fluctuating anode rod in this
area. According to the prediction results, the number N of the anode rod changing from
non-fluctuating to fluctuating and strong fluctuating in Tp time is determined.

STEP3: The time Tp in STEP2 is taken as the prediction value of the time when the
anode effect occurs, and the local anode effect level is divided according to the number N
of new fluctuation anode rods and strong fluctuation anode rods.

4.1. Prediction of Fluctuating Anode Current Based on GRU-LSTM Hybrid Neural Network

In order to predict the current of the fluctuating anode rod, a new prediction method
based on GRU-LSTM hybrid neural network model is proposed. The LSTM and Gated
Recurrent Unit (GRU) networks have been widely used in the field of time series detection.
They are suitable for tracking and predicting the fluctuating current series and can be used
as the prediction model of the fluctuating anode rod current.

The LSTM is a variant of Recurrent Neural Network (RNN) [20] that adds long-term
data memory units to the network structure, while setting the gate function to determine
the amount of memory and forgetting of historical information. The gated neuron structure
is shown in Figure 5. When the neuron is at time t, ht−1 is the output of the previous
neuron, and xt is the input of the neuron at time t. And ht is the output of the neuron.
Three gate states are included to determine the memory and forgetting of information.
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4.1.1. Forget Gate

The forget gate is used to discard the unimportant information in the neuron, and its
function realization process is:

The neuron output ht−1 at the t − 1 time and the current time input xt are input into
the sigmoid function, and the activation function will output the weight value (0–1). The
output value (0–1) indicates that the state information of the previous neuron has been
forgotten to the extent of memory. And 0 means abandoned and 1 means reserved. The
output of the forget gate is as shown in Equation (9):

ft = σ
(
Wf[ht−1,xt] + bf

)
(9)

where, Wf is the weight value of the forget gate, bf represents the threshold value of the
forget gate, σ is the sigmoid activation function, and [ht−1, xt] is the vector matrix of the
neuron state and time at the previous moment.

4.1.2. Memory Gate

[ht−1,xt] will also be used as input while entering the calculation of the forget gate.
The neuron state information at time t is calculated through the tanh activation function,
and the information to be updated is obtained by Hadamard product of the neuron state at
moment t with it. As shown in Equation (10) and Equation (11), Wi and Wc respectively
represent the weight of the memory gate, and bi, bc respectively represent the bias of
different states of the memory gate.

it = σ(Wi[ht−1,xt] + bi) (10)

¯
Ct = tanh(Wc[ht−1,xt] + bc) (11)

GRU is a member of the Recurrent Neural Networks (RNN) family. Compared with
LSTM, GRU can also solve the problem of gradient saturation in the memory and back
propagation of historical data, which are common in RNN. However, due to its simplified
structure, the neuron parameters are much less than LSTM, and only a gated unit is used to
perform the operation of forgetting and selective memory of historical data. The structure
of gated neuron is shown in Figure 6.
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The output of GRU reset data gate and GRU update gate are as follows:

rt = σ(Wr[ht−1,xt] + br) (12)

zt = σ(Wz[ht−1,xt] + bz) (13)

where, rt is the output of GRU reset data gate; Wr is the weight matrix of reset gate; ht−1,
xt constitute the vector of the neuron hidden layer and the data input layer, which is
continuously updated with the input; br is the bias matrix; zt is the output of GRU update
gate; Wz is the weight matrix of the update gate. It is calculated by sigmoid function to
narrow the output values to (0–1).

ht
′ = tanh(Wh[rt � ht−1, xt] + bh) (14)

where, ht
′ is the neuronal state at time t; Wh is the weight update matrix of neuronal state;

� is Hadamard product; bh is the bias matrix of neuronal state; the neuronal state is limited
to (−1,1) by hyperbolic tangent function.

hi = zi � hi−1 + (1− zi)� hi
′ (15)

where, ht
′ is calculated by Equation (14). As can be seen from the above formula, the

output of the update gate strictly controls the retention or not of the information flow of the
previous state in the neuron, with zi varying between (0–1) [21], to ensure that the control
output is the ratio of the state of the unit at the previous moment to the unit input being
input, to achieve the memory of important information, forgetting the inputs that have
less impact on the neuron unit, and to constantly update the parameter architecture of the
neuron hidden layer.

