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Abstract: The main purpose of this study was to investigate the flexural behavior of high-ductility
fiber-reinforced concrete (HDC) and propose a suitable method for evaluating flexural toughness.
The flexural strength, deformation, and toughness of HDC were investigated through four-point
bending tests with specimens of 40 × 40 × 160 mm. The test parameters were fiber volume fractions
(0%, 1%, 1.5%, and 2%), water–binder ratios (0.24, 0.26, 0.29, and 0.32), and ages (28 d and 56 d). The
experimental results showed that polyvinyl alcohol (PVA) fibers led to significant improvement in
the flexural behavior of HDC due to its strain-hardening behavior and excellent crack dispersion
capacity. The ultimate flexural strength of HDC with 2% PVA fibers of about 15.32 MPa showed
an increase of up to 221%. The deformation and flexural toughness ratios were 23 times and
1.43 times higher, respectively, than the specimens without fibers. A simple and practical method
for evaluating the flexural toughness of HDC was proposed, which solved many problems with
the existing methods. This method made full use of the peak load, which overcame the difficulty
of identifying the initial crack information, solved the insufficient deflection limit, and provided a
more comprehensive and accurate evaluation by selecting characteristic points evenly distributed
throughout the loading process.

Keywords: high-ductility fiber-reinforced concrete; flexural behavior; toughness; evaluation method

1. Introduction

Concrete is one of the most widely used construction and building materials due
to its low cost, high strength, and versatility [1,2]. However, the poor tensile behavior,
brittle failure mode, and low deformability of concrete limit its application in civil engi-
neering [3,4]. One way to overcome these drawbacks is to add different fibers, such as steel,
polyvinyl alcohol, and polypropylene fibers, to obtain higher tensile strength, better flexural
toughness, and excellent seismic performance [5–8]. Nowadays, FRC is used in a variety of
applications such as new civil structures, the repair and retrofit of building structures, and
underground structures to improve fatigue resistance and seismic performance [9–11].

Flexural toughness fundamentally reflects the toughening effects of fibers and the in-
ner structural performance of matrices; reinforced concrete structures are designed through
their application. Many researchers have focused on the flexural behavior and toughness
properties of FRC. Tayfun found that the flexural strength of steel fiber-reinforced concrete
increased with concrete age and fiber volume fraction, but the first crack development
significantly decreased by increasing the fiber volume fraction [12]. Gao et al. investigated
the influence of fiber volume content and concrete strength on the flexural behavior of steel
fiber-reinforced concrete and observed that the fiber volume content significantly affected
the initial and residual flexural toughness ratio of the specimens [13]. Felekoğlu et al.
presented that a high-strength matrix with a high-strength fiber gave the best performance
from the viewpoint of flexural and toughness performance according to a three-point flexu-
ral loading test [14]. The test results showed that using straight steel and micropolyvinyl
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alcohol fibers produced composites demonstrating stable deflection–hardening with a
multiple cracking phenomenon [15]. Ding et al. reported that a hybrid fiber-reinforced
concrete showed significant improvements in the flexural toughness of the concrete and
correlated the fractured surface roughness with the flexural toughness of the concrete by to-
pographical analysis [16]. Previous research has shown that the addition of fibers improves
post-cracking behavior, reduces the opening of cracks, and counteracts their propagation,
as well as increases the toughness of concrete owing to their deboning and pull-out failure
mechanisms [15,17]. The specimen response in a bending test was also consistent with
the tensile properties of a strain hardening response material, and an inverse analysis was
discussed by López et al. [18–21].

However, there is no consistent and recognized flexural toughness evaluation method
for FRC, especially for special FRC that exhibits strain hardening behavior under ten-
sion, high toughness under compression, and is flexural, which are termed engineered
cementitious composites (ECCs) [22–24], high-performance fiber-reinforced cementitious
composites (HPFRCCs) [25,26], strain hardening cementitious composites (SHCCs) [27,28],
and high ductile fiber-reinforced concrete (HDC) [29–32]. Li et al. pointed out that the
ASTMC-1018 method is not appropriate for evaluating the toughness of ultra-high tough-
ness cementitious composites, and modified JSCE-SF4 by expanding its range of deflection
limit [33]. Skazlić et al. recommended additional toughness parameters for the evalua-
tion of toughness results obtained by ASTMC-1609 [34]. Li et al. evaluated the flexural
toughness of steel fiber-reinforced lightweight aggregate concrete by using ASTMC-1018,
ASTMC-1609, JSCE-SF4, and JG/T 472-2015 methods. They considered that the JG/T 472-
2015 method could reveal the influence of the fiber in terms of the pre-peak and post-peak
behavior [35]. In other cases, the evaluation methods mentioned above were directly used
or slightly modified to estimate the toughness of FRC; therefore, the shortcomings of the
existing methods have not been conquered.

