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Abstract: The safe operation of dams is related to the lifeline of the national economy, the safety of
the people, and social stability, and dam safety monitoring plays an essential role in scientifically
controlling the safety of dams. Since the effects of environmental variables were not considered in
conventional monitoring data repairing methods (such as the single time series model and spatial
interpolation model), a spatial model for repairing monitoring data combining the variable impor-
tance for projection (VIP) method and cokriging was put forward in this paper. In order to improve
the accuracy of the model, the influence of different combinations of covariates on it was discussed,
and the VIPj value greater than 0.8 was proposed as the threshold of covariates. The engineering
verification shows that the VIP-cokriging spatial model had the advantages of high precision and
strong applicability compared with the inverse distance weighting (IDW) model, the ordinary kriging
model, and the universal kriging model, and the overall error can be reduced by more than 60%,
which could better realize the expansion of the monitoring effect variable to the whole area of the dam
space. The engineering application of the PBG dam showed that the model scientifically correlated
the existing monitoring points with the spatial location of the dam, and reasonably repaired the
measured values of the stopping and abnormal measured points, effectively ensuring that the spatial
regular of the monitoring data could truly reflect the actual safety and operational status of the dam.

Keywords: dam safety monitoring; variable importance for projection; cokriging; data repair; the
spatial model

1. Introduction

Dam safety is related to the national economy and people’s livelihood. With the
rapid development of information technology, big data, the Internet of Things, electronic
communication, and other technologies, dam operation and safety control are gradually
developing towards automation and intelligence [1] while continuous and reliable dam
safety monitoring data is a prerequisite for the scientific evaluation of dam operation
and safety conditions. However, affected by factors such as short-term abnormalities in
monitoring instruments, monitoring instrument replacement, measurement errors, and
external environmental disturbances [2], dam safety monitoring data is prone to data
omissions, oscillation fluctuations, response misalignment, and other data anomalies. The
occurrence of these anomalies will affect the continuity and reliability of the monitoring
sequence, cause misjudgment of the dam’s operational state, and even endanger the safe
operation of the dam [3]. Therefore, it is essential to build a high-precision model for
repairing dam safety monitoring data to control the general law and development trend of
dams in real time for the intelligent control of dam safety operation [4,5].
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At present, the repair of safety monitoring data mainly starts from the dimension of
time and mostly adopts linear regression analysis [6,7], principal component analysis [8],
machine learning algorithm [9,10], and so on. Among them, Vazifehdan et al. [11] proposed
a method of combining a naive Bayesian network with tensor decomposition to repair
missing data. Stojanovic et al. [12] used linear regression and genetic algorithm to construct
an adaptive system for dam behavior modeling, which significantly improves the accuracy
of data repair. Du et al. [13] proposed a model for repairing data with good performance in
terms of training time and model robustness based on a deep learning approach. Never-
theless, these methods realize data repair by constructing time series models, which have
high repair accuracy for data sequences with good periodic regularity and fail to meet the
application requirements for data sequences with long-missing measurement time and
poor data regularity [14]. Moreover, the single-point monitoring model can only reflect the
local characteristics of the dam, but cannot reflect the overall state. The dam as a whole
structure, the sequence of monitoring points for deformation, seepage and stress-strain
of the dam contains information in both the temporal and spatial dimensions, that is,
there is a correlation between time and space. Therefore, constructing a multi-dimensional
spatial model for repairing data from the spatial coordination and consistency of dam effect
variables is undoubtedly an effective path to solving this problem.

Since the gradual development of spatial information technology in the 1960s, many
scholars have conducted a lot of research on spatial models. Models such as Thiessen
polygon [15], inverse distance weighting [16,17], and kriging [18,19] had been introduced
into spatial model construction. At present, there have been in-depth studies on the
construction methods of spatial models in many fields such as meteorology [20,21] and
geostatistics [22] that achieved good results. For example, Adhikary [23] used the KGP,
which combined the nonparametric variogram model based on genetic programming with
kriging, as a feasible alternative technique for spatial estimation and mapping of rainfall.
Seo [24] proposed a hybrid model called RKNNRK that combined regression kriging
and neural network residual kriging for determining spatial precipitation distribution.
In the field of water conservancy project, the research of spatial model is still in the
exploratory stage. Mao et al. [25] proposed a deep neural network multi-view learning
method (DNN-MVL) based on inverse distance weighting to reveal the complex non-linear
spatio-temporal relationships of dam deformation effectively. Zhao et al. [26] developed a
spatio-temporal monitoring model of the center of mass based on a least-squares support
vector machine by introducing the initial coordinates of the center of mass. Lu et al. [27]
used the kriging interpolation method to construct a high-precision horizontal space-time
gradient expansion model of the core wall of the earth-rock dam, which effectively reflected
the three-dimensional deformation trend of the dam. Dai et al. [28] combined Kalman
filtering and kriging spatial interpolation to construct a spatio-temporal model of dam
deformation, efficaciously filtering out the noise of deformation data in time and space.
Yang et al. [29] proposed a geographically and temporally weighted regression (GTWR)
model which improved the accuracy of data repair during the missing period of measuring
points. These methods are limited by monitoring technology and analysis theory, and
mainly consider the geometric location of measuring points, and cannot reasonably consider
the influence of important environmental factors on the number of monitoring effects. The
accuracy and physical meaning of the model need to be improved [30], and also there are
relatively few application cases in dam safety monitoring data restoration.

