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Abstract: In video object detection, the deterioration of an object’s appearance in a single frame
brings challenges for recognition; therefore, it is natural to exploit temporal information to boost
the robustness of video object detection. Existing methods usually utilize temporal information to
enhance features, often ignoring the information in label assignments. Label assignment, which
assigns labels to anchors for training, is an essential part of object detection. It is also challenged in
video object detection and can be improved by temporal information. In this work, a temporal-guided
label assignment framework is proposed for the learning task of a region proposal network (RPN).
Specifically, we propose a feature instructing module (FIM) to establish the relation model among
labels through feature similarity in the temporal dimension. The proposed video object detection
framework was evaluated on the ImageNet VID benchmark. Without any additional inference cost,
our work obtained a 0.8 mean average precision (mAP(%)) improvement over the baseline and
achieved a mAP(%) of 82.0. The result was on par with the state-of-the-art accuracy without using
any post-processing methods.

Keywords: video object detection; temporal-guided label assignment; feature instructing module

1. Introduction

Recently, object detection has made significant progress by relying on the fast develop-
ment of deep convolutional neural networks. However, object detection may fail due to the
deteriorated appearance of an object caused by issues such as motion blur, video defocus,
part occlusion, and rare poses in videos. Video object detection has emerged as a new area
in computer vision to address these problems.

Video contains inherent temporal information, which can boost the performance of
video object detection. Previous efforts in leveraging temporal information focused on
features. Some works exploit image-level feature information from other frames to improve
detection. Deep feature flow (DFF) [1], flow-guided feature aggregation (FGFA) [2], and
towards high performance (THP) [3] rely on external optical flow [4] guidance to compute
motion among frames on feature maps to boost performance or improve speed. Others [5–7]
are end-to-end without any guidance networks and may be more computationally efficient
or faster. Some other works have been conducted on the instance-level features after
the region proposal network. Sequence level semantics aggregation (SELSA) [8] selects
proposal features globally. Relation distillation networks (RDN) [9] distillates instance-level
features gradually using multiple stages. Hierarchical video relation networks [10] seek
richer semantic features, which are not limited to a certain video or local area. Temporal
ROI align (TROI) [11] proposes an alternative operator with temporal information for the
traditional region of interest (ROI) component; however, these methods only operate on
features, often ignoring the information in label assignments.

Label assignment is an essential part of object detection in training. Traditional
label assignment methods resort to manually predefined rules to sample the positive and
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negative locations. Some methods, such as RetinaNet [12] and the fully convolutional one-
stage object detector (FCOS) [13], rely on prior knowledge such as intersection over union
(IOU) and ground truth (gt) box locations for sampling. These methods rely on prior human
knowledge and cannot adapt to a variety of objects; therefore, dynamic label assignment
strategies have been proposed. GuidedAnchoring [14] and MetaAnchor [15] dynamically
change the anchor set during training. Feature selective anchor-free (FSAF) [16] method
presents an anchor-free branch for guiding label assignment; however, these methods still
somehow depend on prior knowledge. There are other methods that are completely data-
driven. Optimal transport assignment (OTA) [17] defines label assignment as an optimal
transfer problem (OT) from a global perspective. AutoAssign [18] treats all the locations
inside the gt boxes as positives and assigns weights for these locations. In AutoAssign,
the weights are the labels. Data-driven methods learn from data to adapt to the variance of
objects for label assignment; however, this kind of method is also challenged in video object
detection. These labels usually fail or underperform when there is a deterioration in the
appearance of objects. As shown in Figure 1, frame v is a blurred image, and the foreground
and background are easily confused, so its positive labels are also unfocused. Frame v

′
is a

clear image whose positive labels are focused. The unfocused labels are not conducive to
model training (the model has no bias towards positive and negative samples).

