
Citation: Liu, T.-J.; Chen, Y.-Z.

Satellite Image Super-Resolution by

2D RRDB and Edge-Enhanced

Generative Adversarial Network.

Appl. Sci. 2022, 12, 12311. https://

doi.org/10.3390/app122312311

Academic Editor: João M. F.

Rodrigues

Received: 10 November 2022

Accepted: 26 November 2022

Published: 1 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Satellite Image Super-Resolution by 2D RRDB and
Edge-Enhanced Generative Adversarial Network †

Tsung-Jung Liu 1,* and Yu-Zhang Chen 2

1 Department of Electrical Engineering and Graduate Institute of Communication Engineering,
National Chung Hsing University, Taichung 40227, Taiwan

2 Product Development Department, E-Great Technology, Miaoli 35157, Taiwan
* Correspondence: tjliu@dragon.nchu.edu.tw
† This paper is an extended version of a paper published in ICASSP 2022–2022 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), 27 April 2022, Singapore.

Abstract: With the gradually increasing demand for high-resolution images, image super-resolution
(SR) technology has become more and more important in our daily life. In general, high resolution is
often accomplished by increasing the accuracy and density of the sensor. However, such an approach
is too expensive on the design and equipment. Particularly, increasing the sensor density of satellites
incurs great risks. Inspired by EEGAN, some parts of networks: Ultra-Dense Subnet (UDSN) and
Edge-Enhanced Subnet (EESN) are modified. The UDSN is used to extract features and obtain
high-resolution images which look clear but are deteriorated by artifacts in the intermediate stage,
while the EESN is used to purify, enhance and extract the image contours and uses mask processing
to eliminate the image corrupted by noise. Then, the restored intermediate image and the enhanced
edge are combined to become a high-resolution image with clear contents and high authenticity.
Finally, we use Kaggle open source, AID, WHU-RS19, and SpaceWill datasets to perform the test and
compare the SR results among different models. It shows that our proposed approach outperforms
other state-of-the-art SR models on satellite images.

Keywords: edge enhancement; generative adversarial network (GAN); residual in residual dense
block (RRDB); satellite images; super-resolution (SR)

1. Introduction

Recently, high-resolution (HR) satellite images have become important in many appli-
cations [1], including building extraction, environmental disaster assessment, small object
detection, and urban planning. However, because of high costs of hardware and limitations
of current technology, the observed HR images usually have incomplete spatial and tem-
poral coverage. Moreover, the resolution does not satisfy the required standard, making
them unable to meet the gradually-growing applications and demand of the general public,
which has caused a negative impact on the accuracy of subsequent computer vision tasks.
As we know, super-resolution (SR) technology on images provides an effective and low-cost
approach of reconstructing HR images from easily available and relatively low-resolution
(LR) images. Thus, this paper mainly focuses on how to generate high-quality HR satellite
images in a cost-effective direction.

In recent years, SR models based on Generative Adversarial Networks (GANs) [2],
such as Super Resolution GAN (SRGAN) [3] and Enhanced Super Resolution GAN (ESR-
GAN) [4] have been proposed and also have promising performance in enhancing noiseless
or noisy LR images. The above models consist of generators and discriminators. Both
sub-networks are composed of deep convolutional neural networks (CNNs). The dataset
which contains LR and HR image pairs is required to train the model. Then the generator
produces the HR image from an input (LR) image, and the discriminator decides if the
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generated image is just an enlarged LR image or a real HR image. After training with
sufficient data and time, the generator is able to output synthetic (fake) HR images which
are supposed to be similar to real HR images, while the discriminator is not capable of
distinguishing between fake and true images.

The satellite imagery covers a wide area, including various ground scenes. In addi-
tion, the resolution of satellite images is much lower than general images, and it is also
susceptible to several effects such as ultra-telephoto imaging, atmospheric disturbances,
and equipment noise. This further increases the difficulty on the edge restoration with
details and sharpness from LR input images. Therefore, the conspicuous outline of the
ground target is more worth pursuing than the actual texture details inside the object.
In the past few years, various shallow and deep learning-based reconstruction methods
have been proposed to improve the resolution of satellite images. Especially, the residual
learning strategy is applied to build a deeper CNN for computer vision tasks and makes
the results amazing. For the image SR problem, these methods aim to predict the residual
image (relative to the input image) rather than the target HR image, and the methods based
on residual learning and their variants have been proven effective. Although the image
generated looks very realistic, the image content is excessively eroded due to the global
optimization strategy. As a result, the SR image may be inconsistent with the actual HR
image and a large number of false or smooth edges may appear.

