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Abstract: At present, static text passwords are still the most widely-used identity authentication
method. Password-generation technology can generate large-scale password sets and then de-
tect the defects in password-protection mechanisms, which is of great significance for evaluating
password-guessing algorithms. However, the existing password-generation technology cannot ignore
low-quality passwords in the generated password set, which will lead to low-efficiency password
guessing. In this paper, a password-generation model based on an ordered Markov enumerator
and critic discriminant network (OMECDN) is proposed, where passwords are generated via an
ordered Markov enumerator (OMEN) and a discriminant network according to the probability of
the combination of passwords. OMECDN optimizes the performance of password generation with
a discriminative network based on the good statistical properties of OMEN. Moreover, the final
password set is formed by the selected passwords with a higher score than the preset threshold,
which guarantees the superiority of the hit rate of almost all ranges of combinations of passwords
over the initial password set. Finally, the experiments show that OMECDN achieves a qualitative
improvement in hit rate metrics. In particular, regarding the generation of 107 passwords on the
RockYou dataset, the matching entries of the password set generated by the OMECDN model are
25.18% and 243.58% higher than those generated by the OMEN model and the PassGAN model,
respectively.

Keywords: password generation; ordered Markov enumerator; discriminant network; password sets;
password selection

1. Introduction

At present, password-based identity authentication is one of the most popular authen-
tication methods; however, the use of passwords is not always secure. Generally, people
are used to setting short passwords or character sequences that are easy to remember [1,2],
such as “123456”. In addition, due to the endowment effect [3], even people with high-
security Markov awareness still use weak passwords. In this regard, many researchers
have proposed password setting strategies [4–8] to help users set passwords that are easy
to remember but difficult to guess.

Research on password strategy and password security, such as detecting the defects of
existing user password-protection mechanisms, requires large-scale password plaintext
samples. However, it is difficult to completely describe the real-world password plaintext
situation accurately. Therefore, password-generation technology to generate large-scale
password sets is currently a widely-applied method.

In the available studies [9,10], a situation can be observed where models based on
statistical methods can generate a password set according to the usage probability of
passwords and place the more commonly-used passwords at the front to speed up password
cracking, which does not accurately reflect the distribution feature of the original password
set when the generated quantity is large.
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Although models based on neural networks can accurately reflect the distribution
characteristics of the original password set, the performance of the password generator
decreases with the increase of training rounds [11], which means that the repetition rate of
passwords becomes higher. These two types of situations will reduce the quality of the pass-
word set and further reduce the efficiency of password cracking engineering. In particular,
it is observed that the advantages of these two types of models are complementary.

Aiming at the above-mentioned problems, we considered that, if two models with
different characteristics can be integrated, the impacts of these shortcomings will be weak-
ened or even eliminated, which means the password-generation model itself will be greatly
improved. Accordingly, a password-generation model based on as ordered Markov enu-
merator and critic discriminant network (OMECDN) is proposed, where passwords are
generated via an ordered Markov enumerator (OMEN) and a discriminant network accord-
ing to the probability of the combination of passwords. First, the OMEN model generates
a password set. Passwords are combined, scored, and filtered by a discriminative neural
network. Then, the final password set is formed by the selected passwords with a higher
score than a preset threshold.

For instance, in the case of the generation of 107 passwords, the matching entries of
the password set generated by the OMECDN model on the RockYou dataset were 25.18%
higher than those of the OMEN model and 243.58% higher than those of the PassGAN
model, respectively. The main work and contributions are as follows:

(1) A password generation selection model is proposed, which is based on an ordered
Markov enumerator and a critic discriminant network. Accordingly, the password
set generated by this model has features of both the above methods: it can be ranked
according to the password combination probability, and it can match the password
distribution of the real password set.

(2) Compared with the existing GAN-based methods, OMECDN sorts according to
the probability of password combination, which can remedy the problem of the
repetition rate.

(3) Experimental results show that OMECDN achieved a qualitative improvement in hit
rate metrics compared to its base model.