To sum up, a cokriging spatial model for repairing data based on variable importance
for the projection method was proposed in this paper. The model could identify the
important environmental impact factors of different parts, and combined with the spatial
layout characteristics of the same monitoring effect variables to construct a one-dimensional,
two-dimensional, or three-dimensional spatial model with the measured values of the
measuring points as the main variables and the important environmental impact factors as
the covariates. The expansion of dam safety monitoring data to the whole spatial area of
the dam effectively solves the problem of the existing spatial model being unable to take



Appl. Sci. 2022, 12, 12296 3 of 22

into account the influence of environmental quantities and the selection of environmental
impact factors relying on experience, which can significantly improve the accuracy of
repairing abnormal or missing data and ensure that safety monitoring data can truly reflect
the safe operation of the dam.

2. Methodology

Reasonable selection of main variables and covariates is the key to affecting the
accuracy of the cokriging spatial model. In general, the main variables are usually chosen
as the effect variables, while the covariates are mostly chosen as the key factors affecting
the effect variables, which are the environmental impact factors for dam safety monitoring.
Hence, the VIP-cokriging spatial model for repairing dam safety monitoring data was
proposed in this paper, which combined the variable importance for projection method
and the basic principle of cokriging. Firstly, the dimension of spatial model construction
is determined according to the spatial arrangement characteristics of similar monitoring
instruments. Secondly, the variable importance for the projection method is used to identify
important environmental impact factors for effect variables and use them as covariates.
Then, according to the principle of cokriging, it uses cross-covariance and cross-semi-
variance function modeling between multiple regionalized variables to characterize the
correlation between them to obtain unbiased and optimal estimates of the regionalized
variables. In order to calculate the covariance, the main variable covariance function,
co-variable covariance function and cross-covariance function, the exponential model with
better universality is selected to fit the covariance function. Finally, by fitting the covariance
function, the measured values of spatially similar measurement points, covariates, and
spatial location parameters are used to calculate spatially repaired measurements of data
anomalies or unmeasured points. The flow is shown in Figure 1. The specific steps of the
method are described as follows:
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2.1. Decision of the Construction Dimension of Spatial Model

The spatial position of monitoring instruments is usually expressed using dam wheel-
base, pile number and elevation, which are essential parameters for constructing the
VIP-cokriging spatial model. Depending on the spatial arrangement characteristics of
similar measurement points, it is generally considered to construct one-dimensional, two-
dimensional, and three-dimensional models. The one-dimensional models are usually con-
structed along a line of measurement, such as the horizontal displacement one-dimensional
model of gravity dam crest and the uplift pressure one-dimensional model of sluice foun-
dation, etc. The two-dimensional models are often constructed in conjunction with typical
sections of dam safety monitoring, such as the internal horizontal displacement two-
dimensional model of earth-rock dam and the temperature two-dimensional model of
gravity dam section. The three-dimensional models mainly aim at the effect variables of the
whole dam or the entire dam area, such as the appearance deformation three-dimensional
model of the earth-rock dam, the three-dimensional model for seepage around the dam,
and so on.
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Due to the complexity and difficulty of implementing kriging interpolation in three-
dimensional space, and the covariance is only a function of the distance between points.
Cokriging is only applicable to two-dimensional plane coordinate systems. Therefore,
when constructing the three-dimensional model, it is necessary to transform the three-
dimensional spatial coordinates of the buried position of the monitoring equipment into
two-dimensional plane coordinates, that is, the measuring points are projected onto the
model building plane, and keep the distance between the measuring points after two-
dimensional transformation basically consistent with the distance under the original co-
ordinates. In practical engineering, different two-dimensionalization methods of three-
dimensional coordinates should be selected according to the arrangement of instruments
to ensure the application effect of the model after two-dimensional coordinates.

2.2. Selection of Covariates

The degree of correlation between the main variables and the covariates affects the
accuracy of the cokriging model, so the factors with the higher degree of influence should be
selected as the covariates. The influencing factors of dam deformation usually include water
pressure, rainfall, temperature, aging, and so on. Taking the earth-rock dam as an example,
the deformation of earth-rock dam caused by the change of water pressure is mainly formed
by the compression and shear of soil and the displacement of dam foundation. The effect
of temperature on the deformation of earth-rock dam is not obvious, and the change of
external temperature generally only affects the surface soil. Rainfall infiltration raises water
level and changes soil water content, thus affecting dam deformation. The creep of rockfill,
the compression and plastic deformation of fissure joints and other weak structures at the
bottom of reservoir under the action of water pressure, and the irreversible deformation
of dam caused by cyclic loads such as the rise and fall of water level in front of dam also
increase with the increase in dam operation life. Generally, three covariates are selected
at most, and the more covariates are selected, the more complex and time-consuming
the calculation is. Therefore, selecting appropriate covariates is the key to improving the
accuracy and computational efficiency of the cokriging spatial model.