We are inspired by the EEGAN [5] and EESRGAN [6] and use EEGAN as the basic
framework to propose a feasible infrastructure. For the two sub-networks in the generator,
a combination of residual-in-residual dense block and two-dimensional topology (i.e.,
2D-RRDB) is used. Compared with the conventional RRDB [4], this 2D architecture with
additional diagonal connections can lead to better gradient optimization on the links be-
tween different routes and provide more possibilities for information conversion. In other
words, more connected paths can be obtained using the same number of layers through the
diagonal links. That means by increasing the density of dense blocks connection over the
traditional 1D infrastructure, we can effectively overcome the information propagation dis-
appearance, gradient disappearance and training difficulty problems caused by increasing
the layer depth.

Moreover, in the light of the use of the same approach to compute the perceptual
loss for the entire image (e.g., we use the same features on the foreground, background,
and edges), the proposed model needs to include new losses and learn the information for
smaller features (e.g., the texture of the building). We use the feature map before the activa-
tion layer of VGG19 [7] to compute both the perceptual loss and edge perceptual loss, which
can assist in generating more visually consistent results and sharper edges. Moreover, since
satellite images usually cause more noise than ordinary images, the Canny algorithm [8] is
required to be used for edge extraction to help the generator create distinguishable and
clearer edge maps. In the end, we used several popular and publicly available datasets
for training and testing, and compared the results with other state-of-the-art SR models.
We not only consider PSNR but also look for several evaluation indices to evaluate the
performance. As a result, we learned that our model can generate satellite images which
look more natural and visually close to real images.

The paper is an extension of our previous work in [9]. Compared to the original
work, we add the following substantive new contents. First, we describe related works to
this topic in Section 2, including a review of existing methods on image super-resolution,
an introduction of Generative Adversarial Network (GAN), edge detection algorithms,
and perceptual loss. Furthermore, in Sections 3.1 and 3.4, we perform a thorough ablation
study on two sub-networks (UDSN, EESN) of the generator, edge detection algorithms,
and loss functions to compare the performances. Moreover, in Section 4, we conduct more
experiments on two additional data sets, including WHU-RS19 and SpaceWill data sets to
prove the robustness of the proposed approach.

The rest of paper is organized as follows. In Section 2, we give an introduction of
image super-resolution and review some existing state-of-the-art SR methods and several
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possible techniques that could be used to improve the SR performance. Then we describe
the proposed approach in Section 3, including the modifications in two sub-networks in
the generator, edge extraction module, and perceptual loss on edges. Section 4 shows
the experimental results and discusses the performance comparison on several publicly
available satellite image data sets. Finally, we draw the conclusions in Section 5.

2. Related Works

Deep learning (e.g., CNN) [10–14] has been widely used in image SR reconstruction,
and the SR performance has been significantly improved due to the powerful function of
deep neural networks. Therefore, we focus on exploring deep neural network methods to
solve SR problems.

2.1. Image SR

CNN is widely used in image SR, and the early image SR model was proposed by
Dong et al. [15]. They use CNNs to achieve the end-to-end mapping between LR and
HR images. Then Shi et al. improved the previous SRCNN and proposed FSRCNN [16],
which does not need to enlarge the image size outside the network. By adding a shrinkage
layer and an expansion layer on the network, some small layers can be used to replace
a large layer at the same time, and FSRCNN has a greater speed increase than SRCNN.
Inspired by this work, other researchers proposed to adopt other deep learning architectures,
such as RNN, Residual CNNs [12] and GANs [2] to solve single image super-resolution
(SISR). Among them, Ledig et al. [3] introduced an architecture “SRResNet” inspired
by ResNet [17], which preserves the batch normalization within the original residual
block. This makes their model significantly reduce memory and allow adaptation to
several ideas introduced for image deblurring. Similarly, Lim et al. [12] proposed their
EDSR (Enhanced Depth Super Resolution) model. This model effectively reduces the
memory space by removing the batch normalization (BN) layer in the residual block in
SRResNet, and uses this space to expand the size of the model, thereby achieving significant
performance improvements.