Since the training time of LSTM network is slightly longer, in order to improve the
training speed of neural network and realize online current tracking, the advantages of
LSTM and GRU networks are combined, and LSTM and GRU are combined by full link to
form a current prediction model to achieve fast current tracking and high accuracy at the
same time. The occurrence point of strong fluctuation of anode current can be determined
in advance by current tracking, which can be used as the prediction value of the occurrence
time of anode effect.

It is defined that the strong fluctuation current value of anode current is equal
to or greater than 1.5 times of the average value of 20 current sampling values before
the fluctuation [22]:

Its ≥ 1.5×
∑

tp
tp−20 It

20
(16)

where: tp is the time point when strong current fluctuation is detected, and Its is the strong
current fluctuation value; It is the current sampling value.
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According to (16) the current data before the time point when the strong fluctuation
current Its of the anode is detected in advance is input into the GRU-LSTM hybrid neural
network for training and learning. The GRU-LSTM hybrid neural network after training
is used to track and predict the anode rod that has fluctuated, and the value of strong
fluctuation current Its and the time of strong fluctuation tp are obtained as the predicted
value of the time when the anode effect occurs.

4.2. Tracking Prediction of Non-Fluctuating Anode Current Based on ARIMA Model

The local anode effect occurs 5–15 min before the current fluctuation of one or several
guide rods. But under the working condition that the local alumina concentration of the
contact part between the anode rod and the electrolyte decreases (according to expert
experience [16], when the aluminum concentration is lower than 1.5%, the electrolyte
balance will be broken, and the anode effect is early to occur), it takes some time to spread
to other nearby anode rods. So tracking the current changes of other anode rods in the
same area that have not yet fluctuated will provide an important reference for anode
effect prediction.

The differential ARIMA model is an algorithm for forecasting short-term, medium, and
long-term time series information [23]. ARIMA(p, d, q) model is essentially a combination
of difference operation and ARIMA(p, q) model. The basic process is as follows: first, the
obtained time series data are checked for stationarity, and then the non-stationary time
series data is converted into the stationary time series data by the d-difference operation;
then, the order of stationary time series data are determined and the parameters are
estimated to obtain the values of p, q; finally, ARIMA(p, q) model is used to predict the
time series.

Considering the algorithm computation, operability, real-time and other factors, if the
anode rod current is detected to fluctuate, the ARIMA model is used to track and predict
the current of the anode guide rods that do not fluctuate in the area where the anode rods
are located. First, the stationary data is obtained by performing d-difference operation
on the obtained time series current; after that, the ARIMA(p, q) is fitted to a fixed order
to determine the p and q parameters; then, the ARMA model is used to track the current
sequence of the anode rod without fluctuation and output the current prediction value for
a certain time in the future. If the error between the current prediction value and the actual
current is greater than the set threshold value, it is considered that the current of the anode
rod tracked has fluctuated; finally, the local anode effect level is determined according to
the number of non-fluctuating anode rods changing into fluctuating anode rods in this
area.

The ARMA model of the original anode rod current after stationarity treatment is
as follows:

It = ϕ1 It−1 + ϕ2 It−2 + · · ·+ ϕp It−p + εt − θ1εt−1 − · · · − θqεt−q (17)

where, It is the original anode rod current signal; p, q is the order of ARMA model,
which is determined by the autocorrelation coefficient and partial correlation function
of the sequence; ϕp, θq are the model coefficient; εt is the mean square error of the
current sequence.

4.3. Local Anode Effect Level Strategy

According to the current prediction results of the non-fluctuated anode rods by (17)
and the current prediction results of the fluctuated anode rods by the GRU-LSTM hybrid
neural network, the prediction results of the local anode effect are jointly determined. At
the same time, in order to reduce the false alarm rate, the local anode effect level is fuzzified
and divided into three levels: I, II and III, which respectively represent that:

I: the current prediction value of fluctuating anode rod is greater than the set threshold,
and the predicted value of non-fluctuating anode rod current is less than the set threshold α;
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II: The predicted value of the current of the fluctuating anode rod is greater than the
set threshold, and the predicted value of the current of 1–3 non-fluctuating anode rods in
the area is greater than the set threshold α;

III: The predicted value of the current of the fluctuating anode rod is greater than the
set threshold, and the predicted value of the current of the 4–7 non-fluctuating anode rods
in the area is greater than the set threshold α. It is shown in Figure 7.