In this paper, the variable importance for projection method based on the partial least
squares regression method [31] was used to identify the influence degree of environmental
factors. It can effectively solve the problems of unstable recognition effect and lack of spatial
consistency commonly found in the currently used methods such as the mathematical
model method, weighted area method, and grey correlation analysis [32]. The central idea
of the method is that the explanatory ability of the factor principal component th for the
component xj is equivalent to the correlation coefficient R2 of the linear regression equation
of xj on th. Since the explanatory effect of xj on y is transmitted through the principal
component th, if the explanatory ability of th on y is strong and the effect of xj on th is very
significant, it can be assumed that the explanatory ability of xj on y is strong. Therefore,
the environmental factors such as water pressure, temperature, rainfall, and aging are
regarded as independent variables xj, and the effects variables such as dam deformation
and seepage are regarded as dependent variables y. Then, the VIPj value of the variable
importance for the projection index is solved for each environmental factor separately, as
seen in Equation (1). Among them, the values of water pressure, temperature and rainfall
are directly measured by instruments, and the days from the observation time to the initial
observation time are taken as the aging measurement values.

VIPj =

√√√√√ k
m
∑

h=1
Rd(y, th)

m

∑
h=1

Rd(y, th)w2
hj, (1)

where k is the number of independent variables; th is the principal component extracted
from related independent variables; Rd(y, th) is the correlation coefficient between depen-
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dent variables and principal components, which indicates the explanatory ability of the prin-
cipal component to y; whj is the weight of independent variables on principal components.

The VIPj value represents the degree of importance of the independent variables to
the fit of the dependent variables, so the higher the value of VIPj, the more significant the
contribution of the independent variables to the dependent variables, and the more critical
it is in the interpretation. Generally, if the VIPj value of the independent variable is less
than or equal to 0.8, its explanatory ability for y can be ignored [33]. In this paper, combined
with the analysis of several practical engineering cases, it was found that the introduction of
environmental factors with VIPj value greater than 0.8 as covariates had a significant effect
on improving the accuracy of the spatial model, while the introduction of environmental
quantity factors with VIPj value less than 0.8 had little effect, see Section 3 for details.
Therefore, VIPj = 0.8 was taken as the control threshold for introducing covariates, that
was, the environmental quantities with VIPj value greater than 0.8 were taken as covariates
to participate in the construction of the cokriging spatial model.

2.3. Construction of Model

Cokriging interpolation greatly improves the accuracy of the interpolation by introduc-
ing one or more covariates (also referred to as auxiliary variables) that are closely related to
the main variables, which is an improved method of kriging interpolation. This method
is based on the theory of co-regionalized variables and carries out spatial interpolation
according to it. The cokriging interpolation formula is as in Equation (2).

Z∗0 =
n

∑
i=1

λiZi +
k

∑
j=1

n

∑
i=1

µjiYji, (2)

where Z1, Z2, . . . , Zn and Yj1, Yj2, . . . , Yjn are n sample data for the main variables and
covariates, respectively; j is the number of covariates; λ1, λ2, . . . , λn and µj1, µj2, . . . , µjn
are the cokriging weighting coefficients to be determined; Z∗0 is the repaired value of the
random variable at 0.

Taking the second order as an example, if there are two regionalized values Zi(x) and
Yi(x) (i = 1, 2, . . . , n), which are related to the attribute in a region, then

Z∗0 =
n
∑

i=1
λiZi +

n
∑

i=1
µiYi. In order to satisfy the unbiased condition of the estimator, the sum

of weights of main variables should be equal to 1, and the sum of weights of covariates
should be equal to 0, as seen in Equation (3).

n
∑

i=1
λi = 1

n
∑

i=1
µi = 0

. (3)

According to the irreversible bias of the estimated value and the least square method,
the Lagrange multiplication is used to solve the cokriging equation, as seen in Equation (4).

n
∑

j=1
λjCZiZj +

m
∑

j=1
µjCZiY − η1 = CZ0Zi

n
∑

i=1
µiCYiYj +

m
∑

i=1
λiCZiYj − η2 = CZ0Yj

n
∑

i=1
λi = 1

n
∑

i=1
µi = 0

. (4)
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It is expressed in matrix form as shown in Equation (5).

CZ0Ym · · · CZ1Zn CZ1Y · · · CZ1Ym 1 0
...

. . .
...

...
. . .

...
...

...
CZnZ1 · · · CZnZn CZnY1 · · · CZnYm 1 0
CY1Z1 · · · CY1Zn CY1Y1 · · · CY1Ym 0 1

...
. . .

...
...

. . .
...

...
...

CYmZ1 · · · CYmZn CYmY1 · · · CYmYm 0 0
1 · · · 1 0 · · · 0 0 0
0 · · · 0 1 · · · 1 1 1





λ1
...

λn
µ1
...

µm
−ξ1
−ξ2


=



CZ0Z1
...

CZ0Zn

CZ0Y1
...

CZ0Ym

1
0


. (5)

The cokriging method is based on the theory of co-regionalized variables. It uses
cross-covariance and cross-semi-variance function modeling between multiple regionalized
variables to characterize the correlation between them to obtain unbiased and optimal esti-
mates of the regionalized variables. Because each environmental component has different
effects on the effect variables of different parts, the environmental measurement value
cannot be directly used as covariates to participate in the construction of the model. In
this paper, by using the duration sequence of the measured value of each measuring point
and the water pressure, temperature, rainfall, and aging, the non-linear fitting method was
adopted to search for the most suitable non-linear expression of the measured value of each
measuring point about each environmental variable in the global range. The measured
value of the environmental variables at the moment to be calculated was brought into
the function equation between them, and the change of the effect variable caused by the
environmental variable was inferred, which was taken as a covariate to participate in the
calculation, as seen in Equation (6).

f1(h) f1(t) f1(p) f1(θ)
f2(h) f2(t) f2(p) f2(θ)

...
...