Figure 1. The visualization of the positive labels produced by our baseline (without temporal
information, which will be introduced in the experiment) for two frames. Frame v and frame v

′

belong to the same snippet. We only show the positive labels inside the gt box, and the positive labels
outside the gt box are all 0 (i.e., the samples outside the gt box cannot be positive samples).
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Specifically, we can resort to temporal information to deal with this issue. We operated
on labels generated by label assignment in the same way as features, i.e., we enhanced
labels in the temporal dimension. When an object’s appearance deteriorates, the labels can
be adjusted using the labels from other frames containing normal objects; this can correct
erroneous or poorly focused labels. Our work proposes a temporal-guided label assignment
framework that stabilizes the learning process of region proposal network (RPN). Specifi-
cally, we put forward a feature instructing module (FIM), which utilizes the similarity of
features at different locations to establish the relationship of the corresponding labels.

In summary, our contributions are three-fold:

• A temporal-guided label assignment framework is proposed. This framework utilizes
temporal information to improve the learning task of an RPN.

• We introduce a feature instructing module (FIM) that additionally uses feature in-
formation to establish the temporal relation model of labels and enhances the labels.
Features contain richer semantic information and can be used to effectively construct
the association of labels.

• Experimental results on the ImageNet VID dataset demonstrate that our proposed
framework is on par with state-of-the-art works with no extra inference cost compared
with our baseline.

2. Related Work
2.1. Object Detection in Still Images

Object detection in still images is a fundamental task in multimedia and computer
vision. The current state-of-the-art object detectors can be divided into two categories: two-
stage and one-stage object detectors. The two-stage object detector is a series of methods
based on a region proposal (region-based convolutional neural networks (RCNN) [19],
fast-RCNN [20], faster-RCNN [21], region-based fully convolutional networks (R-FCN) [22],
etc.). The other is the one-stage object detector such as you only look once (YOLO) [23],
single shot MultiBox detector (SSD) [24], RetinaNet [12], and FCOS [13], which only uses
a convolutional neural network (CNN) to predict the classes and positions of different
objects directly.

In the field of video object detection, there are two directions for improving accuracy
and speed. Our aim is to improve the accuracy, so we chose the two-stage object detector.

2.2. Video Object Detection

Compared with object detection in still images, methods for video object detection
take temporal information into account. To improve performance, feature aggregation of
existing state-of-the-art frameworks works on a frame-level or a proposal-level.

Frame-level video object detection (VOD) methods mainly take frames in the same
video as context information to enhance the robustness of feature map representation. Early
methods often use optical flow as external guidance [1–3]. Instead of relying on optical flow,
progressive sparse local attention (PSLA) [5] tackles feature alignment in an end-to-end
manner. It establishes the spatial correspondence between the features across frames in the
local area through self-attention [25].

On the other hand, proposal-level works operate on boxes. SELSA [8] introduces a
semantic aggregation module to fuse the high-level proposal features [26,27]. Gong et al.
put forward a Temporal ROI Align operator [11] in place of a traditional ROI align in
object detection.

2.3. Label Assignment

Current CNN-based object detectors perform dense detection by classifying anchors
and regressing boxes. The process of setting classification and regression targets for anchors
is called label assignment.

Traditional label assignment methods usually employ predefined rules to assign
ground-truth boxes or backgrounds for anchors. RetinaNet [12] exploits the intersection-



Appl. Sci. 2022, 12, 12314 4 of 11

over-union (IOU) ratio to label anchor boxes. FCOS [13] defines the anchor points within
a certain center range of the gt as positive samples. Such predefined rules rely on prior
human knowledge to allocate samples in space and scale and cannot adapt well to changes
in data and the emergence of new instances.

In view of the shortcomings of fixed label assignment strategies, the latest detectors
propose adaptive label assignment strategies. GuidedAnchoring [14] dynamically changes
the shape of anchor boxes according to the distribution of objects. MetaAnchor [15]
randomly samples anchors of any shape during training to cover different types of object
boxes. Moreover, in the adaptation of anchor priors, some approaches focus on the sampling
method for each object. FSAF [16] embeds an anchor-free branch as a label assignment
guide for anchor-based practices.