Because of the specialty (e.g., the large size of spatial dimension) of satellite images,
some SR methods are specifically developed for satellite images. In [18], Kawulok et al.
indicate the characteristics of training data have a large impact on the accuracy of a
reconstructed image. In [19], Shermeyer et al. investigate the application of SR techniques
to satellite images and the effects on object detection performance. Wei et al. [20] employ a
deep segmented residual CNN approach to analyze the SR performance of a single satellite
image. Rout et al. [21] report considerable improvements in SR of remote sensing imagery
are achieved by using supervised models in a reinforcement learning framework. In [22],
Zhu et al. claimed using a simple down-sampling approach with a fixed kernel to create
training images works fine on synthetic data, but does not perform well on real satellite
images. In addition, some examples for recent SR methods based on CNN and Generative
Adversarial Network (GAN) are [23,24], respectively. Recently, Tewari et al. [25] introduced
a unique loss function and a new image reconstruction method to enable the SR model to
be executed on a low-power device for satellite environments.

2.2. GAN Methods for Image SR

GAN [2] is a deep learning model which is composed of two networks. One is the
Discriminating Network and the other is the Generative Network. Inspired by GAN,
researchers have conducted active research on it. Recently, some effective and practi-
cal techniques have been applied to low-level computer vision tasks, including image
SR [26]. For instance, Ledig et al. [3] proposed a realistic single-image SR using GAN
(SRGAN), which uses adversarial loss to push the reconstruction result to the natural image.
Wang et al. [4] improved the generator on the basis of SRGAN, and the RRDB network
architecture is proposed. The BN layer is removed from the architecture, and the idea of
relativity GAN is borrowed to let the discriminator predict the authenticity of the image
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instead of “whether it is a fake image”. Finally, the perceived loss is also improved. These
improvements have brought better visual quality and more realistic and natural textures.
Jiang et al. [5] proposed an Edge Enhanced Network (i.e., EEGAN) architecture based on
GAN. This method is used to provide robust satellite image SR reconstruction and an
adversarial learning strategy that is insensitive to noise. This method retains enough edge
information to bring better results to the final SR image.

2.3. Edge Detection and Extraction

Edge detection is a very important image feature extraction method in the area of
computer vision, and it is also relatively easy to use. We use edge detection to find a set of
pixels in the image that significantly change the brightness of the pixels. The edge extraction
itself is a filtering process, using different operation elements to extract different features.
Each type of operand has its own characteristics. There are generally three traditional
methods: Sobel operator [27,28], Laplacian operator [27,28] and Canny operator [8].

1. Sobel Operator
In target detection, Sobel operator has a better effect on image processing with more
gray gradient and noise, but it is not very accurate in edge positioning (i.e., the edge
of the image is more than one pixel). Therefore, the accuracy of Sobel operator is not
very high.

2. Laplacian Operator
Since the Laplacian method is more sensitive to noise, it is rarely used to detect
edges. However, it is used to determine whether edge pixels are regarded as bright or
dark areas of the image. The Laplacian is the second derivative operand, which will
produce steep zero crossings at the edges. Laplacian operands are isotropic and can
sharpen borders and lines in any direction.

3. Canny Operator
The best things about Canny edge detection algorithms are: (1) Detecting edges with
a low error rate, which means capturing as many edges as possible in the image and
as accurately as possible. (2) The detected edge should be accurately positioned at the
center of the true edge. (3) A given edge in the image should be marked only once,
and the noise of the image should not produce false edges wherever possible.

2.4. Perceptual Loss

The perceptual loss function is usually used to convert images among various styles.
The success of the style transfer algorithm lies in the field of image generation. A very
important idea has emerged here, that is, the features extracted by the CNN can be used as
part of the loss function, and the image generated by a certain layer of pretrained networks
can be compared. The feature map obtained from the specific layer of the network makes
the semantics in the generated image and the target image more similar. The network
is divided into two types: transform network and loss network. The transform network
is used to convert the image, and its parameters changed, while the loss network keeps
the parameters unchanged. The transformed result map, style map and content map are
passed through the loss network to obtain the feature map of each layer and we can use it
to calculate the loss.

General style transfer uses both style loss and content loss. As the name suggests,
style loss is used to change the style of the input image, while content loss is used to
preserve the content of the image. The difference between the perceptual loss functions
of super-resolution and style transfer is that the SR only needs content loss. Recently,
SR methods aimed at improving visual quality and added this perceptual loss function.
The generated image after adding perceptual loss function is much clearer than the image
generated by using only the L1 (Manhattan norm) or L2 (Euclidean norm) loss function.
We add the perceptual loss function to our SR method, and find a set of results that are
more in line with human vision through different parameter adjustments.
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To summarize, the main contributions and advantages of our proposed approach in
this work are:

1. We incorporate the 2D topology into RRDB for both sub-networks in the generator
to obtain extra diagonal connections to achieve better gradient optimizations among
different paths to prevent the gradient vanishing and training difficulty problems.