...
...

fi(h) fi(t) fi(p) fi(θ)
...

...
...

...
fn(h) fn(t) fn(p) fn(θ)


h = hk+1, t = tk+1
p = pk+1, θ = θk+1→



Y1(h) Y1(t) Y1(p) Y1(θ)
Y2(h) Y2(t) Y2(p) Y2(θ)

...
...

...
...

Yi(h) Yi(t) Yi(p) Yi(θ)
...

...
...

...
Yn(h) Yn(t) Yn(p) Yn(θ)


, (6)

where h, t, p, and θ are the values of water pressure, temperature, rainfall, and aging; fi(h)
is the most suitable nonlinear expression for the measured values of the duration series
of measuring point i with respect to the measured values of the duration series of water
pressure, same for fi(h), fi(p) and fi(θ); hk+1 is the value of the water pressure at moment
k + 1, same for tk+1, pk+1 and θk+1; Yi(h) is the water level covariate value of measuring
point i at moment k + 1, same for Yi(t), Yi(p) and Yi(θ).

In order to calculate the covariance, the main variable covariance function, co-variable
covariance function, and cross-covariance function need to be fitted by selecting appropriate
function models. The covariance function and the parameters to be fitted are shown in
Figure 2.

Covariance function models commonly used in kriging theory include the exponential
model, the spherical model, and the gaussian model [34]. As the exponential model has
better generalizability compared to the spherical model, the Gaussian model may not be
interpolable at certain locations. With overall consideration, the exponential model was
chosen to fit the covariance function, as seen in Equation (7).

γ(h) = C0 + C1(1− e−
h
a ), (7)
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where C0 is nugget; C0 + C is sill; C is partial sill; a is not the range here, because when
h = 3a there is 1− e3 ≈ 0.95 ≈ 1, so γ(h) ≈ C0 + C, and the range is 3a. When C0 = 0 and
C = 1, it is called a standard exponential model.
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2.4. Calculation of Unrepaired Value

The optimal main variable covariance function, co-variable covariance function, and
cross-covariance function are fitted by the exponential model, and the values of main
variable covariance, covariate covariance, and cross-covariance are calculated by Equation
(8) according to the known distance between any two points. Then, the calculated results
are brought into Equation (4), and the weights of each measuring point and each covariate
are obtained by solving

γ(h) = σ2 − C(h), (8)

where σ2 is the variance in the region I.
Finally, using the measured values Z1, Z2, . . . , Zn and their weights λ1, λ2, . . . , λn, the

covariate values Yj1, Yj2, . . . , Yjn, and their weights µj1, µj2, . . . , µjn for spatially similar
intact measuring points, the repair values of data abnormal or missing measuring points
can be calculated using Equation (2).

3. Discussion on the Threshold of Covariate Introduction

Reasonable selection of covariates affects the model’s accuracy and computational
efficiency, which is the key to constructing a cokriging spatial model. In order to ensure
universality, the one-dimensional and the two-dimensional cokriging spatial model for
different projects were constructed in this section. At the same time, the influence of
different covariate combinations on the accuracy of the model was deeply analyzed, and
the rationality of setting the VIPj control threshold of 0.8 was demonstrated.

The error analysis of a single measuring point adopted the most commonly used
cross-verification method [35]. N spatial models were obtained by sequentially leaving the
measured values of each measuring point in a measurement time (n measuring points in
total) as the verification set, and the measured value samples of the other n − 1 measuring
points as the training set. The cross-validation results of all measuring points in the
monitoring effect quantity were thus obtained, and the error analysis of each measuring
point was carried out.

Overall error analysis represented the cross-validation results of all measuring points
in each measurement by calculating the mean absolute error (MAE). It analyzed the error
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sequence of each measurement as a whole, as seen in Equation (9). The lower the MAE, the
higher the overall accuracy.

MAE =
1
n

n

∑
i=1
|Zi − Z∗i |, (9)

where Zi is the measured value of the measuring point i; Z∗i is the repaired value of
measuring point i.