2. Related Work

Password guessing research can be divided into online guessing and offline guessing
according to whether it interacts with the server, and wandering guessing and targeted
guessing according to whether the user’s personal information is used in the guessing
process. The current mainstream wandering-guessing algorithms include Markov-based
algorithms, PCFG-based algorithms, and neural-network-based algorithms.

In 2005, Narayanan et al. [12] used the Markov model to model a password dataset,
which laid the foundation for follow-up research. In 2009, Weir et al. [13] proposed
Probabilistic Context-Free Grammar (PCFG). This research provided the foundation for
subsequent research on password templates.

Neural-network-based password generation research began earlier; however, it was
slow to develop and did not receive much attention [14]. It was not until 2016 that the use of
neural networks to research password security became a focus. In 2016, Melicher et al. [15]
used recurrent neural network technology to conduct password generation and password
strength evaluation research, and subsequent studies [16–18] were based on this research.

In 2019, Hitaj et al. [11] proposed a PassGAN neural network password-guessing
method based on a generative adversarial neural network, and subsequent studies [19,20]
were based on this model. Zhang et al. [21] used multiple criteria to evaluate the per-
formance of multiple password guessing attack models. Experimental data showed that,
when the number of guesses was the same, the password-guessing method combined by
the two methods performed better than a single method. Combination method password
guessing research has also become a focus of current research.
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The above-mentioned password-generation model belongs to the category of wander-
ing attacks, and the attacker does not conduct password guessing attacks against specific
users. Another type of password-generation method focuses on specific user information.
The attack scenario is often an online password guessing attack, with restrictions, such as
the number of guesses. It is more stringent and belongs to the category of online targeted
attacks as documented in [22–24] Password-generation model.

Regarding previous password generation research, [9–11], in this paper, we high-
light and analyze the ordered Markov enumerator (OMEN) model [9] and the PassGAN
model [11], which are password-generation methods based on traditional Markov chains
and a generative adversarial network (GAN) [25], respectively. The starting point of the
OMEN model is that high-probability passwords are ranked in front of the password set to
accelerate password cracking.

The experiments show that the passwords generated by OMEN are arranged in the
order of the combined probability of the character sequence. In addition, the passwords
generated by the PassGAN model possess the distribution features of the original password
set. Based on the existing research, we attempt to find a better password-generation method,
e.g., to analyze the complementary advantages that can be better utilized.

3. Password Generation Selection Model
3.1. Overview of Method

We built a model from the perspective of filtering low-quality passwords (belonging
to the category of offline walk attacks). This is because existing password-generation
models use or combine multiple techniques to generate large-scale password sets, which
also produce a large number of low-quality passwords (which makes password guessing
less efficient).

A password generation and selection model was instantiated and named the OMECDN
model. The schematic diagram of OMECDN model training and password generation is
shown in Figure 1.

Dataset
Discriminator

Discriminator

Markov

Enumerator

Noise Genenator

Password 

set

Feed

Generate passwords 

in order

Generate fake passwords

Feed real passwords

Train Markov

Enumerator

Generate 

passwords 

Figure 1. OMECDN framework.

As shown in Figure 1, the PassGAN neural network and the ordered Markov enu-
merator are trained with the same dataset. The OMECDN model uses the discriminator
of the generative adversarial network as the password selection module to implement the
algorithm, and the generator network is discarded. We use the ordered Markov enumerator
to generate candidate password sets and apply the discriminator network to the candidate
password set generated by the ordered Markov password enumerator to obtain the corre-
sponding scores. Using the OMECDN model selection score, the passwords whose scores
are greater than or equal to the threshold constant constitute the final password set.
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3.2. Password Generation Selection Model