2. We try different edge detection algorithms and choose Canny approach to replace
original Laplacian method to get more detailed and clear edge information.

3. The new loss function (e.g., edge perceptual loss) is added into original loss function
and different weighting combinations are conducted to obtain the best SR result.

4. Through extensive experiments on four well-known and publicly available satellite
image databases, we evaluate all compared SR models with five objective image
quality metrics to show the proposed approach is able to generate SR images with
better visual quality and more close to the true image.

3. Materials and Methods

For our proposed approach, EEGAN [5] is adopted as the basic framework and some
modifications are made based on it. As shown in Figure 1, we can divide the generator
G into two sub-networks: ultra-dense subnet (UDSN) and edge-enhanced subnet (EESN).
The UDSN is made up of several dense blocks and a reconstruction layer which can be
used to generate intermediate HR image, while the EESN is used to enhance the edges
extracted from the intermediate SR image by removing artifacts and noise. Then, the clean
edges from EESN will replace the noisy edges in the intermediate SR image and output the
final SR image. A perceptual loss function is tried to be added into the model to enhance
visual quality [29–31]. We find a set of parameters that can achieve better performance
through the process of parameter adjustments in conducted experiments. The obtained HR
images are also compared with the ones generated by other SR models. We will describe
more details in the following subsections.

Figure 1. Proposed network architecture.

3.1. Generator Networks

As shown in Figure 2, the UDSN is first modified to generate intermediate HR images,
and then the dense subnet branch of the EESN is also modified. Regarding the UDSN,
we replace the original dense block [32] with two different blocks (i.e., residual dense
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block (RDB) and RRDB), and use two different convolution topologies (i.e., original one-
dimensional and new two-dimensional (2D) topology [5] in the convolutional layers, which
is shown in Figure 3) as the choice. Through the extensive experiments, we list the best
results for each of the above four combinations, as shown in Table 1. We can see it will have
the best PSNR and FSIM results when the block type is RRDB with 2D-topology and the
number of blocks is 3, while the number of convolutional layers in each block is 5. This
means to modify the generator network architecture will output SR images that are more
close to real HR images.

Then we use convolutional layers with 2D topology to replace the original convolution
layers in the adopted RDB for the dense network branch of the EESN, as shown in Figure 4.
We hope that the EESN can generate useful edge features through this network architecture.
In Table 2, we test four different combinations for block types (RDB, RRDB) and convolution
topologies (1D, 2D). We can find the model will have the best PSNR and SSIM values when
the block type is RRDB with 2D-topology and the number of blocks is 2, while the number
of convolutional layers in each block is 3.

Figure 2. Proposed generator architecture.

Figure 3. The convolutional layers with 2D topology.
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Table 1. The best results of four combinations used to replace the original block in the UDSN, where
the best results are shown in boldface.

Block Type Topology # of Blocks # of Conv. Layers PSNR SSIM FSIM

RDB 1D 7 3 31.401 0.845 0.985
RDB 2D 6 4 32.560 0.901 0.990

RRDB 1D 4 5 32.074 0.882 0.985
RRDB 2D 3 5 32.774 0.899 0.991

Figure 4. The RDB in the RRDB connection has two-dimensional topological convolution layers.

Table 2. The best results of four combinations used to replace the original block in the EESN, where
the best results are shown in boldface.

Block Type Topology # of Blocks # of Conv. Layers PSNR SSIM FSIM

RDB 1D 3 3 32.755 0.903 0.990
RDB 2D 3 2 32.676 0.890 0.986

RRDB 1D 3 2 32.935 0.910 0.989
RRDB 2D 2 3 32.947 0.913 0.990

3.2. Edge Enhancement

In this part, we will investigate different edge extraction algorithms used in the EESN
of the generator network. Through experiments, better edge extraction algorithms are
found by comparing their effects. The results are shown in Table 3. Furthermore, we adopt
the Mask Branch in EEGAN [5] to suppress false edges and noise. Figure 5 shows the
details of this operation. First, we use the intermediate SR image generated by the UDSN
as an input (i.e., Base Image in Figure 5), and a Base Edge image is obtained through the
edge extraction method, and then it is fed to two sub-networks (i.e., edge enhancement and
mask branch) separately. The outputs of these two sub-networks eventually combine (via
multiplication) to produce the image with sharper edges. Then, the sharper edges (Edge in
Figure 5) will replace the noisy edges (Base Edge in Figure 5) in the intermediate SR image
and output the final SR image. In the conducted experiments, we try the Sobel and Canny
methods [33]. In consequence, we find that Canny method can generate the final SR image
with better performance among the three compared algorithms.