3.1. Analysis of the Influence of Covariates Selection on the Accuracy of the One-Dimensional
Spatial Model

A survey line was arranged at the elevation of 476.5 m upstream of a concrete face
rockfill dam to monitor the vertical deformation of the surface, with a total of 10 measuring
points, numbered SA6-1 to SA6-10. All measuring points are intact, and their arrangement
and duration hydrograph are shown in Figures 3 and 4. The VIP method was used to
identify the influencing factors of the effect variables of each measuring point. It was
found that the important influencing factors of each measuring point were the same, aging
and temperature had a great influence on vertical deformation, VIPj value exceeded 0.8
followed by water pressure, the VIPj value ranged from 0.25 to 0.64, and rainfall had the
least influence; the VIPj value was less than 0.3, as shown in Figure 5.
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For the convenience of comparison and analysis, the aging single-factor, aging tem-
perature two-factor, and aging temperature water pressure three-factor spatial cokriging
models were constructed by using the measured values of each measuring point. The
single-point error analysis was conducted for the measured values on 24 December 2020,
as shown in Table 1. In the environmental variables, the aging is a monotonic increasing
function, and the water level, temperature and rainfall are all periodic functions with
years as the unit. Therefore, the overall error analysis was conducted for the measured
values from January 2020 to December 2020 (due to COVID-19 pandemic, there was no
measured value in February 2020), as shown in Figure 6. It could be seen that the repair
accuracy of other measuring points was ideal, with absolute error within 5 mm and relative
error within 3%, except for SA6-1 and SA6-10. Depending on the relative position of the
points to be repaired in the group of known points, it can be divided into interpolation
and extrapolation. Interpolation refers to repairing the unknown measuring points within
the range, while extrapolation refers to repairing the unknown measuring points outside
the range. The two measuring points SA6-1 and SA6-10 were located on the leftmost and
rightmost banks in terms of spatial location. Hence, when cross-validation was carried
out, the values at this point needed to be repaired by other deformation measurement
points, and there were fewer measurement points around to refer to, which would lead to
larger errors. On the contrary, SA6-3, SA6-7, and SA6-9 were located in the middle of the
measuring points group, and the repair error was tiny. According to the error analysis of a
single measuring point, the accuracy of the two-factor model of aging temperature was
obviously better than that of the single-factor model of aging, and the absolute error of
each measuring point could be reduced by more than 35%. The accuracy of the three-factor
model of aging temperature water pressure was slightly lower than that of the two-factor
model of aging temperature, and the repair accuracy of the three-factor model of about
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60% of the measuring points was lower than that of the two-factor model. The overall error
analysis showed that the mean absolute error of the two-factor model was 3.85~4.08 mm,
which was on average 44% lower than the mean absolute error of the single-factor model
(6.59~7.37mm). The mean absolute error of the three-factor model was slightly higher than
that of the two-factor model, ranging from 3.90 mm to 4.20 mm. Therefore, introducing a
temperature factor with the VIPj greater than 0.8 as a covariate could significantly improve
the accuracy of the model. Nevertheless, if the water level factor with the VIPj less than 0.8
was added on this basis, only the measuring points SA6-2, SA6-4 and SA6-8 had a small
improvement in model accuracy, while the other measuring points showed a decline in
model accuracy.
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In order to verify the stability of the temperature aging two-factor VIP-cokriging
model, according to the monitoring sequence, one measurement was selected every year
for cross-verification. The calculation results are shown in Figure 4. From the figure, we
could see that except the edge measuring points SA6-1 and SA6-10, the repair accuracy of
other measuring points was ideal, and the relative error was basically controlled within 5%.
It further proved that the accuracy of the model was relatively stable. There is no doubt
that the framework cannot provide good predictions at one time interval and poor results
at another.
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3.2. Analysis of the Influence of Covariates Selection on the Accuracy of Two-Dimensional
Spatial Model

One internal horizontal displacement measuring line was set at the elevations of 346.00
m, 379.00 m, 404.00 m, and 445.00 m on the left 0 + 008.20 m section of a concrete face
rockfill dam, with a total of 20 measuring points, numbered EXa1-1~EXa1-2, EXa2-1~EXa2-
4, EXa3-1~EXa3-6, and EXa4-1~EXa4-8, as shown in Figure 7.
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Table 1. Spatial repair results with selection of different covariates of the one-dimensional model.

Measuring
Points

Measured
Value (mm)

Aging Aging + Temperature Aging + Temperature +
Water Pressure

Repaired
Value (mm)

Relative
Error

Repaired
Value (mm)

Relative
Error

Repaired
Value (mm)

Relative
Error

SA6-1 39.09 58.28 49.09% 50.51 29.23% 51.25 31.11%

SA6-2 85.12 90.10 5.85% 87.74 3.08% 87.26 2.52%

SA6-3 128.41 126.78 1.27% 127.85 0.44% 126.18 1.74%

SA6-4 176.22 170.73 3.11% 173.15 1.74% 174.14 1.18%

SA6-5 194.3 186.64 3.94% 190.19 2.12% 191.80 1.29%

SA6-6 198.11 190.13 4.03% 193.97 2.09% 193.63 2.26%

SA6-7 187.09 180.78 3.37% 183.60 1.86% 182.30 2.56%

SA6-8 150.56 146.17 2.91% 147.58 1.98% 149.08 0.98%

SA6-9 93.09 95.42 2.50% 93.50 0.44% 92.33 0.81%

SA6-10 71.71 85.51 19.24% 79.68 11.11% 81.12 13.12%

MAE (mm) 7.37 4.08 4.20

The variable importance for the projection method was used to identify the influence
factors of effect variables at each measuring point. It was found that the important influence
factors at each measuring point were consistent. The effects of aging and water pressure
were more remarkable, with the VIPj values being all greater than 1, while the effects of
temperature and rainfall were relatively small, with the VIPj values being basically between
0.4 and 0.6, as shown in Figure 8.