The label assignment methods mentioned above are still somehow dependent on
human knowledge. The latest works bring forward a fully-adaptive strategy for label
assignment. AutoAssign [18] takes all points in a gt box as positive samples and then
calculates the weights of these sample points. The weights are completely learned from
the data, so they are entirely data-driven. OTA [17] believes that AutoAssign still has
shortcomings because it only finds the optimal label assignment strategy for a single
object and cannot consider context information from a global perspective. Therefore, OTA
proposes a global optimal allocation strategy, which defines label assignment as an optimal
transfer problem (OT). However, fully data-driven label assignment also cannot adapt
well to video object detection when object appearance deterioration occurs in videos. We
propose temporal-guided label assignment to enhance the labels. This enables the label
assignment to perform well even when the object’s appearance deteriorates.

3. Methodology
3.1. Overview

The architecture of our method of temporal guided Label assignment (TGLA) is
illustrated in Figure 2. Given a video, while processing a frame it is noted as the target
frame It. The adjacent frames of the target frame are specified as support frames {It′}. First,
we proposed a temporal-guided label assignment framework for the learning task of the
RPN. Labels produced by label assignment are enhanced. The blue box above is the forward
propagation process of the two-stage object detection model. The orange box below is
the training process. To establish the labels’ relation model, we then introduce a feature
instructing module (FIM). All our proposed modules ultimately act on the loss function.
Therefore, our method can improve model accuracy without increasing inference costs.

3.2. Temporal-Guided Label Assignment Framework

As shown in Figure 2, the blue box above is the process of forwarding propagation.
The image is sent to the backbone to obtain feature maps. Then, the feature maps are sent to
the RPN to obtain the classification and coarse regression results. ’Inference’ indicates the
subsequent forward propagation process, which includes ROI Align and the detection head,
to obtain the final detection results. The orange box below is the module for calculating
the RPN loss. The label assignment adopts the automatic label assignment strategy in
AutoAssign [18]. The traditional form of IOU label assignment is not used, and all locations
can be positive and negative samples. We use weight maps to represent the likelihood that
a sample is positive or negative.

3.2.1. Weight Maps for Label Assignment

As shown in Figure 2, we follow the initial setting in Faster R-CNN, which means our
method is an anchor-based one.
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Figure 2. The architecture of our temporal guided label assignment (TGLA). The temporal-guided
label assignment framework is presented by the upper blue box and the lower orange box, which
denote forward propagation and loss computation separately. Note that the framework we mentioned
below does not include feature instructing. Furthermore, we put forward an feature instructing
module (FIM), which utilizes feature maps to guide the fusion of weight maps.

w is the weight map of one gt box of one image. Each location’s weight represents the
likelihood of a positive sample (negative sample). Here, w+ is the weight map of positives
and w− is the weight map for the negatives; these are generated by center weighting G
and confidence weighting C. Confidence weighting is generated by the RPN outputs. We
follow the implementation in AutoAssign [18] for our label assignment. For location q ∈ Si,
where Si denotes all locations inside the bounding box of object i we have the following:

w+(q) =
C(P+(q))G(

−−→
d(q))

∑j∈Si
C(P+(j))G(

−→
d(j))

(1)

where
−−→
d(q) denotes the offsets of a certain position inside an object to its box center along the

x-axis and the y-axis. P+(q) = P(cls, q) · P(loc, q) is the positive confidence. P(cls, q) and
P(loc, q) are the results of classification and coarse regression. Here, w+(q) is normalized
by all candidate locations of one object. w−(q) is formulated by the IOU of prediction boxes
on location q between gt boxes as follows:

w−(q) = 1− f (iou(q)) (2)

where f (·) denotes a function whose role is that the larger the IOU, the less likely the box
will be a negative sample, and the smaller it is implies the opposite.