Appl. Sci. 2022, 12, 12403 11 of 17 
 

Considering the algorithm computation, operability, real-time and other factors, if 
the anode rod current is detected to fluctuate, the ARIMA model is used to track and pre-
dict the current of the anode guide rods that do not fluctuate in the area where the anode 
rods are located. First, the stationary data is obtained by performing d-difference opera-
tion on the obtained time series current; after that, the ( ),ARIMA p q  is fitted to a fixed 
order to determine the p  and q  parameters; then, the ARMA model is used to track 
the current sequence of the anode rod without fluctuation and output the current predic-
tion value for a certain time in the future. If the error between the current prediction value 
and the actual current is greater than the set threshold value, it is considered that the cur-
rent of the anode rod tracked has fluctuated; finally, the local anode effect level is deter-
mined according to the number of non-fluctuating anode rods changing into fluctuating 
anode rods in this area. 

The ARMA model of the original anode rod current after stationarity treatment is as 
follows: 

1 1 2 2 1 1t t t p t p t t q t qI I I Iϕ ϕ ϕ ε θ ε θ ε− − − − −= + + + + − − −   (17)

where, tI  is the original anode rod current signal; p , q  is the order of ARMA model, 
which is determined by the autocorrelation coefficient and partial correlation function of 
the sequence; pϕ , qθ  are the model coefficient; tε  is the mean square error of the cur-
rent sequence. 

4.3. Local Anode Effect Level Strategy 
According to the current prediction results of the non-fluctuated anode rods by (17) 

and the current prediction results of the fluctuated anode rods by the GRU-LSTM hybrid 
neural network, the prediction results of the local anode effect are jointly determined. At 
the same time, in order to reduce the false alarm rate, the local anode effect level is fuzzi-
fied and divided into three levels: I, II and III, which respectively represent that: 

I: the current prediction value of fluctuating anode rod is greater than the set thresh-
old, and the predicted value of non-fluctuating anode rod current is less than the set 
threshold α ; 

II: The predicted value of the current of the fluctuating anode rod is greater than the 
set threshold, and the predicted value of the current of 1–3 non-fluctuating anode rods in 
the area is greater than the set threshold α ; 

III: The predicted value of the current of the fluctuating anode rod is greater than the 
set threshold, and the predicted value of the current of the 4–7 non-fluctuating anode rods 
in the area is greater than the set threshold α . It is shown in Figure 7. 

Local anode effect level

Local anode effect 
level I

Local anode effect 
level II

Local anode effect 
level III

Synthetic forecast results based on 
ARIMA model and hybrid neural 

network model

Non-fluctuation anode rod prediction 
less than the set threshold α

1-3 non-fluctuation anode rod 
prediction greater than the set 

threshold α

4-7 non-fluctuation anode rod 
prediction greater than the set 

threshold α

 
Figure 7. Levels of local anode effect. Figure 7. Levels of local anode effect.

5. Experimental Verification
5.1. Data Acquisition

To predict the local anode effect, it is necessary to obtain the current data of aluminum
electrolysis anode rod. The research group has designed a distributed anode current
monitoring system for aluminum reduction cell for data acquisition, transmission, storage,
and display. The system block diagram is shown in Figure 8. The anode current collector
can collect the anode current in real time and monitor the ambient temperature in real
time to ensure its good operating conditions, and it supports RS-485 communication. Each
aluminum reduction cell contains 48 anode rods, and each anode rod is equipped with an
anode current collector, which can monitor the current of each anode rods in real time. The
intelligent gateway is the core part of the whole system, on the one hand, it receives and
processes the instructions issued by the monitoring platform, coordinates each collector
to complete the data collection, on the other hand, collects and stores the data collected
by each collector and uploads it to the monitoring platform for real-time display. At the
same time, the intelligent gateway has the function of interface conversion, and supports
GPRS, 4G, WIFI, RS-485 and other communication methods. The monitoring platform is
a man-machine interaction platform, which modifies the measurement parameters and
receives the data sent by the intelligent gateway and displays them on the screen of the
electric control cabinet. After many improvements and long-term debugging, it has been
running stably for half a year in an electrolytic aluminum plant in southwest China, with
good monitoring effect. The anode current collector takes into account the inherent noise
of the circuit and external interference noise. After calibration, the measurement error in
the actual field is 1.4% ∼ 3.2%.