As above, the spatial cokriging models of aging single-factor, aging water pressure
two-factor, and aging water pressure rainfall three-factor were constructed by using the
measured values of each measuring point. The single-point error analysis was conducted
for the measured values on 11 June 2020, as shown in Table 2. The overall error analysis
was conducted for the measured values from January 2020 to December 2020, as shown in
Figure 9. It could be seen that the maximum relative error appeared at EXa3-4, which was
analyzed to be caused by the small measured value. The analysis combined interpolation
and extrapolation and found that although measuring points such as EXa1-1 and EXa4-
1 were marginal points, there were more intact measuring points around them, so the
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extrapolation of the two-dimensional model was better than that of the one-dimensional
model. According to the single measurement point error analysis, the accuracy of the
two-factor cokriging model is significantly improved compared to the accuracy of the
single-factor cokriging model, which is difficult to ignore, and the absolute error of each
measurement point was reduced by more than 80%. The accuracy of the three-factor
cokriging model is comparable to that of the two-factor cokriging model, the relative error
reduction is not significant, and the accuracy of the two-factor cokriging model is slightly
better than that of the three-factor cokriging model for the measuring points EXa2-1 and
EXa3-1. The overall error analysis showed that the mean absolute error of the two-factor
model (0.07~0.23 mm) was significantly lower than the mean absolute error of the one-factor
model (3.95~4.22 mm), while the mean absolute error of the three-factor model (0.06~0.23
mm) was less different from that of the two-factor model. Thus, by analyzing the repair
effects of introducing different covariates in the one-dimensional and two-dimensional
models, the results obtained for both were consistent.
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Table 2. Spatial repair results with selection of different covariates of the two-dimensional model.

Measuring
Points

Measured
Value (mm)

Aging Aging + Water Pressure Aging + Water Pressure +
Rainfall

Repaired
Value (mm)

Relative
Error

Repaired
Value (mm)

Relative
Error

Repaired
Value (mm)

Relative
Error

EXa1-1 15.45 11.18 27.67% 15.57 0.80% 15.57 0.77%

EXa1-2 11.68 9.42 19.35% 11.85 1.47% 11.85 1.43%

EXa2-1 15.93 8.00 49.78% 15.76 1.06% 15.75 1.13%

EXa2-2 12.47 7.89 36.75% 12.41 0.45% 12.42 0.39%

EXa2-3 17.27 11.30 34.55% 17.11 0.91% 17.12 0.87%

EXa2-4 12.93 9.34 27.76% 12.91 0.17% 12.91 0.18%

EXa3-1 −10.82 −3.37 68.85% −10.86 0.41% −10.87 0.48%

EXa3-2 −9.86 −1.89 80.80% −9.62 2.47% −9.59 2.69%

EXa3-3 −6.13 −0.38 93.79% −6.04 1.43% −6.05 1.25%

EXa3-4 1.18 4.02 240.95% 1.47 24.68% 1.46 23.76%

EXa3-5 10.87 7.92 27.18% 10.86 0.12% 10.86 0.13%

EXa3-6 13.11 8.53 34.94% 13.04 0.56% 13.04 0.56%

EXa4-1 −2.57 0.69 126.76% −2.53 1.54% −2.53 1.56%

EXa4-4 −7.93 −3.19 59.81% −7.93 0.03% −7.93 0.02%

EXa4-5 −6.09 −1.28 79.06% −6.17 1.36% −6.17 1.34%

EXa4-6 3.37 4.04 19.86% 3.50 3.84% 3.50 3.84%

EXa4-7 3.59 4.58 27.47% 3.67 2.27% 3.67 2.27%

EXa4-8 5.86 4.56 22.15% 5.79 1.27% 5.79 1.23%

MAE (mm) 4.22 0.10 0.10

Based on the above, taking all environmental variables with the VIPj greater than 0.8
as covariates to construct a cokriging spatial model could greatly improve the accuracy
of the model. However, if the factor with the VIPj value less than 0.8 was introduced as
a covariate, there was no obvious effect on improving the model’s accuracy, and it might
even reduce the accuracy of the model at some measuring points, and it would significantly
increase the calculation amount and reduce the work efficiency. Therefore, considering
the accuracy and technical efficiency of the model, it was reasonable to introduce the VIPj
value greater than 0.8 as the environmental factor of the cokriging spatial model.

4. Verification and Analysis of Model Accuracy

To further analyze and validate the rationality and validity of the VIP-cokriging spatial
model, the one-dimensional model case from Section 3.1 was used as an example in this
section. The aging temperature two-factor cokriging spatial model was compared with the
inverse distance weighting model [36], ordinary kriging model [37], and universal kriging
model [38], which were more commonly used in the construction of spatial models for dam
safety monitoring at present.

In this paper, the data of seven measurements from June 2020 to December 2020 of
this measuring line were cross-repaired. The error statistics of the single point at typical
moments are shown in Table 3, and the overall error is shown in Figure 10. As can
be seen from the graph, the inverse distance weighting model was the worst, with the
maximum relative error of edge measuring points reaching 178.73%, and the relative error
of non-edge measuring points basically exceeding 10%, with the mean absolute error
of 22.09 to 23.54 mm. The analysis of the reason should be related to the fact that the
method only considered the influence of distance on unknown points while ignoring the
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correlation between measuring points. The ordinary kriging model took into account the
autocorrelation between each measuring point in space, and its accuracy was significantly
improved compared with the inverse distance weighting model. The relative errors of its
non-edge measurement points were controlled within 10%, and the mean absolute error
was 16.74~17.79 mm. This method considered that the variables were stationary in the
region, that is, there was no trend quantity, whereas the vertical displacement of dam
appearance generally had a growing trend. Therefore, the universal kriging model, which
introduced the trend variables over the whole spatial distribution, was relatively good,
with the mean absolute error of 11.46 to 12.68 mm.

Table 3. Comparison between measured values and repaired values of different models (24 December 2020).