To evaluate the toughness of strain hardening materials and solve the problems of
existing methods, a series of four-point bending tests was designed, and a simple and
practical method for evaluating the flexural toughness of HDC was proposed. The influence
of the fiber volume content, water–binder ratio, and age on the failure mode, load-deflection
curve, flexural strength, and toughness of HDC was also highlighted.

2. Experimental Program
2.1. Materials

The high ductility concrete used in this study was PO 42.5R ordinary Portland cement
produced by Xi’an Yaobai Cement Company in Shaanxi, China, with a specific surface
area of 350 m2/kg. The fly ash was grade I fly ash provided by a power plant in Henan.
Medium and coarse river sand with a fineness modulus of 2.83 was used, and the additive
used a polycarboxylic acid superplasticizer produced by the Ruikeda Company in Shaanxi,
China. The water reduction rate (mass fraction) was 20–40%. As shown in Figure 1, the
short PVA fibers had a length of 12 mm, a diameter of 39 µm, a tensile strength of 1600 MPa,
and an elastic modulus of 40 GPa. The properties of the PVA fibers are shown in Table 1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 14 
 

 
Figure 1. Short polyvinyl alcohol (PVA) fiber. 

2.2. Mixing and Casting 
The target cubic compressive strength of the concrete was 50 MPa. Three test pieces 

were made for each mixture. The binding material was composed of cement and fly ash 
with a mass ratio of 1:1. The contrast mixture proportion had a fiber content of 0%, a wa-
ter–binder ratio (mass ratio) of 0.29, and a sand–binder ratio of 0.36. To examine the influ-
ence of the age, water–binder ratio, and fiber–volume fraction on the flexural toughness 
and properties of HDC, 10 group specimens were made, as shown in Table 2. In the spec-
imen ID, the number after the HC is the age, and the subsequent data represent the fiber 
content and the water-to-gel ratio. For example, HC56-1-29 means that the sample age was 
56 d, the fiber volume content was 1%, and the water–binder ratio was 0.29. The mixing 
procedure is shown in Figure 2. 

Table 2. Mixture proportions of HDC. 

Group Specimen ID 
Binding Material 

Water Sand Fiber Volume 
Fraction (%) Cement Fly Ash 

Control HC56-0-29 0.5 0.5 0.29 0.36 0 

Series Ι 

HC56-1-29 0.5 0.5 0.29 0.36 1.0 
HC56-1.5-29 0.5 0.5 0.29 0.36 1.5 
HC56-2-29 0.5 0.5 0.29 0.36 2.0 
HC56-2-26 0.5 0.5 0.26 0.36 2.0 
HC56-2-32 0.5 0.5 0.32 0.36 2.0 

Series Ⅱ 

HC28-1-29 0.5 0.5 0.29 0.36 1.0 
HC28-1.5-29 0.5 0.5 0.29 0.36 1.5 
HC28-2-29 0.5 0.5 0.29 0.36 2.0 
HC28-2-24 0.5 0.5 0.24 0.36 2.0 
HC28-2-26 0.5 0.5 0.26 0.36 2.0 

 
Figure 2. HDC mixing process flowchart. 

2.3. Four-Point Flexural Test 
In this study, a beam specimen with a size of 40 mm × 40 mm × 160 mm was used for 

experimental research on the bending behavior of high-ductility fiber-reinforced concrete. 
The loading method was four-point loading, as shown in Figure 3. The loading rate was 
0.18 mm/min, and the full load-deflection curve of the specimen was collected during 

Figure 1. Short polyvinyl alcohol (PVA) fiber.



Appl. Sci. 2022, 12, 12313 3 of 13

Table 1. Properties of the PVA fibers.