Table 3. Comparison of edge-extraction methods, where the best results are shown in boldface.

Edge-Extraction Method PSNR SSIM FSIM

Laplacian 32.947 0.913 0.990
Sobel 32.950 0.906 0.984

Canny 33.011 0.918 0.994



Appl. Sci. 2022, 12, 12311 8 of 20

Figure 5. Edge extraction and enhancement, where Edge* represents the image after edge enhancement.

3.3. Loss Functions

At first, we create a content loss function to force the generator G to output the interme-
diate HR image that is supposed to be similar to the real HR image by the equation below:

Lcont(τG) = arg min
τG

k

∑
i=1

ρ(IHR,i − IBASE,i), (1)

where τG represents a set of model parameters in the generator, ρ(x) =
√

x2 + ε2 represents
the Charbonnier penalty function [10]. As the same as [10], the compensation parameter is
set to ε = 10−3, IHR and IBASE denote the real HR image and the intermediate HR image
generated by the UDSN.

To reduce artifacts and enhance the quality of the reconstructed image, we included
the pixel-based Charbonnier loss to improve the consistency of the image content between
the real and generated HR images. The consistency loss function is denoted as:

Limg_cst(τG) = ρ(IHR − ISR), (2)

where τG is the model parameter set as the same as mentioned before, IHR and ISR refer to
the real HR image and the final SR image.

Then, IHR and IBASE are both input into the discriminator to determine the authenticity
of IBASE. Moreover, the discriminator is trained to minimize the adversarial loss, which can
force the generator to output the reconstructed image ISR as similar as the real HR image.
The adversarial loss can be written as:

Ladv(τG, τD) = − log D(IHR)− log(1− D(G(ILR))), (3)

where τD refers to the model parameters in the discriminator, ILR represents the input
LR image, G(·) represents the generator function, and D(·) is the discriminator function
to compute the probability of being the generated HR image or real HR image. In the
discriminator, the generated image is expected to be classified as 0, and the real image
is expected to be classified as 1. If the discriminator can correctly decide whether this
is a real or generated image, then the Equation (3) will output 0, which is the smallest
value. For the generator, it is expected to confuse the discriminator to make it unable to
distinguish between the real image and generated image, and classify the generated image
as 1.

Furthermore, we included the edge image consistency loss function, as shown in
Equation (4), where Iedge_HR is the edge image of the real HR image, and Iedge_SR is the
edge image of the generated SR image. As we know, the image consistency loss Limg_cst in
Equation (2) helps to obtain an output with good edge information, but the edges for some
objects in the image are distorted and have produced noise. Therefore, we incorporate this
loss to resolve this issue. The weighting coefficient of this loss is chosen to be the same as
Limg_cst.

Ledge_cst(τG) = ρ(Iedge_HR − Iedge_SR). (4)
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Equation (5) shows the perceptual loss [34], and we incorporated the edge perceptual
loss function described in Equation (6). The feature map (vgg f ea(·)) before the activation
layer of the fine-tuned VGG19 [7] network are adopted to compute the perceptual loss and
the edge perceptual loss as follows:

Lperc = E
∥∥∥vgg f ea(IBASE)− vgg f ea(IHR)

∥∥∥, (5)

Ledge_perc = E
∥∥∥vgg f ea(Iedge_BASE)− vgg f ea(Iedge_HR)

∥∥∥, (6)

where IBASE represents the intermediate SR image, IHR is the real HR image, Iedge_BASE is
the edge map of the intermediate SR image, Iedge_HR is the edge map of the real HR image,
and E denotes the calculation of mean value for the difference of feature maps.

3.4. Ablation Study

To prove the feasibility of the proposed model, we conducted ablation experiments
using different UDSN and EESN networks, different edge extraction methods, and adding
other different loss functions. In all the ablation experiments, we used the pre-processed
Kaggle data set and randomly selected 4000 images (72% training, 8% validation, and 20%
testing) to conduct experiments.

As shown in Table 4, we can see that the network architecture using RRDB with two-
dimensional topology convolution has significantly improved the output results. By exten-
sive ablation experiments, we discover that for the UDSN, using the 2D-topology RRDB
has the best results, where the number of residual dense blocks (RDBs) in the RRDB is 3,
while the number of convolutional layers in each RDB is 5 and they are all connected in
2D-topology. For the EESN, it still shows using the 2D topology convolutional layers in
the RRDB brings the best SR performance. However, the number of RDBs in the RRDB
becomes 2, and the number of convolutional layers in each RDB is 3. The final decided
architecture for the generator is shown in Figure 2.