Appl. Sci. 2022, 12, 12403 12 of 16

Appl. Sci. 2022, 12, 12403 12 of 17 
 

5. Experimental Verification 
5.1. Data Acquisition 

To predict the local anode effect, it is necessary to obtain the current data of alumi-
num electrolysis anode rod. The research group has designed a distributed anode current 
monitoring system for aluminum reduction cell for data acquisition, transmission, stor-
age, and display. The system block diagram is shown in Figure 8. The anode current col-
lector can collect the anode current in real time and monitor the ambient temperature in 
real time to ensure its good operating conditions, and it supports RS-485 communication. 
Each aluminum reduction cell contains 48 anode rods, and each anode rod is equipped 
with an anode current collector, which can monitor the current of each anode rods in real 
time. The intelligent gateway is the core part of the whole system, on the one hand, it 
receives and processes the instructions issued by the monitoring platform, coordinates 
each collector to complete the data collection, on the other hand, collects and stores the 
data collected by each collector and uploads it to the monitoring platform for real-time 
display. At the same time, the intelligent gateway has the function of interface conversion, 
and supports GPRS, 4G, WIFI, RS-485 and other communication methods. The monitoring 
platform is a man-machine interaction platform, which modifies the measurement param-
eters and receives the data sent by the intelligent gateway and displays them on the screen 
of the electric control cabinet. After many improvements and long-term debugging, it has 
been running stably for half a year in an electrolytic aluminum plant in southwest China, 
with good monitoring effect. The anode current collector takes into account the inherent 
noise of the circuit and external interference noise. After calibration, the measurement er-
ror in the actual field is 1.4% 3.2% . 

 
Figure 8. Block diagram of distributed anode rod current monitoring system for aluminum reduc-
tion Cells. 

Nine groups of global anode effect data of #2832 aluminum reduction cell were col-
lected from 27 September 2020 to 1 April 2021, including the occurrence time, and anode 
rod current data 40 min before and 20 min after the occurrence. The occurrence time of 
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reduction Cells.

Nine groups of global anode effect data of #2832 aluminum reduction cell were
collected from 27 September 2020 to 1 April 2021, including the occurrence time, and anode
rod current data 40 min before and 20 min after the occurrence. The occurrence time of
anode effect is shown in Table 1, where the local anode effect area and the position of
fluctuating anode rod are determined by current fluctuation detection.

Table 1. 9 groups of anode effect data.

Number Area AE Time Position

1 Area1 27 September 2020/13:25:15 B3
2 Area3 15 October 2020/16:14:30 A12
3 Area6 3 November 2020/8:34:16 B22
4 Area1 25 November 2020/18:28:45 A2
5 Area4 6 December 2020/11:13:15 A15
6 Area2 3 January 2021/13:25:32 B6
7 Area4 12 February 2021/14:33:15 B14
8 Area5 18 February 2021/19:41:15 A19
9 Area1 15 March 2021/06:25:15 A2

5.2. Simulation Experiment

LSTM, Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) and
improved GRU-LSTM hybrid neural networks are respectively used to track and predict
the current of fluctuating anode rods in each area, and determine the predictive value of the
occurrence time of anode effect. As can be seen from the third part of the paper, the whole
aluminum reduction cell is divided into six areas, and in order to compare the fluctuation
of current prediction in each area, a fluctuating anode rod is selected in each region for
current tracking prediction. In order to compare the differences between several methods
more clearly, a local zoomed-in view of the prediction results is pointed out with arrows in
the figure. The predicted results of anode rod current fluctuation are shown in Figure 9.
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Figure 9. Prediction diagram of fluctuating current in 6 areas of aluminum reduction cell.