Fiber Type Length (mm) Diameter
(µm) Aspect Ratio

Tensile
Strength

(MPa)

Elastic
Modulus

(GPa)

PVA 12 39 310 1600 40

2.2. Mixing and Casting

The target cubic compressive strength of the concrete was 50 MPa. Three test pieces
were made for each mixture. The binding material was composed of cement and fly ash
with a mass ratio of 1:1. The contrast mixture proportion had a fiber content of 0%, a water–
binder ratio (mass ratio) of 0.29, and a sand–binder ratio of 0.36. To examine the influence
of the age, water–binder ratio, and fiber–volume fraction on the flexural toughness and
properties of HDC, 10 group specimens were made, as shown in Table 2. In the specimen
ID, the number after the HC is the age, and the subsequent data represent the fiber content
and the water-to-gel ratio. For example, HC56-1-29 means that the sample age was 56 d, the
fiber volume content was 1%, and the water–binder ratio was 0.29. The mixing procedure
is shown in Figure 2.

Table 2. Mixture proportions of HDC.

Group Specimen ID
Binding Material

Water Sand
Fiber Volume
Fraction (%)Cement Fly Ash

Control HC56-0-29 0.5 0.5 0.29 0.36 0

Series I

HC56-1-29 0.5 0.5 0.29 0.36 1.0
HC56-1.5-29 0.5 0.5 0.29 0.36 1.5
HC56-2-29 0.5 0.5 0.29 0.36 2.0
HC56-2-26 0.5 0.5 0.26 0.36 2.0
HC56-2-32 0.5 0.5 0.32 0.36 2.0

Series II

HC28-1-29 0.5 0.5 0.29 0.36 1.0
HC28-1.5-29 0.5 0.5 0.29 0.36 1.5
HC28-2-29 0.5 0.5 0.29 0.36 2.0
HC28-2-24 0.5 0.5 0.24 0.36 2.0
HC28-2-26 0.5 0.5 0.26 0.36 2.0
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2.3. Four-Point Flexural Test

In this study, a beam specimen with a size of 40 mm × 40 mm × 160 mm was used for
experimental research on the bending behavior of high-ductility fiber-reinforced concrete.
The loading method was four-point loading, as shown in Figure 3. The loading rate was
0.18 mm/min, and the full load-deflection curve of the specimen was collected during
loading and used for the bending toughness analysis. The loading device is shown in
Figure 3.
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3. Test Results
3.1. Test Piece Failure Process

When the fiber content was 0%, the plain concrete specimens had brittle fractures
along the initial cracks when they were loaded to the peak load (Figure 4). For the HDC
beam, the deformation was very large and many fine cracks appeared, but the integrity was
always maintained, indicating that the crack-break nature of the plain concrete specimen
was essentially changed by the fiber addition (Figure 5). It could be concluded that HDC
could not only improve the bearing capacity and deformation ability before failure, but
could also make the failure clearly predictable, which is of great significance for engineering
safety [36–38].
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With the increase in fiber content, the number of cracks in the HDC test specimens
significantly increased, but the width of the cracks gradually decreased. As the PVA fibers
spanned the cracks, thus preventing the cracks from developing or reaching a stable state,
stress redistribution occurred in the bending and tensile zone, which caused new cracks in
the test specimens at other weak areas. As a result, the gap between the cracks decreased
with an increase in fiber content.

Compared with the specimens at 56 d of age, the cracks of the HDC beams at 28 d of
age were finer and more evenly distributed. Due to a large amount of fly ash in the test
specimen, the early hydration rate was slow. Meanwhile, the compressive strength was
lower and the bonding strength between fibers and cement was weaker for HDC beams at
28 d. Therefore, the fiber could more easily pull out and would extend more energy in the
process, which would increase the pseudo-strain hardening effect of HDC.

3.2. Load-Deflection Curve

The load-deflection curve of the plain concrete specimen was linear. After reaching
the peak load, it dropped to zero and the specimen suddenly broke down, as shown in
Figure 6a. With an increase in the fiber content, the load-deflection curve of HDC (which
was especially fuller in the rising section), the peak load, and its corresponding deflection
also continued to increase, showing good toughness performance (Figure 6b–k).
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3.3. Discussion

The flexural strength and deflection parameters corresponding to the peak load of
each group are shown in Table 3. It can be seen that the bending strength and deformation
of HDC increased relative to the reference specimen. When the fiber content was 1%, 1.5%,
and 2%, the increase in HDC flexural strength f max was 59%, 149%, and 221%, respectively.
The deflection corresponding to the peak load could reach 10~20 times that of the plain
concrete test piece. As seen in Figure 7, the effect of increasing the deformation capacity of
HDC by increasing the number of fibers was better than the improvement in its bending
strength. This was because the fibers at the cracks were gradually pulled out or broken
after the specimen cracked, continuously absorbing energy, and its deformation ability was
significantly enhanced.