The ordered Markov enumerator (OMEN) was chosen as the password generation
module to implement the algorithm. To better understand the generation process of the
candidate password set, the relevant theoretical knowledge is supplied. OMEN generates
a combined password according to the probability of occurrence of multiple N-gram
character sequences. The higher the probability, the higher the output of the combined
password. The specific method is to use Equation (1) to convert all N-gram sequence
probabilities pi into discrete integers leveli, a fixed interval

leveli = round(log(c1 · pi + c2)) (1)

where c1 and c2 are selected constants and round is the rounding function.
The concept of storing N-gram sequence heaps with the same level value is introduced,

and the N-gram sequences are stacked according to the level value [9]. Using select N-gram
sequences from different heaps to form password X makes the sum of the level values of
the combined password equal to H(X) and the length of the combined password equal to l.
Adjusting H(X) and l can achieve the purpose of controlling the output of the generated
combined password on the order of the probability of the combined password. The OMEN
model generated password set DOMEN can be expressed as

DOMEN =
{

X : ‖X‖ ∈ Z[0,L], H(X) ∈∏[level0, levelall]
}

(2)

where ‖X‖ ∈ Z[0,L] is the combined password length and H(X) is the sum of the level value
of the combined password. Assuming that the maximum value of the generated password
set length l is L, the sum of all level values is levelall, and the minimum level is level0.

The process of the PassGAN neural network discriminator for the candidate password
set password X generated by OMEN to calculate the score S can be described as

S = fGAN−D(X) (3)

where fGAN−D is the PassGAN discriminator neural network.
Combining Equations (2) and (3), the password set DOMECDN generated by the

OMECDN model is expressed as

DOMECDN = {X : X ∈ DOMEN, fGAN−D(X) ≥ γ} (4)

where the range of X is referenced to Equation (2), the constant γ is determined experimen-
tally (more details about γ are described in Algorithm 1), and the number of generated
passwords for the target is prepared.

Algorithm 1: The OMECDN model generation password algorithm
Count = 0

WHILE Count < targetCount:
FOR each Password X IN DOMEN:

IF fGAN−D(X) ≥ γ:
Output X
Count = Count+1

ELSE:
CONTINUE

END IF
END FOR

END WHILE
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The trained ordered Markov password enumerator is used to generate candidate
password sets. The generation process is to traverse each heap according to the level value
and find substring sequences from these heaps to combine passwords to generate combined
passwords. The calculation of the password score is shown in Equation (3), and the process
of selecting a password based on the score is shown in Figure 2.

Yes

No
Candidate

password


set X


Final

password


set


Discard

password


set


PassGAN

discriminator


fGAN-D

fGAN-D(x) < γ ?

Figure 2. The password choosing procedure of OMECDN.

The candidate password set X is used as the input of the PassGAN model discriminator
fGAN−D to obtain the score S. The score S and the threshold constant γ are judged, and the
passwords greater than or equal to the threshold constant γ are selected to form the final
password set.

4. Experiment Design

This section contains three parts to evaluate the principles, data, and preparatory
experiments. Password generation experiments are performed on the OMEN model and
PassGAN model, and some of the features they exhibit are analyzed to better understand
the comparison objects of the experiments in the evaluation experiments in the next section.

4.1. Principles of Evaluation

The password generation selection instantiation model OMECDN proposed in this
chapter belongs to the offline walking password attack model and does not pay attention
to specific users and specific identity information.

Evaluating the effectiveness of the OMECDN model is used to calculate the hit rate
(Hit_rate) of the final password set on the test set. The calculation method is shown as

Hit_rate =
Hit

Testing_count
∗ 100% (5)

where Hit is the hit frequency of the generated password set in the test set and Testing_count
is the number of passwords in the test set. For example, if 100 passwords are generated, 30
will appear in the test set, and there are 1000 passwords in the test set. In this instance, the
generated password hit rate is 3%.

The experiment also counts the repetition rate (Repetition) of the PassGAN model.
The calculation method of the repetition rate is shown as

Repetition =
Hit−Hitunique

MaxTry
∗ 100% (6)

where Hit is the number of hits of the generated password set in the test set, Hitunique is
the number of remaining passwords in the hit test set to delete duplicate passwords, and
MaxTry is the maximum number of generated passwords. For example, if 100 passwords
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are generated, 50 will appear in the test set, and 20 passwords will remain after the repetition
is deleted. The password repetition rate generated in this case is 30%.