Measuring
Points

Measured
Value
(mm)

IDW Ordinary Kriging Universal Kriging VIP-Cokriging

Repaired
Value
(mm)

Relative
Error

Repaired
Value
(mm)

Relative
Error

Repaired
Value
(mm)

Relative
Error

Repaired
Value
(mm)

Relative
Error

SA6-1 39.09 108.96 178.73% 108.90 178.58% 52.61 34.59% 50.51 29.23%

SA6-2 85.12 104.76 23.07% 89.91 5.63% 90.03 5.77% 87.74 3.08%

SA6-3 128.41 121.42 5.45% 124.27 3.23% 115.36 10.17% 127.85 0.44%

SA6-4 176.22 163.89 7.00% 164.10 6.88% 168.71 4.26% 173.15 1.74%

SA6-5 194.3 167.87 13.60% 178.28 8.25% 182.82 5.91% 190.19 2.12%

SA6-6 198.11 173.32 12.51% 183.11 7.57% 159.29 19.60% 193.97 2.09%

SA6-7 187.09 170.71 8.76% 175.31 6.30% 177.96 4.88% 183.60 1.86%

SA6-8 150.56 130.33 13.43% 137.23 8.86% 136.33 9.45% 147.58 1.98%

SA6-9 93.09 80.71 13.30% 89.98 3.34% 95.58 2.67% 93.50 0.44%

SA6-10 71.71 98.06 36.74% 99.46 38.70% 83.40 16.30% 79.68 11.11%
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Overall, the VIP-cokriging model had the highest accuracy. The relative error of
non-edge measuring points was mostly controlled within 3%, and the relative error of
the edge measuring points was reduced compared with the other three models. Its mean
absolute error was 3.85 to 4.08 mm, which was 83%, 77%, and 67% lower than that of
the inverse distance weighting model, the ordinary kriging model, and the universal
kriging model. The main reason was that cokriging introduced one or more auxiliary
environmental variables that had a strong correlation with the effect variables, and using the
cross-correlation between them could effectively improve the spatial expansion accuracy of
the main variable at the unknown points, which could solve the problem of the insufficient
number of measuring points.

5. Engineering Application

The PBG gravel soil earth core wall rockfill dam with a maximum height of 186 m
was completed and stored in water for power generation in 2009. Its internal vertical dis-
placement was monitored by the hydraulic overflow settlement gauge, and the measuring
points of the typical profile (profile 0 + 240 m) were arranged, as shown in Figure 11. Due
to the impact of temporary dam top removal and permanent dam top construction in 2012,
there were many missing measurements between 2012 and 2013. Since completing the
automation transformation in August 2013, the continuity of measured values was good.
However, there were still some phenomena such as unstable measured values at some
measuring points and blockage of instrument pipelines. For example, the CH10 and CH13
at the elevation of 725 m were damaged and measuring stopped in 2015. The stability of
the CH14 measured value was poor, with an anomalous steep step from July 2013 to July
2014. At present, the measured value is close to the measuring range of the instrument, and
the reliability of the measured value is poor, as shown in Figure 12.
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To control the overall distribution characteristics of vertical displacement at profile
0 + 240 m, the original monitoring data of all measuring points are used to draw an isoline
map of settlement deformation at a typical high water level moment (12 October 2017),
as shown in Figure 13a. It could be seen from the figure that the settlement deformation
of the profile showed an increasing downward trend from the middle of the dam body,
and the maximum settlement deformation occurred above the dam foundation. It was
inconsistent with the law that the maximum settlement deformation of gravel soil core wall
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rockfill dam generally occurs in the area of 1/3~2/3 dam height. Analysis of the reasons
should be related to the lack of measuring points at 731 m elevation and the unreliable
measurement of CH14. To avoid misjudgment of dam operation behavior, a VIP-cokriging
two-dimensional spatial model of internal vertical displacement at profile 0 + 240 m was
constructed in this paper. The model was used to supplement the missing measured values
of CH10 and CH13, and to repair the measured values of CH14.
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By analyzing the variable importance for projection, as shown in Figure 14, the cokrig-
ing spatial model is constructed by selecting aging and water pressure as covariates. To
further verify the accuracy and stability of the model, cross-validation was carried out by
selecting the moments when all measurement points were intact. Except for the points CH8
and CH16, the relative errors of the remaining measurement points ranged from 0.24%
to 1.90%, especially the relative errors of CH10, CH13, and CH14 measurement points
were minor and controlled within 2%; the calculation results are shown in Figure 15 and
Table 4. The reasons for it should be related to the fact that the points CH13 and CH14
were internal measuring points and that the CH10 point was close to the known measuring
points and had more known measuring points around it. Therefore, it was feasible to use
the VIP-cokriging spatial model to repair the data of measuring points.
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Figure 15. Cross-validation results of vertical displacement.

The duration hydrograph of the repaired measuring points is shown in Figure 12, and
the isoline map of the vertical displacement of the profile is shown in Figure 13b. The
pattern of changes in the measured values of the repaired points was the same as that
before 2012, with an overall convergence and stabilization and a high degree of restoration
accuracy. The overall pattern of vertical deformation of the profile showed that the internal
settlement deformation was greater than the surface at the same elevation. The settlement
was mainly controlled by the section thickness; the closer to the core wall, the greater
the section thickness and the greater the settlement relative to other locations at the same
elevation. The maximum settlement deformation of the dam occurred in the middle and
lower part of the dam, about 1/3 to 2/3 of the dam height area, which was consistent with
the general settlement deformation law for gravel soil core wall rockfill dams.
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Table 4. Repair accuracy of measuring points.