Appl. Sci. 2022, 12, 12313 6 of 13Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 14 
 

0.00 0.02 0.04 0.06 0.08 0.10
0

500

1000

1500

2000

2500
 HC56-0-29-1
 HC56-0-29-1

Lo
ad

 / 
N

Deflection / mm  
0.0 0.5 1.0 1.5 2.0 2.5

0

1500

3000

4500

6000

7500
 HC56-1-29-1
 HC56-1-29-2
 HC56-1-29-3

Lo
ad

 / 
N

Deflection / mm  
0.0 0.5 1.0 1.5 2.0 2.5

0

1500

3000

4500

6000

7500
 HC56-1.5-29-1
 HC56-1.5-29-2

Lo
ad

 / 
N

Deflection / mm  
(a) (b) (c) 

0.0 0.5 1.0 1.5 2.0 2.5
0

1500

3000

4500

6000

7500  HC56-2-29-1
 HC56-2-29-2
 HC56-2-29-3

Deflection / mm

Lo
ad

 / 
N

 
0.0 0.5 1.0 1.5 2.0 2.5

0

1500

3000

4500

6000

7500

 HC56-2-26-1
 HC56-2-26-2
 HC56-2-26-3

Lo
ad

 / 
N

Deflection / mm  
0.0 0.5 1.0 1.5 2.0 2.5

0

1500

3000

4500

6000

7500
 HC56-2-32-1
 HC56-2-32-2
 HC56-2-32-3

Lo
ad

 / 
N

Deflection / mm  
(d) (e) (f) 

0.0 0.5 1.0 1.5 2.0 2.5
0

1500

3000

4500

6000

7500
 HC28-1-29-1
 HC28-1-29-2
 HC28-1-29-3

Lo
ad

 / 
N

Deflection / mm  
0.0 0.5 1.0 1.5 2.0 2.5

0

1500

3000

4500

6000

7500

 HC28-1.5-29-1
 HC28-1.5-29-2
 HC28-1.5-29-3

Lo
ad

 / 
N

Deflection / mm  
0.0 0.5 1.0 1.5 2.0 2.5

0

1500

3000

4500

6000

7500

 HC28-2-29-1
 HC28-2-29-2
 HC28-2-29-3

Lo
ad

 / 
N

Deflection / mm  
(g) (h) (i) 

0.0 0.5 1.0 1.5 2.0 2.5
0

1500

3000

4500

6000

7500

 HC28-2-24-1
 HC28-2-24-2
 HC28-2-24-3

Lo
ad

 / 
N

Deflection / mm  
0.0 0.5 1.0 1.5 2.0 2.5

0

1500

3000

4500

6000

7500

 HC28-2-26-1
 HC28-2-26-2
 HC28-2-26-3

Lo
ad

 / 
N

Deflection / mm  
(j) (k) 

Figure 6. Load-deflection curves: (a) HC56-0-29; (b) HC56-1-29; (c) HC56-1.5-29; (d) HC56-2-29; (e) 
HC56-2-26; (f) HC56-2-32; (g) HC28-1-29; (h) HC28-1.5-29; (i) HC28-2-29; (j) HC28-2-24; (k) HC28-
2-26. 

3.3. Discussion 
The flexural strength and deflection parameters corresponding to the peak load of 

each group are shown in Table 3. It can be seen that the bending strength and deformation 
of HDC increased relative to the reference specimen. When the fiber content was 1%, 1.5%, 
and 2%, the increase in HDC flexural strength fmax was 59%, 149%, and 221%, respectively. 
The deflection corresponding to the peak load could reach 10~20 times that of the plain 
concrete test piece. As seen in Figure 7, the effect of increasing the deformation capacity 
of HDC by increasing the number of fibers was better than the improvement in its bending 
strength. This was because the fibers at the cracks were gradually pulled out or broken 