The OMECDN model method has a password selection process, and the password hit
rate (Hit_rate) calculation method is calculated as

Hit_rate =
Hit fGAN−D(X) ≥ γ

Testing_count
∗ 100 (7)

In contrast to using Equation (5) to calculate the hit rate, OMECDN only considers
passwords whose scores in the candidate password set are greater than or equal to the
threshold γ. This decision was determined from the experiments, and the choice of thresh-
old can continue to preserve the well-performing generation results in OMEN. This will be
explained in detail in Section 5.

4.2. Data Preprocessing

The password dataset is preprocessed as follows:

(1) Delete repeated passwords in the dataset.
(2) Delete passwords containing characters in the illegal character set in the dataset. The

legal character set is “qwertyuiopasdfghjklzxcvbnmQWERTYUI-
OPASDFGHJKLZXCVBNM1234567890˜!@#$%ˆ&*()_+-=[]{};’":,.<>/?|\”.

(3) The PassGAN neural-network model requires 10 characters for the length of the
input password sequence; thus, delete passwords with a length greater than 10 in
the dataset.

(4) Disrupt the sequence of passwords in the dataset.
(5) After processing the dataset according to the above process, divide each dataset into a

training set and a test set according to the ratio of 4:1.

4.3. Environment and Dataset

The experimental software and hardware environment are shown in Table 1.

Table 1. Hardware and software environment.

Operating system Microsoft Windows 10.0.18363.1082
CPU Intel Core i7-9700 CPU @ 3.00 GHz 3.00 GHz
GPU NVIDIA GeForce RTX 2070 SUPER

CUDA version Release 10.1, V10.1.243
Storage NVMe GALAX TA1H0240N 240G

A total of four leaked password datasets were collected. Table 2 summarizes the
number of passwords contained in these leaked password datasets and the source of the
password sets.

Table 2. Leaked password dataset information.

Dataset Name Passwords De-Duplicated
Passwords Source

Yahoo 453,492 342,515 Raidforums
12306 131,653 117,768 Raidforums
CSDN 6,428,630 4,034,934 Raidforums

RockYou 32,602,881 14,344,391 Skullsecurity 1

1 https://wiki.skullsecurity.org/Passwords, accessed on 15 June 2022.

4.4. Features of OMEN Model

According to the content described in Section 3, we fed the Rockyou training set to the
OMEN model for learning. After the N-gram sequence level value was counted, we used

https://wiki.skullsecurity.org/Passwords
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the content to generate a candidate password set, where the N-gram sequence values of N
are 2, 3, 4, and 5, respectively. The purpose of this experiment is to search for the best N
value and calculate the hit rate of the OMEN model on the Rockyou test set. The hit rate is
shown in Figure 3.

1×105 1×106 1×107 1×108 1×109

10
6

Figure 3. The hits of OMEN models.

In the legend in Figure 3, OMEN2gram indicates that N in the N-gram of the OMEN
model is set to 2. Other legends are similar. The experimental results show that, when N in
the OMEN model N-gram was 5, the OMEN model had the best hit performance.

Blase Ur et al. [26] argued that password-guessing algorithms based on Markov
models are more efficient than PCFG-based guessing algorithms for cracking. For important
improvements of the PCFG approach, such as the GENPass [27] model (PCFG + LSTM (PL)
approach), there are no relevant experiments to reproduce the specific process, and thus no
comparison with the work in this paper is reflected.

4.5. Features of PassGAN

The PassGAN neural-network model was trained with the same Rockyou training
set of the trained ordered Markov enumerator. The experiment changed the maximum
character sequence length (Sequence_length) and the number of training rounds (Iterations)
for comparison experiments. The hit situation of the PassGAN neural-network model is
shown in Figure 4.

1×105 1×106 1×107 1×108 1×109

10
5

Figure 4. The hits of PassGAN models.

In the legend in Figure 4, m10i200000 means that the maximum sequence length
(Sequence_length) of the PassGAN neural-network model is 10, and the maximum number
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of training rounds (iterations) is 200,000. Other legends are similar. The results show that,
when the maximum sequence length of the PassGAN neural-network model is 10, and the
maximum number of training rounds is 200,000, the PassGAN neural-network model has
the best hit performance.