Next, through experiments by using different edge extraction approaches, it is found
that using Canny edge extraction (PSNR: 33.011 dB, SSIM: 0.918) method can bring better
performance to the SR results than the Sobel (PSNR: 32.950 dB, SSIM: 0.906) and Laplacian
(PSNR: 32.947 dB, SSIM: 0.913) methods. Finally, we sequentially add different loss func-
tions to the original loss function. It is found that adding these losses into the model will
yield a better performance for the final output SR image. The best performance happens
when we add Ledge_cst(τG), Lperc, and Ledge_perc into the original loss function.

Therefore, the final loss function is decided from the ablation experiments in Table 4
and shown in Equation (8), where we combine Limg_cst(τG) and Ledge_cst(τG) into Lcst(τG),
as in Equation (7). Based on the previous experiment experience, we set α1 = 0.1,
α2 = 0.009.

Lcst(τG) = Limg_cst(τG) + Ledge_cst(τG), (7)

L f inal(τG, τD) = Lcont(τG) + 0.001Ladv(τG, τD) + 5Lcst(τG) + α1Lperc + α2Ledge_perc. (8)

Table 4. Ablation experiments.

UDSN EESN Edge-
Extraction Lcont Ladv Limg_cst Ledge_cst Lperc Ledge_perc PSNR SSIM FSIM

DB DB Laplacian " " " % % % 31.843 0.874 0.988
RDB DB Laplacian " " " % % % 31.401 0.845 0.985

2D-RDB DB Laplacian " " " % % % 32.560 0.901 0.990
RRDB DB Laplacian " " " % % % 32.074 0.882 0.985

2D-RRDB DB Laplacian " " " % % % 32.774 0.899 0.991
2D-RRDB RDB Laplacian " " " % % % 32.755 0.903 0.990
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Table 4. Cont.

UDSN EESN Edge-
Extraction Lcont Ladv Limg_cst Ledge_cst Lperc Ledge_perc PSNR SSIM FSIM

2D-RRDB 2D-RDB Laplacian " " " % % % 32.676 0.890 0.986
2D-RRDB RRDB Laplacian " " " % % % 32.935 0.910 0.989
2D-RRDB 2D-RRDB Laplacian " " " % % % 32.947 0.913 0.990
2D-RRDB 2D-RRDB Sobel " " " % % % 32.950 0.906 0.984
2D-RRDB 2D-RRDB Canny " " " % % % 33.011 0.918 0.994
2D-RRDB 2D-RRDB Canny " " " " % % 33.057 0.923 0.990
2D-RRDB 2D-RRDB Canny " " " " " % 33.103 0.925 0.987
2D-RRDB 2D-RRDB Canny " " " " % " 33.081 0.917 0.994
2D-RRDB 2D-RRDB Canny " " " " " " 33.111 0.921 0.990

3.5. Discriminator Networks

The standard GAN is used to calculate the probability whether the image is true or
fake. To be able to distinguish which images are real and which are generated, we trained
a discriminator network. The architecture of the discriminator is depicted in Figure 6,
which contains eight convolutional layers. A batch normalization (BN) layer follows
all convolutional layers, except for the first convolutional layer. Like the VGG network,
the number of channels of the convolutional layer doubles from 64 to 128, and then 128 to
256, and finally 256 to 512. The stride size of the first, third, fifth, and seventh convolutional
layers is set to 2, while the stride size of the remaining convolutional layers is set to 1.
Moreover, the stride convolution and LeakyReLU activation (α = 0.2) function are used
rather than the maximum pooling layer. The main advantage of using stride convolution is
to reduce the size of features. At the end of the network, two dense layers and a sigmoid
activation function are followed to calculate the probability that the image is authentic.

Figure 6. Network architecture of the discriminator.

4. Results and Discussions

We compare the proposed method with several satellite image SR methods based on
the GAN, including SRGAN [3], ESRGAN [4], EEGAN [5], and EESRGAN [6], respectively.
The test was performed on a number of popular and publicly available satellite image
databases. We adopted three popular and well-known full-reference objective evaluation
metrics [35,36] (i.e., peak signal-to-noise ratio (PSNR), structural similarity (SSIM) [37]
and feature similarity (FSIM) [38]) to test the performance of all compared models. We
also use no-reference evaluation indicators, including average gradient (AG) [39] and
naturalness image quality evaluator (NIQE) [40] to evaluate those reconstructed images
without high-resolution images as reference.