Figure 6. Load-deflection curves: (a) HC56-0-29; (b) HC56-1-29; (c) HC56-1.5-29; (d) HC56-2-29; (e) HC56-
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It can be seen from Figure 8 that with an increase in the water–binder ratio, the
energy dissipation capacity of the HDC beam gradually increased, and the corresponding
deflection range of its bending strength and peak load was about 10%. This was because the
higher the water-to-gel ratio, the easier the fibers pulled out, which significantly increased
energy consumption and deformation capacity [36]. In addition, the tensile strength of the
fiber, the bond between the fiber and the matrix, and the strength of the matrix should also
have a certain corresponding relationship to prevent the fiber from breaking, to ensure the
pull-out failure of the fiber at the cross-section, and to enhance the tensile strain hardening
effect of the material, as well as the multi-crack development characteristics.
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Table 3. Test results and flexural toughness indexes of specimens.

Specimen f max (MPa) δ (mm) δcr (mm) f 0.35 (MPa) f 1 (MPa) R1 f 0.85 (MPa) R0.85 f 0.2 (MPa) R0.2

HC56-0-29 4.62 0.05 0.05 1.25 2.27 1.82 — — — —
HC56-1-29 8.88 0.64 0.09 1.61 6.15 3.82 6.40 3.98 5.45 3.39

HC56-1.5-29 11.49 0.95 0.06 2.00 8.60 4.29 8.81 4.39 7.90 3.94
HC56-2-29 15.32 1.18 0.08 2.67 11.56 4.33 11.80 4.42 9.76 3.65
HC56-2-26 15.04 1.28 0.08 2.45 11.94 4.87 12.03 4.91 11.04 4.51
HC56-2-32 13.32 1.29 0.08 2.05 10.63 5.18 10.86 5.29 9.09 4.43
HC28-1-29 7.33 0.55 0.06 1.27 5.27 4.16 5.58 4.40 5.08 4.01

HC28-1.5-29 11.67 1.09 0.10 2.31 8.25 3.57 8.46 3.66 7.08 3.07
HC28-2-29 15.14 1.85 0.12 2.88 11.72 4.07 11.87 4.13 11.35 3.95
HC28-2-24 15.55 0.87 0.08 2.23 11.14 4.99 11.51 5.16 — —
HC28-2-26 15.80 1.17 0.08 3.06 11.61 3.79 12.15 3.97 11.52 3.76
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As can be seen from Figures 7 and 8, when the age was 28 d, the shape of the load-
deflection curve of the HDC specimens and the influence of the different parameters on it
were basically the same as those of the 58 d specimens, indicating that 28 d could be used
as a measure of standard age for the bending performance of HDC specimens.

4. Methods of Evaluating Bending Toughness of High-Ductility Concrete
4.1. Methods of Evaluating Bending Toughness

The American ASTMC-1018 standard [39] evaluation method is based on the entire
process of stress, as shown in Figure 9a, using the mid-span deflection δ, toughness index I,
and residual strength index R of the test specimen when the first crack appears to evaluate
the toughness of fiber-reinforced concrete; this is suitable for concrete with a large fiber
content and a stable load-deflection curve after cracking. However, all calculations depend
on the existence of a large subjective initial crack deflection δ and the initial defects of the
test piece, which have a great impact on the production of an accurate solution as well as
calculation errors. The Japanese Civil Society Standard [40] (JSCE-SF4) defines a toughness
factor to characterize the toughness of fiber-reinforced concrete materials, which is the
average bending strength when the deflection δ of the beam span reaches 1/150, as shown
in Figure 9b. The method of evaluating the flexural toughness of fiber-reinforced concrete
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in the Chinese CECS 13:2009 standard [41] was improved on this basis. These methods can
avoid errors when determining the first crack and evaluating the toughness of concrete
with different fiber contents.
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Figure 9. Existing flexural toughness evaluation methods: (a) ASTMC-1018; (b) JSCE-SF4.

It can be seen from Figure 10a that HDC had good deformation capacity. It might still
be in the rising section of the load-deflection curve at the specified mid-span deflection. At
this time, the material still had a large load-bearing and deformation capacity as well as
traditional bending. The toughness evaluation method could not effectively evaluate the
bending toughness of HDC. In addition, as shown in Figure 10b, at the same deflection
limit, the different specimens might have been in different stress stages, and a bending
toughness index calculated using the same deflection limit was not comparable. Therefore,
there is an urgent need for a bending toughness evaluation method that can fully reflect
the properties of HDC materials, including the aspects of strength and energy, and that
can reasonably and accurately evaluate strengthening and toughening effects to control
structural strength and ductility from a materials perspective.
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Figure 10. Typical load-deflection curves of HDC: (a) HC56-2-29; (b) HC56-1.5-29.