Combining Figures 3 and 4, it can be seen that the PassGAN model hit rate is worse
than the OMEN model. One of the reasons is that the PassGAN model generates duplicate
passphrases. Therefore, according to Equation (5), the PassGAN model duplication rate is
statistically analyzed, and the results are shown in Figure 5.

1×105 1×106 1×107 1×108 1×109

Figure 5. Effects of training rounds on the repetition rate of PassGAN.

Combining Figures 4 and 5, the following conclusions are drawn. When the number
of training rounds was taken as 400,000 and the maximum character sequence length was
19, the password repetition rate reached 50.60% in the case of 109 generated passwords.
The PassGAN model reflects the feature that the password repetition rate increases with
the number of generated passwords for seven different parameter cases. However, the
performance of the PassGAN model generator does not increase but becomes worse as the
number of training rounds and the maximum character sequence length increase, while the
repetition rate increases with the number of training rounds.

In fact, the best performance of the generator was reached at about 200,000 training
rounds, and this decreased as the number of training rounds rose. In the subsequent
training, the discriminator has the advantage of obtaining a network with a similar structure
to the generator (which better reproduces the distribution of the original dataset) while
discarding the function of generating duplicate passphrases.

5. Results

Through the preparatory experiments in the previous section, some features in the
OMEN model and PassGAN model are verified, which aids in understanding the experi-
ments on OMECDN in this section.

Similarly, hit rate test experiments were conducted on OMECDN to observe how
OMECDN performs under different datasets and concerning different models, and the
conclusions indicate how much superiority OMECDN has compared to the reference
experiments. Further, the implications of the threshold selection in OMECDN are analyzed
to verify the feasibility of the OMECDN screening process.

5.1. OMECDN Model Evaluation

We used the OMEN-5gram model trained in Section 4 as the password generation
module implementation algorithm in the password generation selection model and the
PassGAN neural-network model discriminator trained in Section 4 as the password selec-
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tion module implementation algorithm in the password generation selection model to form
the OMECDN model. The score thresholds γ were set to −1.2, −1.3, and −1.4, respectively.
According to Algorithm 1, the password set was generated, and the password set generated
by the OMECDN model was compared with the Rockyou test set according to Equation (7).
The results are shown in Figure 6.

1×105 1×106 1×107 1×108 1×109

10
6

Figure 6. The hit rate amounts for the three models.

In the legend in Figure 6, OMECDNn5i200000s13 represents the implementation of
the password generation module of the OMECDN model. In the N-gram of OMEN, N is 5,
the number of training rounds is 200,000, and the score threshold constant γ is −1.3. The
other legends are also the same. The results show that, when the number of training rounds
was 400,000 and the score threshold constant γ was set to −1.3, the OMECDN model had
the highest hit rate when the same number of password sets were generated. The specific
numbers of hits of the three models are shown in Table 3.

Table 3. Hits of the three models.

Guesses

Models Improvement

OMEN
(Hit_Rate)

PassGAN
(Hit_Rate)

OMECDN
(Hit_Rate)

(OMECDN-OMEN)/OMEN
∗ 100%

(OMECDN-PassGAN)/
PassGAN ∗ 100%

105 10,045 (0.51%) 1146 (0.06%) 11,272 (0.57%) 12.22% 883.60%
106 53,257 (2.69%) 10,539 (0.53%) 60,123 (3.04%) 12.89% 470.48%
107 199,507 (10.09%) 72,691 (3.68%) 249,750 (12.63%) 25.18% 243.58%
108 526,296 (26.62%) 264,978 (13.40%) 559,439 (28.29%) 6.30% 111.13%
109 986,322 (49.88%) 555,724 (28.10%) 1,026,474 (51.91%) 4.07% 84.71%

Using the same experimental method, the password generation fitting experiment
was performed on the Yahoo, 12306, and CSDN datasets. In the case of generating 105 pass-
words, the password results are shown in Figure 7.