4.1. Databases and Experimental Parameter Setting

In this work, we use three different satellite data sets, namely, Kaggle open source
dataset [41], AID [42] and WHU-RS19 [43]. For the Kaggle open source dataset, it has
1720 satellite images with size of 3099 × 2329 pixels. First of all, in the training stage, we
crop images into 720 × 720 patches to increase the amount of data. Then the input LR
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image has a size of 180 × 180, which is obtained by down-sampling HR images using
the MATLAB bicubic kernel function, which follows most existing satellite image super-
resolution methods [6,19] (i.e., using a simple down-sampling model with a fixed kernel to
create training images). In total, the dataset has 20,640 images.

Regarding the AID dataset [42], it contains 10,000 images in total with size of 600 × 600
and consists of 30 scene types. In addition, for the training stage of above two data sets,
80% of samples are chosen as the training set and the rest 20% of samples are treated as the
test set, where the training set is divided into 90% for training and 10% for validation.

For the WHU-RS19 dataset [43], the image size of this dataset is 600 × 600, which
contains a total of 1005 satellite images of 19 categories. In this dataset, we use all the
images as the test data and the test model is trained on the Kaggle open source dataset.

Moreover, in order to prove that the method we proposed is effective in real scenarios,
we will conduct experiments for the data set collected by SpaceWill [44]. Here we directly
input the LR test image into the network trained with Kaggle, where eight scenes were
selected as test samples, including the Petronas Twin Towers in Malaysia, the Pentagon
Tower in the United States, the Forbidden City in Beijing, the Dubai Tower, the Beijing
Olympic Pavilion, the Hong Kong Convention Center, the Saifuding Mosque in Brunei,
and the Potala Palace in Qinghai-Tibet. For convenience, we cropped them into a uniform
size of 1000 × 1000 pixels for testing.

For all conducted experiments, the Adam optimizer is used in the training process
and we set the parameter β1 to be 0.9. We also set the initial learning rate to be 2× 10−4.
The generator and discriminator are trained alternately until our model converges.

4.2. Comparisons with State-of-the-Art Methods in Kaggle Dataset

To prove the practicality of our method, we compare the proposed approach with
several GAN-based SR models, including SRGAN [3], ESRGAN [4], EEGAN [5], and EESR-
GAN [6]. In order to have a fair comparison, we retrain these models using the same
dataset. As shown in Table 5, the proposed approach has the highest scores for all the
performance indices in the Kaggle dataset, including PSNR, SSIM and FSIM. Moreover,
in Figure 7, it shows the SR images generated by our approach are more realistic and
competitive compared with other models. Figure 8 is an enlarged partial view of the SR
result of each method in the Kaggle dataset.

Table 5. SR result performance comparison in the Kaggle dataset, where the best results are shown
in boldface.

SRGAN [3] ESRGAN [4] EEGAN [5] EESRGAN [6] Ours

PSNR 32.215 32.396 32.463 32.804 33.001
SSIM 0.893 0.887 0.901 0.899 0.906
FSIM 0.987 0.992 0.991 0.990 0.993
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Figure 7. SR visual result comparison for all models in the Kaggle dataset, where the best results are
shown in red font.

Figure 8. An enlarged partial view of the SR result of each method in the Kaggle dataset, where the
best results are shown in red font.
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4.3. Comparisons with State-of-the-Art Methods in the AID Dataset

We also compare our proposed approach with other well-performed models in the
AID dataset. As shown in Table 6, the proposed model still has very good scores among
three performance indices, including PSNR and SSIM. Figure 9 shows the visual SR results
for all compared models. Figure 10 is an enlarged partial view of the SR result of each
compared method in the AID dataset.

Table 6. SR result performance comparison in the AID dataset, where the best results are shown
in boldface.

SRGAN [3] ESRGAN [4] EEGAN [5] EESRGAN [6] Ours

PSNR 32.164 32.250 32.140 32.335 32.399
SSIM 0.876 0.883 0.903 0.896 0.908
FSIM 0.980 0.989 0.990 0.992 0.990

Figure 9. SR visual result comparison for all models in the AID dataset, where the best results are
shown in red font.
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Figure 10. An enlarged partial view of the SR result of each method in the AID dataset, where the
best results are shown in red font.