But even this strategy of automatic label assignment encounters challenges in video
object detection. When ab object’s appearance in the video deteriorates, the label assignment
strategy cannot obtain good weight maps because the distinction between the foreground
and background is unclear in this condition. For example, the appearance of the rabbit
in the target frame in Figure 2 is blurred, and the resulting weight maps are unfocused.
Therefore, a framework that utilizes temporal information for the learning task of the RPN
is put forward, and we call it temporal-guided label assignment.
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3.2.2. Temporal-Guided Label Assignment

First, introducing temporal information to w+ generates w+
t,i ∈ RH×W . w+

t,i is the
positive weight map of the i-th gt box of frame t. In the same way, w−t is the negative
weight map of frame t. H and W are the height and width of w+

t,i(w
−
t ) and they are the same

as the height and width of the feature maps Ft ∈ RH×W×C of frame t. H, W, and C denote
the height, width, and channel of Ft, respectively. To enhance w+

t,i(w
−
t ), we fuse weight

maps
{

w+
t′ ,r

}
t′∈V,r=g(t,i,t′)

(
{

w−t′
}

t′∈V) from other frames into w+
t,i(w

−
t ) to form ŵ+

t,i(ŵ
−
t ). Our

framework is shown in Figure 3:

Figure 3. Temporal-guided label assignment framework. ’More information’ can be anything that
comes from different frames. The fused ŵ+

t,i(ŵ
−
t ) act on the learning task of the region proposal

network (RPN).

Here, V is the set of the N support frames of frame t, and r is the r-th gt box of frame
t′ selected by the max IOU with the i-th gt box of frame t. Finally, ŵ plays a significant role
in improving the learning task of the RPN. To establish the relation model of the weight
maps in a better way, we proposed a feature instructing module.

3.3. Feature Instructing Module

Compared with labels, features contain richer semantic information representing the
relationship between different locations. Therefore, we use additional feature information
instead of weight maps to model their relationship.

3.3.1. Relation Module

The relation of feature maps Ft and {Ft′}t′∈V is utilized to guide the fusion of weight

maps w+
t,i(w

−
t ) and

{
w+

t′ ,r

}
t′∈V,r=g(t,i,t′)

(
{

w−t′
}

t′∈V). Feature maps of the target frame and

support frame set are separately noted as Ft and {Ft′}t′∈V . To calculate the similarity of the
two feature maps, we realize the inner product of their corresponding positions by multiply-
ing the two matrices. For each Ft′ and Ft, the similarity map Zt′ can be expressed as follows:

Zt′ = Z(F?
t , F?

t′ ) : R(H×W)×C ⊗
[
R(H×W)×C

]T
→ RH×W×H×W (3)

where F? denotes the feature maps normalized along the channel dimension and [·]T
denotes the transposition of the matrix. ⊗ denotes the matrix multiplication. Then, for each
location u ∈ {(1, 1), (1, 2), · · ·, (H, W)} in Ft, we select the most similar K locations in Ft′ by
the similarity map to generate feature point scores zt′(u, k):

zt′(u, k) =
Zt′(u, k)

∑K
j=1 Zt′(u, j)

(4)
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where k denotes one specific location in the top K locations. The feature point scores are
calculated by the normalization of the similarity map.

3.3.2. Fusion Module

There is a one-to-one correspondence between the points on the feature map and the
points on the weight map. Using the feature point scores zt′(u, k) calculated by Equation (4),
for each location u on w+

t,i(w
−
t ), each w+

t′ ,r(w−t′ ) aligned for w+
t,i(w

−
t ) can be calculated:

walign,+
t′ ,r (u) =

K

∑
j=1

zt′(u, j) ∗ w+
t′ ,r(j), walign,−

t′ (u) =
K

∑
j=1

zt′(u, j) ∗ w−t′ (j) (5)

where K denotes the top K similar locations to location u in the support frame. walign,+
t′ ,r (walign,−

t′ )

is extracted by concatenating all walign,+
t′ ,r (u)(walign,−

t′ (u)). For N support frames, the N
weight maps calculated by Equation (5) are fused with the weight maps of the target frame:

ŵ+
t,i = w+

t,i + ∑
t′∈V,r=g(t,i,t′)

a+t′ ,r · w
align,+
t′ ,r , ŵ−t = w−t + ∑

t′∈V
a−t′ · w

align,−
t′ (6)

where a+t′ ,r(a−t′ ) denotes the weight score of the fusion, which is calculated by the process in
Figure 4 and · denotes element-wise multiplication.

Figure 4. Calculation process of
{

a+t′ ,r
}

t′∈V,r=g(t,i,t′)
(
{

a−t′
}

t′∈V). a+t′ ,r(a−t′ ) ∈ RH×W and a+t′ ,r(a−t′ ) ∈

RH×W .

3.3.3. Improving the Learning Task

The fused weight maps ŵ are generated for the computation of the loss in the RPN to
improve the learning task. The loss of positive samples and negative samples are computed
separately:

L = −
M

∑
i=1

log( ∑
o∈St,i

ŵ+
t,i(o)P+

t,i(o))−∑
e∈S

log(1− ŵ−t (e)P−t (e)) (7)

where St,i denotes the locations inside the i-th gt box of frame t on the output feature maps
and S represents all the locations on the feature maps. M is the gt box number of frame
t. P+ and P− are the positive and negative confidence, respectively. P− = P(cls). ŵ is a
temporal-guided label generated by our framework, which can perform well in various
emergencies such as motion blur, video defocus, part occlusion, and rare poses.

4. Experiment
4.1. Dataset and Evaluation Setup

ImageNet VID [28] is the only mainstream dataset in video object detection, it consists
of 3862 video snippets in the training set and 555 snippets in the validation set. There
are 30 object categories with fully annotated bounding boxes, which are the subset of the
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categories in the ImageNet DET dataset [28]. Following the protocols in [29,30], we trained
our model on the 30 overlapped classes of the ImageNet VID and DET sets. We only tuned
the parameters and trained the model on the training set. We then reported the mean
average precision (mAP), where the IoU threshold for all mAP calculations in our article
was 0.5, on the validation of VID.

4.2. Implementation Details
4.2.1. Architecture

We employed a variant of the Temporal ROI Align [11] method called TROI-Var as
our baseline. It adopts the label assignment method in [18] for model training. We used
ResNet-101 as the backbone for ablation studies and state-of-the-art (SOTA) comparison.

4.2.2. Training Details

We implemented our method mainly on Pytorch [31]. Due to the data richness of
the video dataset itself (objects were moving) and the sufficient data volume of the entire
dataset, we did not use data augmentation techniques. In both training and inference,
the images were resized to the shorter side of 600 pixels. The whole architecture was
trained on 4 RTX 2080ti GPUs with SGD. There was one mini-batch in each GPU, and the
mini-batch size was 1. What is more, seven epochs of training were performed on our
framework, and the initial learning rate was 0.001 and it was divided by 10 at the 5-th and
7-th epoch.

4.3. Ablation Study
4.3.1. Effect of Support Frame Number N

We adopted the uniform sample strategy from the Temporal ROI Align [11] method.
That is, the sampling stride is dynamically adjusted according to the length of the video.
Table 1 shows the effect of different values of N. When N increased from 2 to 8, the perfor-
mance increased from 81.0 mAP(%) to 82.0 mAP(%). Compared with the baseline, when N
was 2, the accuracy dropped because of the introduction of interference. When N exceeded
8, the accuracy continued to increase within a certain range, but the accuracy no longer
increased or decreased after exceeding a certain value. The performance might continue to
rise, but we did not continue to verify this due to the limitation of computing resources.
The bottleneck was the relation module and fusion module, which were calculated N times
in the training phase. Therefore, this did not affect the inference speed. This showed that
as the number of support frames increased, the fused weight map was more stable and less
prone to large deviations; therefore, N was chosen to be 8 as default.