The experimental data of password generation and fitting of different datasets show
that, in the Rockyou, 12306, and CSDN datasets, OMECDNn5i200000s13 had the highest
hit rate, and, in the Yahoo dataset, OMECDNn5i200000s12 had the highest hit rate. In
summary, the OMECDN model performed better than the OMEN model and the PassGAN
model. The network model is a better password-generation model.
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Figure 7. The hit rate amounts of the three hit models for four datasets.

5.2. OMECDN Model Score Distribution

In Section 3.2, we introduced that OMEN realizes the generation of combined pass-
words based on the probability of multiple N-gram character sequences (the method is to
convert all N-gram sequence probabilities p into discrete fixed intervals). Understanding
this section of the interval helps to read the subsequent figures.

In this section, we analyze the distribution of teh password scores in the password
set generated by the password generation module algorithm in the OMECDN model. The
password scores are divided into 41 intervals, which are:

(−∞,−1.9], (−1.9,−1.8], (−1.8,−1.7], . . . , (1.8, 1.9], (1.9, 2.0], (2.0,+∞)

The first 40 intervals are half-open intervals. Except for the first interval and the last
interval, the length of each interval is 0.1. The OMECDN model counts and classifies the
passwords generated by OMEN into 41 intervals, and then calculates the efficiency of the
OMECDN model (E f f iciencyOMECDN) for each interval. The efficient calculation method
is shown in Equation (8).

E f f iciencyOMECDN =
Hit fGAN−D(X) ≥ −1.3

MaxTry fGAN−D(X) ≥ −1.3
∗ 100% (8)

Furthermore, the calculation method of the efficiency of the OMEN model (E f f iciencyOMEN)
is shown in Equation (9).

E f f iciencyOMEN =
Hit

MaxTry
∗ 100% (9)

In Equation (8), Hit fGAN−D(X) ≥ −1.3 represents the number of passwords in the
test set generated by the OMECDN model, and MaxTry fGAN−D(X) ≥ −1.3 represents the
number of passwords in the final password set of the OMECDN model. In Equation (9),
Hit is the number of hit passwords in the test set for the generated password set for the
OMEN model, and MaxTry is the total number of passwords generated for the OMEN
model. The statistical results of the password score distribution are shown in Figures 8–11.
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10
2

Figure 8. The distribution of 1 × 105 passwords scores generated by the OMECDN model.

10
3

Figure 9. The distribution of 1 × 106 passwords scores generated by the OMECDN model.

10
4

Figure 10. The distribution of 1 × 107 passwords scores generated by the OMECDN model.

In the password score distributions shown in Figures 8–11, the green line indicates
the efficiency of the OMEN model in generating the same number of passwords under
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the same training set and test set. The red line represents the efficiency of the OMECDN
model in different intervals when the same number of passwords are generated under the
same training set and test set. To better visualize the effects in the figures, we enlarged the
columns for the data of the frequency of hitting passwords.

10
6

Figure 11. The distribution of 1 × 108 passwords scores generated by the OMECDN model.

To facilitate readers to better understand these figures, we take Figure 8 as an example
for analysis. The abscissa represents the interval (it can be simply understood as these
discrete intervals corresponding to or correlating with the probability of the N-gram
character sequence in the Markov model). The side ordinate represents the password
frequency, the red bar corresponds to the password frequency of the OMECDN model in the
current interval, the blue bar corresponds to the number of missed passwords in the current
interval, and the sum of the heights of the red and blue bars is the current experiment.

The total number of password sets is 105 (for better visualization, we enlarged the
height of the red column accordingly, which does not affect the conclusion, and this is
enlarged by two times in Figure 8). After understanding the bar graph to indicate the
distribution of password scores, we continue to analyze the line graph. The ordinate on the
right represents the efficiency of the password guessing model. The calculation method was
introduced above. The green line corresponds to the OMEN model (as a reference). When
the red line is above the green line, it means that the OMECDN model is more efficient than
the OMEN model. It can be seen in Figure 9 that, on the right side of the interval “−1.1”,
the efficiency of the OMECDN model is almost better than that of the OMEN model.