4.4. Comparisons with State-of-the-Art Methods in the WHU-RS19 Dataset

Considering that the amount of data in this data set is small, we use all the images in
the dataset as a test set. For our approach and other compared SR models, we all use the
model that has been trained with the Kaggle dataset to do the test. The result is shown in
Table 7. Our proposed approach still has the best scores in PSNR and SSIM, except FSIM.
Figure 11 shows the output SR result and Figure 12 is an enlarged partial view of the SR
result of each method in the WHU-RS19 dataset. It can be observed that our approach has
the best visual results compared with the other four models.

Table 7. SR result performance comparison in the WHU-RS19 dataset, where the best results are
shown in boldface.

SRGAN [3] ESRGAN [4] EEGAN [5] EESRGAN [6] Ours

PSNR 31.703 31.786 31.827 31.839 32.010
SSIM 0.862 0.855 0.871 0.844 0.881
FSIM 0.980 0.983 0.983 0.984 0.980
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Figure 11. SR visual result comparison for all models in the WHU-RS19 dataset, where the best
results are shown in red font.

Figure 12. An enlarged partial view of the SR result of each method in the WHU-RS19 dataset, where
the best results are shown in red font.
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4.5. Comparisons with State-of-the-Art Methods in the SpaceWill Dataset

We will use the AG and NIQE to evaluate the SR results of all compared models in the
SpaceWill dataset. The AG refers to the obvious difference in the grayscale near the shadow
or both sides of the border of the image (i.e., the grayscale change rate). Moreover, the
size of this change rate can be used to express the sharpness of the image. The larger the
AG, the more layers and the clearer the image. NIQE is based on constructing a series
of features used to measure image quality, and fitting these features into a multivariate
Gaussian model. The larger the values of these parameters, the greater value of the NIQE
and the worse of the image quality. As shown in Table 8, our approach is better than other
methods. Figure 13 shows the output SR results. Figures 14 and 15 are enlarged partial
views of the SR results of each method in the SpaceWill dataset.

Table 8. SR result performance comparison in the SpaceWill dataset, where the best results are shown
in boldface.

SRGAN [3] ESRGAN [4] EEGAN [5] EESRGAN [6] Ours
AG NIQE AG NIQE AG NIQE AG NIQE AG NIQE

Petronas Twin Towers 8.120 5.185 8.252 5.069 9.542 4.977 8.990 4.701 10.105 4.631
Pentagonal Building 5.974 5.010 5.241 4.921 5.238 4.333 6.043 4.076 6.427 4.301

Forbidden City 6.043 5.179 5.459 5.232 5.783 5.135 6.324 5.065 6.641 5.013
Dubai Tower 8.838 4.623 8.774 4.737 10.017 4.952 9.563 4.501 10.991 4.510

Beijing Olympic Pavilion 6.679 4.693 5.812 4.723 6.956 4.566 6.637 4.894 7.311 4.762
Hong Kong Convention
and Exhibition Center 4.544 4.085 4.040 3.977 5.019 3.949 5.086 3.975 5.116 3.937

Saifuding Mosque 4.554 4.468 4.780 4.244 5.211 4.036 5.919 4.001 5.751 3.990
Potala Palace in
Qinghai-Tibet 9.535 5.325 9.466 5.417 11.697 5.663 10.601 5.508 11.231 5.369

Figure 13. SR visual result comparison for all models in the SpaceWill dataset.
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Figure 14. An enlarged partial view of the SR result of each method in the SpaceWill dataset—sample
image 1, where the best results are shown in red font.

Figure 15. An enlarged partial view of the SR result of each method in the SpaceWill dataset—sample
image 2, where the best results are shown in red font.
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5. Conclusions

In this work, we combine the RRDB and the CNN with 2D topology to build a model
with dense and complex connections. In the generator sub-network, we are able to generate
SR images more close to the ground truth. Also, better and clearer features from edge can
be obtained in the EESN. Moreover, the original Laplacian edge-feature extraction method
has been replaced by the Canny algorithm. We also incorporate different loss functions to
enhance the visual quality of the resultant SR image. By doing extensive experiments on
four open databases, the proposed SR approach can generate images with better visual
quality [45,46]. Based on the results of objective evaluation [47,48], our approach is indeed
superior than the current SR models on satellite images. In the future, we can improve and
optimize some parts of this model. For example, using different pretrained networks to
extract features and compute the perceptual loss to improve the SR images. We also can
try to use different identification methods or add the salient region method, which have
shown good output SR results in other works. In addition, the discriminator network can
be modified to have better judgments to decide whether the output image is true or fake.
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