4.2. Method of Evaluating Bending Toughness Based on Peak Load

With reference to the existing evaluation methods at home and abroad, based on
the results of the four-point bending test, we proposed an evaluation method of bending
toughness based on the peak load. We used the equivalent bending strength f n and bending
toughness ratio Re to evaluate the bending of HDC from the perspective of strength and
energy toughness, as shown in Figure 11.
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4.2.1. Equivalent Bending Strength, f n

According to material mechanics, the bending normal stress at the midpoint of the
lower edge of a simply supported beam f = FL/bh2. When the mid-span deflection is δ, the
energy is the area under the deflection curve:

Ω =
∫ δ

0
F(δ) dδ =

−
Fδ

and the equivalent bending strength is:

fn =
ΩnL
bh2δn

where Ωn is the area under the load-deflection curve of the bending specimen when the
mid-span deflection is δn (mm); δn is the corresponding mid-span deflection value (mm) at
nFmax; Fmax is the peak load of the bending specimen; L is the support span between the
seats (mm); and b and h are the cross-section width (mm) and height (mm) of the test piece,
respectively. In the rising section of the specimen load-deflection curve, n = 0.35 reflected
the strength and toughness of the specimen at the initial crack; in the falling section of the
specimen load-deflection curve, n = 1, 0.85, 0.50, and 0.20, which reflected the peak, the
limit, the post-peak strength, and the toughness of the test piece, respectively, and could be
used to analyze the ductility, energy consumption, and remaining bearing capacity of the
design for continuous collapse resistance.

4.2.2. Bending Toughness Ratio, Rn

In order to reflect the toughening effect of the fibers in HDC, the bending toughness
ratio Rn = f n/f 0.35 was defined to reflect the fiber bridging effect after the cracking of the
specimen as well as the good tensile properties of HDC to improve the bending properties
of the material.

Compared with the methods discussed above, this method began from the peak point
and used the average stress obtained from the 0.35 Fmax front load-deflection curve to
characterize the initial cracking performance of the material, which not only effectively
improved the stability of the evaluation results but also reduced the dependence on the
initial cracking point. In addition, it solved the problem of an insufficient deflection
limitation and was suitable for different types of fiber concrete.

The feature points selected in this method were uniformly distributed throughout the
loading process, and the bending toughness index could reflect the changing trend in the
load-deflection curve, which could comprehensively and accurately evaluate the bending
performance of the materials. The larger the peak bending toughness ratio R1, the fuller the
rising section of the load-deflection curve, the more obvious the pseudo-strain hardening
effect of the material, and the larger the toughness index of the falling section, indicating
the decline in the load-deflection curve. In actual engineering, several characteristic points
can be selected to evaluate the bending toughness of the material as required.

According to the test results, the equivalent bending strength f n and bending toughness
ratio Rn of each group of test pieces were calculated by the above method, and n = 0.35, 1,
0.85, and 0.20 were selected. Among them, f 1 and R1 reflected the reinforcing and toughening
effects, respectively, of the fibers in the specimen after cracking and before the peak load. The
equivalent bending strengths and bending toughness ratios f 0.85, R0.85, and f 0.2, R0.2 mainly
reflected the post-peak performance of the fibers on the specimen.

In this test, due to construction reasons, the test value of the initial cracking strength
of the HC28-1-29 group specimens was low, resulting in a higher bending toughness ratio.
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4.3. Discussion for Practical Implementation

To prove the effectiveness of the evaluation method of bending toughness based on
the peak load, the method was used to measure the flexural toughness of HDC, which
produced a strain-hardening effect. These results are useful for practical applications.