From the password score distribution diagram, the PassGAN neural network discrim-
inator has a certain rule for the password output score distribution, and the hit password
score distribution is concentrated around −1.0 and 0.3. When it is greater than or equal
to the threshold constant −1.3, the OMECDN model is more efficient. Some intervals are
higher than the overall efficiency of the OMEN model, and thus the overall efficiency of the
OMECDN model is higher than the overall efficiency of the OMEN model. This proves
that an appropriate threshold constant was selected, and the performance of the OMECDN
model is better than that of the OMEN model. In a real-world scenario, the threshold can
be chosen flexibly to ensure the highest possible cracking efficiency. This also proves the
validity and feasibility of the password generation selection model.

6. Conclusions

The use of password-generation technology to generate large-scale password sets, to
detect the defects of existing user password-protection mechanisms, and to evaluate the
efficiency of password-guessing algorithms is important for studying password security.
Aiming at the research of password-generation technology, a password-generation model
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based on an ordered Markov enumerator and critic discriminant network (OMECDN) was
proposed in this paper. OMECDN optimizes the performance of password generation with
a discriminative network based on the good statistical properties of OMEN. Moreover, the
final password set was formed by the selected passwords with a higher score than the
preset threshold, which guarantees the superiority of the hit rate of almost all ranges of
combinations of passwords over the initial password set.

When 109 passwords were generated, the hit rate reached 51.91%, which is 4.07%
higher than the OMEN model and 84.71% higher than the PassGAN model. In the case
of generating 107 passwords, the password hit entries generated by the OMECDN model
were 25.18% higher than the password hit entries generated by the OMEN model and
243.58% higher than the password hit entries generated by the PassGAN model. The
OMECDN model is better than the OMEN model and the PassGAN model and is a better
password-generation model.

Future work can focus on the distribution of the score output by the neural-network
module. Studying the output of the neural-network module can discover the internal
working mode of the neural network and determine what kind of structure of password
score value can exceed the threshold. This will have a positive effect on improving the
research of password-construction strategies.

Author Contributions: Conceptualization, L.Z.; methodology, J.J.; software, J.J.; validation, J.J. and
L.L.; formal analysis, J.J.; investigation, L.L.; resources, L.Z.; data curation, L.L.; writing—original
draft preparation, J.J.; writing—review and editing, J.J.; visualization, L.L.; supervision, A.Z.; project
administration, A.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Sichuan Science and Technology Program under
Grant 2021YFG0159 & 2022YFG0171, in part by the Fundamental Research Funds for the Central
Universities 2021SCU12136.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, D.; Wang, P.; He, D.; Tian, Y. Birthday, name and bifacial-security: Understanding passwords of Chinese web users.

In Proceedings of the 28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA, USA, 14–16 August 2019;
pp. 1537–1555.

2. Zeng, J.; Duan, J.; Wu, C. Empirical study on lexical sentiment in passwords from Chinese websites. Comput. Secur. 2019,
80, 200–210. [CrossRef]

3. Renaud, K.; Otondo, R.; Warkentin, M. “This is the way ‘I’create my passwords”. . . does the endowment effect deter people from
changing the way they create their passwords? Comput. Secur. 2019, 82, 241–260. [CrossRef]

4. Guo, Y.; Zhang, Z.; Guo, Y. Optiwords: A new password policy for creating memorable and strong passwords. Comput. Secur.
2019, 85, 423–435. [CrossRef]

5. Siponen, M.; Puhakainen, P.; Vance, A. Can individuals’ neutralization techniques be overcome? A field experiment on password
policy. Comput. Secur. 2020, 88, 101617. [CrossRef]

6. Ye, B.; Guo, Y.; Zhang, L.; Guo, X. An empirical study of mnemonic password creation tips. Comput. Secur. 2019, 85, 41–50.
[CrossRef]

7. Yıldırım, M.; Mackie, I. Encouraging users to improve password security and memorability. Int. J. Inf. Secur. 2019, 18, 741–759.
[CrossRef]
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