Table 1. The effect of support frame number N.

#N 2 4 6 8

mAP(%) 81.0 81.4 81.7 82.0

4.3.2. The Effectiveness of Temporal-Guided Label Assignment and the Feature Instructing
Module (FIM)

TROI-Var denotes the variant of Temporal ROI Align [11], which introduces the label
assignment strategy in AutoAssign [18], and it is the baseline of our model. As shown in
Table 2, temporal-guided label assignment only uses the label assignment information to
model the relationship between themselves without additional feature information. This
improved performance over the baseline, which means the framework is effective. FIM
further enhanced the performance of the framework. This demonstrated that the relation
model established by features is significant.
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Table 2. The effectiveness of the temporal-guided label assignment framework and feature instructing
module. Temporal-guided label assignment is the framework without feature instructing, and FIM is
the feature instructing module.

Method Temporal-Guided
Label Assignment FIM mAP(%)

TROI-Var - - 81.2
Our TGLA X - 81.5
Our TGLA X X 82.0

4.4. Comparison with State-of-the-Art Methods

We proposed a new paradigm for label assignment information aggregation instead
of feature aggregation, which is significant and inference cost-free. We compare our work
with several recent state-of-the-art approaches on ImageNet VID in Table 3. With bells and
whistles, our proposed model can achieve a 82.0 mAP(%) with the ResNet-101 backbone.
Our method is on par with most of the SOTA approaches and even outperforms a quantity
of them.

Table 3. Performance comparison with other state-of-the-art models on the ImageNet VID validation
set. TGLA is our method with the framework and FIM. Here, R101 is ResNet-101 and DCN is a
deformable convolutional network.

Method Backbone mAP(%)

FGFA [2] R101 78.4
D&T [32] R101 80.0
PLSA [5] R101+DCN 80.0

SELSA [8] R101 80.25
Leveraging [33] R101-FPN 81.0

RDN [9] R101 81.8

TGLA R101 82.0

4.5. Detection Visualization

Figure 5 showcases one hard example in video object detection. The domestic cat is
presented in a blurred appearance during movement. The top two rows show the result of
the baseline and our TGLA without FIM. Compared with the result of our TGLA in the
third row, they have a lower confidence. This first shows that it is effective to add temporal
information to label assignment during training because the result of the second row was
better than that of the first row. The result in the third row outperformed that in the second
row, which reflects the effectiveness of FIM. This shows that the method of building the
relation model of labels also needs to be considered.

Figure 5. Comparison of detection results of different models for hard samples.
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5. Conclusions and Outlook

In this work, we proposed a novel framework: temporal-guided label assignment
for video object detection. This framework utilizes temporal information to enhance the
labels to improve the learning task of the RPN. To better establish the labels’ relation
model, a novel module, FIM, was proposed in which feature similarity is used to find the
association of labels. It is worth mentioning that our method can not only work on two-
stage object detectors, but it can also work on single-stage object detectors. We conducted
ablation studies on ImageNet VID to prove the effectiveness of our framework on video
object detection. Our work obtained a 0.8 mAP(%) improvement over the baseline without
any additional inference costs. The proposed framework achieved a 82.0 mAP(%) on
ImageNet VID, which is on par with state-of-the-art methods. For future work, it will be
interesting to develop techniques for object tracking over frames among multiple objects
by incorporating contextual information. On one hand, we have seen that graph matching,
with the aid of recent deep matching networks as a backbone, has played a promising role
in this direction. On the other hand, it is attractive to adapt temporal prediction models,
e.g., the long-term multi-modal tracker, into predictive tracking, especially for the settings
whereby the objects’ trajectories are relatively well regularized.
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