According to the comparison of the three methods in subfigures a–f, the prediction
curves of GRU-LSTM hybrid neural networks are closer to the actual current fluctuation
in each area of the aluminum reduction cell. In addition, the enlarged area guided by the
arrow in Figure 9a can be reflected more clearly. After testing, the time set to 50 rounds of
training is reduced to 2.4 s, and this is quicker than another two methods. Taking area 1 as
an example, the prediction time is analyzed. According to the current prediction results
of fluctuating anode rods B3 in area 1 in Figure 9a, the ARIMA model is used to predict
the current of seven non-fluctuating anode rods in area 1. The current prediction of eight
anode rods in area 1 is shown in Figure 10.
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Figure 10. Area 1 anode rod current fluctuation diagram.

Figure 10(A1) shows the comparison between the actual current situation of A1 anode
rod in region 1 and the results predicted by ARIMA model. Figure 10(A2–A4,B1–B4)
indicate the same meaning. It can be seen from Figure 10 that the ARIMA model can
effectively predict the current of non-fluctuating anode rod, with consistent prediction
trend and small prediction error. Combined with the prediction results of fluctuating anode
rod current, the prediction time of anode effect can be advanced to 5–10 min.

In order to quantify the prediction results, Table 2 shows the mean absolute error
(MAE) and mean square error (MSE) of the prediction results of the three methods in six
areas of the aluminum reduction cell.

Table 2. 6 areas MAE, MSE of three models.

Area Model MAE MSE

Area1
LSTM 1.2834 10.7425

CNN-LSTM 1.6688 7.2261
GRU-LSTM 0.7674 5.3984

Area2
LSTM 1.7317 11.0440

CNN-LSTM 1.0992 7.7306
GRU-LSTM 0.6360 4.9796

Area3
LSTM 2.3139 10.5886

CNN-LSTM 2.1652 7.1304
GRU-LSTM 0.7543 5.2048

Area4
LSTM 1.3038 11.4501

CNN-LSTM 1.6883 7.4859
GRU-LSTM 1.0851 5.2771

Area5
LSTM 2.0312 11.7961

CNN-LSTM 1.7280 7.9029
GRU-LSTM 0.6182 5.4486

Area6
LSTM 1.5773 10.2655

CNN-LSTM 1.8256 7.1738
GRU-LSTM 0.4752 5.1290

It can be seen from Table 2 that compared with LSTM and CNN-LSTM networks, the
MAE of GRU-LSTM network is reduced by 0.9014 and 0.5162 on average, and the MSE is
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reduced by 5.344 and 2.128 on average, and the prediction results of fluctuating anode rod
current in six areas are more accurate.

According to the criteria for determining the anode effect level proposed in this paper,
the local anode effect level of nine groups of anode effects is shown in Table 3, which is
basically consistent with the industrial field conditions.

Table 3. Local anode effect level.

Number Area N Level

1 Area1 0 I
2 Area3 5 III
3 Area6 3 II
4 Area1 2 II
5 Area4 1 II
6 Area2 6 III
7 Area4 2 II
8 Area5 7 III
9 Area1 2 II

6. Conclusions

A local anode effect prediction method is proposed through the study of the fluctuation
detection and prediction of anode rod current. The fluctuation of real-time current is
monitored using the density test method with time-sliding window, and the improved
GRU-LSTM neural network model and ARIMA algorithm are used to predict the current of
fluctuating and non-fluctuating anode rod, respectively. A local anode effect level strategy
based on the anode rod current prediction is proposed from the mechanism of local anode
effect occurrence. Thus, we can better detect different anode rods current conditions and
more accurately predict the arrival time and level of the anode effect, so that we can be
more fully prepared for the appearance of the anode effect or have more sufficient time
to take corresponding measures to avoid the occurrence of the anode effect. Simulation
experiments based on actual industrial aluminum plant data advance the local anode effect
prediction time to 5–10 min. Compared with LSTM and CNN-LSTM networks, the GRU-
LSTM network is more accurate in predicting anode current and can effectively predict
the occurrence of anode effect. The research in this paper is based on the anode effect
prediction problem in large-scale aluminum electrolytic cells, which provides another new
option for solving the anode effect prediction problem and lays the foundation for future
research on active anode effect extinction work. It contributes to the smooth operation of
aluminum electrolytic cells, green operation, and reduction of resource waste.
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