As shown in Figure 12, the equivalent bending strength f n of HDC significantly
increased with the increase in fiber content, but the increase gradually reduced. When the
fiber content increased from 0% to 2%, the initial crack equivalent bending strength f 0.35 of
high-ductility concrete increased by 29%, 25%, and 33%; and the peak equivalent bending
strength f 1 increased by 170% and 40%, respectively. The equivalent bending strength
f 0.85 increased by 182%, 38%, and 34%, and the equivalent bending strength f 0.2 after the
peak increased by 140%, 45%, and 24%, respectively. This was because the initial cracking
performance of the HDC mainly depended on the strength and deformation capacity of
the material matrix, so the increase in the amount of fiber to the initial bending equivalent
bending strength f 0.35 was smaller than that of other stages. In addition, the effects of the
water–binder ratio and age on the equivalent bending strength of HDC were relatively
small, and the range of change was between 2% and 13%.
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It can be seen from Table 3 that, compared with the bending toughness ratio of plain
concrete, the increase in the bending toughness ratios of the HDC beams R1, R0.85, and R0.2
reached 184%, 190%, and 143% at the maximum, respectively, indicating that HDC exhibited
good cracking performance. A good pseudo-strain hardening effect was achieved and the
toughness of plain concrete was significantly improved. This was due to the incorporation of
fibers, which made the test piece crack. The fibers at the cracks continued to participate in the
force until the fibers were completely pulled out or disconnected. In the process, the energy
consumption continued to increase, and the deflection continued to increase. The bending
toughness of HDC was significantly better than that of plain concrete.

It can be seen from Figure 13 that the bending toughness ratio Rn of HDC had an
increasing trend with an increase in the fiber content, but the increase gradually decreased,
especially when the fiber content increased from 1.5% to 2%. The bending toughness ratio
was basically unchanged. The main reason was that the greater the amount of fiber, the
easier it was to obtain the strain hardening effect and the development of multiple cracks.
The stronger the energy consumption capacity, the better the bending toughness of the
material. However, when the fiber content reached a certain value, the effect of further
increasing its value on the toughness of the material was not obvious. In addition, as seen
in Figures 12 and 13, among the bending toughness indicators of HDC, f 0.85 and R0.85 were
the largest, indicating that the HDC specimen continued to show a good holding load after
the peak load of 0.85 Fmax, and the load-deflection curve slowly decreased.

Above all, it could be seen that the evaluated results were in good agreement with
the experimental specimens, and the novel toughness evaluation method overcame the
drawbacks of traditional methods such as an over-dependence on the unstable first cracking
characteristics and the uncertain deformability of ductile materials. In addition, the peak
load was unique and stable, which provided a determinate foundation of toughness
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for evaluating ductile cementitious composites, especially for fiber-reinforced concrete.
Therefore, the toughness evaluation based on the peak load is of great help when assessing
the performance of novel ductile materials.
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5. Conclusions

Based on the results obtained in this research, the following conclusions could be drawn:

(1) The results indicated that the flexural failure modes, ultimate strength, and toughness
of HDC could be improved with an increase in PVA fiber content, especially for defor-
mation. The ultimate flexural strength of HDC with 2% PVA fibers of about 15.32 MPa
showed an increase of up to 221%. The deformation and flexural toughness ratios
were 23 times and 1.43 times higher than the specimens without fibers, respectively.

(2) The post-cracking ductility of conventional concrete was significantly improved due
to the stress redistribution effect of the fibers. With an increase in PVA fibers, the
HDC specimens exhibited better deflection-hardening behavior, characterized by
multiple cracks and crack width gradually decreasing. However, the water–binder
ratio and age had little influence on the flexural behavior of HDC, with a variation
range between 2% and 13%.

(3) Existing approaches failed to evaluate the flexural toughness of HDC because of their
dependence on an unstable initial cracking performance, insufficient deflection limit,
and difficulty in reflecting the properties of different tests corresponding with different
force stages. Based on JSCE-SF4 and CECS 13: 2009, the equivalent flexural strength
and flexural toughness ratios calculated by the peak load of the specimen were
proposed to assess HDC flexural toughness, providing a more comprehensive and
accurate evaluation by selecting characteristic points evenly distributed throughout
the loading process.

(4) Future recommendations are that the parameter n of bending toughness based on the
peak load should be modified with more data, and the applicability should be proven
with more ductile materials.
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Abbreviations

HDC High-ductility fiber-reinforced concrete
PVA Polyvinyl alcohol
FRC Fiber-reinforced concrete
ECC Engineered cementitious composite
HPFRCC High-performance fiber-reinforced cementitious composite
SHCC Strain hardening cementitious composite
d day
f n Equivalent bending strength
Rn Bending toughness ratio
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