Date

CH10 CH13 CH14

Measured
Value(mm)

Repaired
Value(mm)

Relative
Error

Measured
Value(mm)

Repaired
Value(mm)

Relative
Error

Measured
Value(mm)

Repaired
Value(mm)

Relative
Error

29 January 2010 1789 1785.42 0.20% 2131 2124.25 0.32% 2011 2010.56 0.02%

27 March 2010 1802 1797.24 0.26% 2146 2153.75 0.36% 2025 2025.65 0.03%

31 May 2010 1813 1816.59 0.20% 2162 2164.88 0.13% 2042 2042.52 0.03%

31 July 2010 1829 1820.88 0.44% 2191 2190.90 0.00% 2072 2071.50 0.02%

30 September 2010 1835 1834.23 0.04% 2240 2236.86 0.14% 2112 2112.92 0.04%

30 November 2010 1857 1860.65 0.20% 2288 2288.13 0.01% 2149 2150.07 0.05%

31 January 2011 1871 1874.07 0.16% 2313 2304.11 0.38% 2168 2171.76 0.17%

30 March 2011 1886 1907.13 1.12% 2316 2296.84 0.83% 2171 2172.47 0.07%

31 May 2011 1890 1921.36 1.66% 2322 2304.37 0.76% 2180 2172.82 0.33%

29 July 2011 1890 1921.11 1.65% 2327 2320.42 0.28% 2181 2184.31 0.15%

29 September 2011 1916 1931.27 0.80% 2359 2332.46 1.13% 2203 2202.86 0.01%

25 November 2011 1925 1930.84 0.30% 2390 2362.19 1.16% 2221 2219.99 0.05%

6. Conclusions

In this paper, aiming at the problems of the spatial models only considering the geo-
metric position of measuring points, or the data repair mostly adopting time series models
which may lead to poor accuracy, a spatial model for repairing dam safety monitoring data
based on VIP-cokriging was proposed. The construction of the model included the steps
of the decision of the construction dimension of the spatial model, selection of covariates,
fitting of covariance function, and calculation of unrepaired value. Finally, the accuracy
and applicability of the model were verified with engineering examples, and the following
conclusions can be drawn:

(1) Aiming at the problem of the spatial model for repairing dam safety monitoring
data not considering the correlation with environmental variables, a cokriging spatial
model based on the variable importance for projection was proposed. Firstly, the spa-
tial model construction dimension was determined according to the spatial arrangement
characteristics of similar monitoring instruments. Secondly, based on partial least squares
regression, principal component analysis and typical correlation analysis were introduced
to decompose and filter the information, and important environmental impact factors were
identified and calculated as covariates. Finally, the weights of the same kind of intact
measuring points and the weights of the covariates calculated by fitting the covariance
function were brought into the model to calculate the repair value of the abnormal or
missing measuring points.

(2) Based on engineering cases of the one-dimensional and the two-dimensional
models, the relationship between the accuracy of the VIP-cokriging model and the selection
of covariates was analyzed. By comparing the repair accuracy of different covariate schemes
chosen, the reasonableness of the VIPj control threshold setting of 0.8 was demonstrated.
Choosing the environmental variable with the VIPj value greater than 0.8 to participate
in the calculation could significantly improve the model’s accuracy. Otherwise, it might
increase the calculation amount and reduce the work efficiency without improving the
model’s accuracy. Moreover, the VIP-cokriging model has strong applicability and high
accuracy at any time.

(3) The VIP-cokriging spatial repair model can greatly improve the data repair effect
and has the advantages of high precision and strong applicability. The application showed
that VIP-cokriging effectively improved the accuracy of the spatial expansion of the main
variables at the unknown point and reduced the error range at repair points by taking
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into account the influence of important environmental variables and utilizing the cross-
correlation between environmental variables and effect variables. Compared with the
inverse distance weight model, the ordinary kriging model, and the universal kriging
model, the repair error was reduced by 83%, 77%, and 67%.

(4) Aiming at the problems of the damage of the monitoring points and the instability
of the measured values at the profile 0 + 240 m of the PBG dam, a two-dimensional VIP-
cokriging spatial model was adopted to extend the monitoring effect variables to the whole
area of the dam space. The scientific correlation between existing monitoring points and the
unknown spatial location of the dam was achieved, and the problem of repairing missing
or abnormal data at key measuring points was solved. The construction of the model was
beneficial to reasonably grasping the overall distribution of dam deformation, effectively
avoiding the misjudgment of the safe operation of the dam, and had good application value
in engineering.

(5) The construction of three-dimensional model needs three-dimensional coordinates
of monitoring equipment position information, but the cokriging method is only suitable for
two-dimensional plane coordinate system, and kriging interpolation in three-dimensional
space is very complex and difficult to realize. The covariance of the kriging interpolation
method is a function based on the distance between measuring points. When constructing
the three-dimensional model of dam safety monitoring, the three-dimensional coordinates
can be transformed into two-dimensional coordinates, but the two-dimensional coordinates
will possibly lose the anisotropy in the monitoring effect variables, which would lead to the
calculation results that cannot reflect the real state of the dam. Therefore, in the follow-up
study, the cokriging method should be expanded in three-dimensional space to build a
more perfect three-dimensional repair model.
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